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function are not fully understood, and the precise

function of p120 catenin (p120ctn) has remained
particularly elusive. In microvascular endothelial cells,
p120ctn colocalized extensively with cell surface VE-
cadherin, but failed to colocalize with VE-cadherin that
had entered intracellular degradative compartments. To test
the possibility that p120ctn binding to VE-cadherin regulates
VE-cadherin internalization, a series of approaches were
undertaken to manipulate p120ctn availability to endogenous
VE-cadherin. Expression of VE-cadherin mutants that

T he mechanisms by which catenins regulate cadherin

competed for p120ctn binding triggered the degradation
of endogenous VE-cadherin. Similarly, reducing levels of
p120ctn using siRNA caused a dramatic and dose-related
reduction in cellular levels of VE-cadherin. In contrast,
overexpression of p120ctn increased VE-cadherin cell
surface levels and inhibited entry of cell surface VE-cadherin
into degradative compartments. These results demonstrate
that cellular levels of p120ctn function as a set point
mechanism that regulates cadherin expression levels, and
that a major function of p120ctn is to control cadherin
internalization and degradation.

Introduction

Cadherins are a family of cell-cell adhesion molecules that
play crucial roles in tissue patterning, cellular growth control,
and in the regulation of cell shape and migration (Angst et
al., 2001; Perez-Moreno et al., 2003). Cadherins function as
calcium-dependent adhesion molecules and interact homo-
philically with cadherins on adjacent cells (Leckband, 2002).
Changes in cadherin function and expression levels are
associated with numerous developmental events such as epi-
thelial to mesenchymal transitions, and the loss of cadherin
expression is associated with tumor cell invasion and me-
tastasis (El-Bahrawy and Pignatelli, 1998; Conacci-Sorrell et
al., 2002; Thiery, 2002). In vascular endothelial cells, the
endothelial specific cadherin, VE-cadherin, is particularly
important in the regulation of vascular barrier function
(Stevens et al., 2000) and in the organization of endothelial
cells during angiogenesis (Carmeliet and Collen, 2000;
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Bazzoni and Dejana, 2001; Dejana et al., 2001). Although a
number of studies have demonstrated that cadherins are
regulated at the level of gene expression (Hirohashi, 1998),
very few studies have investigated post-transcriptional
mechanisms that might also be used in the control of cadherin
expression levels. Because of the important role for VE-
cadherin in the control of vascular permeability and in the
regulation of angiogenesis (Carmeliet and Collen, 2000), it
is particularly important to identify cellular pathways involved
in regulating VE-cadherin cell surface levels in microvascular
endothelial cells (MEC).

Similar to other cadherins (Cowin, 1994; Pokutta and
Weis, 2002), the VE-cadherin cytoplasmic domain interacts
with several binding partners that couple the adhesion mole-
cule to actin (Navarro et al., 1995) and vimentin cytoskeletal
networks (Kowalczyk et al., 1998; Shasby et al., 2002;
Calkins et al., 2003). Two distinct regions of the cytoplasmic
domain of the classical cadherins have been identified, and
these domains bind to different subfamilies of armadillo

Abbreviations used in this paper: IL-2R, interleukin-2 receptor; MEC,
microvascular endothelial cells; p120ctn, p120 catenin.
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Figure 1. VE-Cadherin accumulates in
an endosomal-lysosomal compartment
in chloroquine-treated MEC. VE-Cadherin
localization was examined by immuno-
fluorescence microscopy and compared
with CD63 localization in untreated MEC
(A-C) and in MEC treated with the lyso-
somal inhibitor chloroquine for 4 h (D-F).
Note the extensive accumulation of
vesicular VE-cadherin in chloroquine-
treated MEC (D) and the colocalization
of this intracellular pool with CD63 (F),
a marker for late endosomes and lyso-
somes. To determine if cell surface—
derived VE-cadherin was internalized
into CD63-positive vesicular compart-
ments, cell surface VE-cadherin was
labeled in living MEC at 4°C using an
mAb (BV6) directed against the VE-
cadherin extracellular domain. The cells
were rinsed, fixed, and processed for
immunofluorescence microscopy (G).
Parallel cultures were labeled at 4°C and
transferred to 37°C for 6 h in the presence
of chloroquine to allow for cadherin
internalization (I-K). After fixation, cells
were incubated in an antibody directed
against CD63, followed by processing for
dual label immunofluorescence micros-
copy. A low pH wash (acid washed) was
used to distinguish cell surface cadherin
from internalized cadherin. Note that in
H, cell surface VE-cadherin antibody was
removed by the low pH wash, indicating
that the vesicular VE-cadherin observed
in | represents cadherin that was internal-
ized from the cell surface. Bars, 50 pm.
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proteins (Anastasiadis and Reynolds, 2000). The membrane
distal region of the cadherins interacts with (B-catenin and
plakoglobin (Cowin and Burke, 1996; Angst et al., 2001;
Hatsell and Cowin, 2001). B-Catenin links cadherins to the
actin cytoskeleton through direct and indirect interactions
with actin binding proteins, such as a-catenin and a-actinin
(Knudsen and Wheelock, 1992; Aberle et al., 1994; Jou et
al., 1995; Knudsen et al., 1995). Plakoglobin also links cad-
herins to the actin cytoskeleton, but in addition, plakoglo-
bin interacts with desmoplakin (Kowalczyk et al., 1999;
Green and Gaudry, 2000), an intermediate filament binding
protein that is important for vascular organization during
mammalian development (Gallicano et al., 2001).

In addition to B-catenin and plakoglobin, cadherins inter-
act with a second subfamily of armadillo proteins through a
highly conserved domain on the cytoplasmic side of the
cadherin membrane spanning domain (Anastasiadis and
Reynolds, 2000). This juxtamembrane domain is thought
to play an important role in cadherin clustering and in
strengthening of cadherin adhesive interactions (Yap et al.,
1998). The major binding partner for the cadherin jux-
tamembrane domain is an armadillo protein termed p120
catenin (p120ctn; Thoreson et al., 2000). p120ctn is part of
a group of related armadillo proteins that includes ARVCEF,
8-catenin, and p0071 (Hatzfeld, 1999). The juxtamembrane
domain of VE-cadherin is known to bind directly to both
p120ctn and p0071 (Calkins et al., 2003). Several studies

indicate that p120ctn functions to promote cadherin clus-
tering and to strengthen adhesion (Thoreson et al., 2000;
Pettite et al., 2003), but other studies have suggested that
p120ctn may function as a negative regulator of cadherin
function (Aono et al., 1999; Ohkubo and Ozawa, 1999).
Recently, the absence of p120ctn in a colon carcinoma cell
line was found to cause a corresponding loss of E-cadherin
metabolic stability, indicating an important role for p120ctn
in the maintenance of E-cadherin expression in differenti-
ated epithelial cells (Ireton et al., 2002). However, recent
studies in Drosophila melanogaster indicate that p120ctn is
not an essential component of adherens junctions in these
organisms (Myster et al., 2003; Pacquelet et al., 2003), un-
derscoring the elusive nature of p120ctn contributions to
cadherin function.

Here, we examined whether VE-cadherin internalization
and degradation are regulated by armadillo family proteins
that bind to the cadherin cytoplasmic tail. Morphological
analysis indicated that neither p120ctn nor B-catenin colo-
calized with VE-cadherin that had entered an endocytic
pathway, suggesting that the disruption of catenin binding
to the cadherin cytoplasmic tail might be associated with
cadherin endocytosis. Consistent with this possibility, ex-
pression of cadherin mutants that compete for catenin bind-
ing caused the disruption of intercellular junctions and a
dramatic down-regulation of endogenous VE-cadherin.
Interestingly, competition for p120ctn binding, but not
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Figure 2. The internalized pool of VE-cadherin
does not colocalize with B-catenin or p120ctn.
Dual label immunofluorescence analysis was
performed on MEC treated with chloroquine for
4 h. The internalized pool of VE-cadherin exhib-
ited limited colocalization with (A-C) p120ctn
and (D-F) B-catenin. Bar, 50 pm.

-catenin binding, was found to be critical for the induction
of VE-cadherin degradation. Similarly, siRNA knockdown
experiments revealed that the loss of p120ctn resulted in a
corresponding loss of VE-cadherin. Finally, overexpression
of p120ctn inhibited VE-cadherin entry into endocytic
compartments, and caused a corresponding increase in cell
surface levels of VE-cadherin. These findings indicate that
p120ctn levels function as a set point for cadherin expression
levels, and demonstrate for the first time that p120ctn regu-
lates cadherin cell surface presentation by preventing cad-
herin degradation via an endosomal-lysosomal pathway.

Results

VE-Cadherin constitutively enters a degradative
pathway in MEC

In previous studies, VE-cadherin was found to enter degra-
dative compartments in response to a VE-cadherin domi-
nant negative mutant (Xiao et al., 2003). To further investi-
gate the regulation of VE-cadherin turnover, the localization
of VE-cadherin was examined in the presence or absence of
chloroquine. This drug treatment prevents endosome-lyso-
some acidification, and thereby allows VE-cadherin internal-
ization but prevents lysosomal degradation. In untreated
MEQG, very litte vesicular VE-cadherin was observed (Fig. 1
A). In contrast, in MEC treated with chloroquine for 4 h,
extensive accumulation of a vesicular pool of VE-cadherin
was evident (Fig. 1 D). To determine if VE-cadherin was en-
tering a degradative compartment, vesicular VE-cadherin in
chloroquine-treated cells was examined for colocalization
with CDG63, a marker for late endosomal and lysosomal
compartments (Metzelaar et al., 1991). VE-Cadherin exhib-
ited extensive colocalization with CD63 in chloroquine-
treated cells (Fig. 1, D-F), suggesting that VE-cadherin was
constitutively internalized and degraded by an endosomal—-
lysosomal pathway.

To demonstrate directly that the vesicular VE-cadherin
observed in chloroquine-treated cells (Fig. 1 D) represented
a pool of VE-cadherin that was internalized from the cell
surface, mAbs were used to label cell surface VE-cadherin in
living MEC cultures. MEC were incubated at 4°C with an
mADb directed against the VE-cadherin extracellular domain.
The cells were rinsed to remove unbound antibody, fixed,
and processed for immunofluorescence microscopy (Fig. 1

G). Binding of the VE-cadherin antibody was removed
when the cells were washed in a low pH buffer (acid
washed), indicating that the labeled cadherin was present on
the cell surface (Fig. 1 H). After incubation with the mAb at
4°C, parallel cultures were returned to 37°C in the presence
of chloroquine to allow for cadherin internalization. The
cells were acid washed to remove antibody bound to cell sur-
face VE-cadherin, and subsequently fixed and processed for
immunofluorescence microscopy to reveal the localization of
the internalized cadherin. This approach demonstrated that
a cell surface pool of VE-cadherin was internalized and tar-
geted to CDG63-positive compartments (Fig. 1, I-K). In
nonchloroquine-treated cells, internalized VE-cadherin also
could be detected (unpublished data). However, the amount
of intracellular VE-cadherin detected was dramatically en-
hanced by treating the cells with chloroquine, indicating
that VE-cadherin is constitutively metabolized by an endo-
somal-lysosomal pathway. To determine whether VE-cad-
herin was cointernalized with its catenin binding partners,
the localization of B-catenin and p120ctn was determined in
endothelial cells treated with chloroquine for 4 h. As shown
in Fig. 2, extensive vesicular VE-cadherin accumulation was
observed in chloroquine-treated MEC. However, p120ctn
(Fig. 2, A-C) and B-catenin (Fig. 2, D-F) exhibited limited
colocalization with this vesicular pool of VE-cadherin. Simi-
lar results were obtained when VE-cadherin was surface la-
beled; neither B-catenin nor p120ctn exhibited significant
colocalization with the internalized pool of VE-cadherin (see
Fig. 7). These results suggest that the cadherin-catenin com-
plex dissociates during VE-cadherin internalization.

Disruption of p120ctn binding to the VE-cadherin
cytoplasmic tail causes loss of VE-cadherin expression
The observation that the catenins do not colocalize with VE-
cadherin in endocytic compartments raised the possibility
that the loss of catenin binding to the VE-cadherin cytoplas-
mic domain might be causally related to VE-cadherin inter-
nalization and degradation. Therefore, we used a series of
approaches to manipulate the availability of the catenins for
binding to VE-cadherin, and determined the consequences
of those manipulations on endogenous VE-cadherin distri-
bution and expression levels.

The first approach undertaken was to express various cad-
herin mutants to compete with endogenous VE-cadherin for
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Figure 3. Cadherin mutants that bind to p120ctn disrupt MEC intercellular junctions. MEC were infected by (A and E) empty adenoviral

vector, (B and F) the IL-2R-VE-cad.y,, (C and G) IL-2R-VE-cadacgp, or (D and H) IL-2R-VE-cadjup.aaa Mutants, respectively, for 18 h. The
IL-2R-VE-cadacgp mutant lacks the B-catenin binding site, whereas the IL-2R-VE-cadjup.aaa mutant contains the B-catenin binding domain, but
harbors a triple alanine substitution that abrogates p120ctn binding. The cells were fixed in methanol and processed for dual label immuno-
fluorescence using antibodies directed against (A-D) endogenous VE-cadherin (cad-5 antibody) and (E-H) the myc epitope tag. Bar, 50 uM.

binding to p120ctn and/or B-catenin. In previous studies,
the expression of an IL-2 receptor-VE-cadherin chimera
comprising the interleukin-2 receptor (IL-2R) extracellular
domain and the VE-cadherin cytoplasmic tail (IL-2R-
VE-cad,y,,) was shown to cause the down-regulation of en-
dogenous VE-cadherin (Xiao et al., 2003). Two additional mu-
tants were constructed for the present work (Fig. 3). The
IL-2R-VE-cadacpp mutant lacks the -catenin binding site
and the IL-2R-VE-cadjyp.aaa mutant contains a triple alanine
substitution at amino acids 562-564 (EMD-AAA), which
abrogates p120ctn and p0071 binding to classical cadherins
(Thoreson et al., 2000; Calkins et al., 2003). To determine
the localization of endogenous VE-cadherin in MEC ex-
pressing the various VE-cadherin mutants, immunofluores-
cence analysis was performed after infection with adenovirus
carrying the empty virus or the various mutants (Fig. 3). An

antibody directed against the VE-cadherin extracellular do-
main was used to specifically identify endogenous VE-cad-
herin, and antibodies directed against the myc epitope were
used to detect the VE-cadherin mutants. In control cells ex-
pressing empty virus, extensive VE-cadherin staining was
observed at MEC cell borders (Fig. 3 A). In striking con-
trast, in MEC cultures expressing the IL-2R-VE-cad,, mu-
tant, endogenous VE-cadherin was distributed in a punctate
cytoplasmic distribution (Fig. 3 B). MEC expressing the 1L~
2R-VE-cadacpp mutant also exhibited disrupted junctions,
as evidenced by the thinning of VE-cadherin staining at in-
tercellular junctions (Fig. 3 C). However, overall, the IL-2R-
VE-cadacgp mutant had somewhat less dramatic effects
than the IL-2R-VE-cad,. Interestingly, the IL-2R-VE-
cadjvp asa mutant had only minor effects on MEC inter-
cellular junctions (Fig. 3 D), suggesting that competition for

Figure 4. Cadherin mutants cause down-regulation of
endogenous VE-cadherin by competing for p120ctn. A
(A) MEC were transduced with adenoviruses carrying the
various IL-2R-VE-cad mutants and endogenous VE-cadherin
levels were monitored by Western blot analysis. The mutant
lacking the p120ctn binding site (IL-2R-VE-cadjup-aas)
failed to cause down-regulation of endogenous VE-cadherin.
(B) p120ctn and B-catenin were coexpressed with the
IL-2R-VE-cad.y, mutant to determine which armadillo
family proteins could prevent the down-regulation of
endogenous VE-cadherin in response to the cadherin
mutant. p120ctn was able to prevent the down-regulation
of endogenous VE-cadherin by the IL-2R-VE-cady;, mutant,
but B-catenin expression did not rescue endogenous
VE-cadherin.
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p120ctn was required for the rapid disruption of MEC junc-
tions in cells expressing mutant cadherins.

To determine the effects of these IL-2R-VE-cad mutants
on endogenous VE-cadherin protein levels, the mutants
were expressed for 18 h and the level of endogenous VE-cad-
herin was monitored (Fig. 4 A). Both the IL-2R-VE-cady,
and the IL-2R-VE-cadscgp mutant decreased the level of en-
dogenous VE-cadherin compared with empty virus. Inter-
estingly, the IL-2R-VEcadjyp asa mutant had only a modest
effect on the level of endogenous VE-cadherin (Fig. 4 A),
suggesting that competition for p120ctn but not -catenin
was causing the rapid down-regulation of endogenous VE-
cadherin. To test this possibility further, the IL-2R-VE-cad..,
mutant was coexpressed with either (3-catenin or p120ctn
(Fig. 4 B). Overexpression of p120ctn completely abrogated
the ability of the IL-2R-VE-cad,,, mutant to cause down-
regulation of endogenous VE-cadherin, whereas (-catenin
overexpression had no effect (Fig. 4 B). These results dem-
onstrate that the rapid down-regulation of VE-cadherin in
response to cadherin mutants is caused by competition for
p120ctn binding to endogenous VE-cadherin.

p120ctn levels function as a set point for cadherin
expression levels in MEC

The aforementioned results above demonstrated that com-
petition for p120ctn by mutant cadherins causes the down-
regulation of endogenous VE-cadherin. These findings sug-
gested that cellular levels of VE-cadherin might be regulated
by the availability of p120ctn. To test this possibility di-
rectly, dose-response experiments were performed in which
various levels of p120ctn were expressed in MEC using an
adenoviral delivery system (Fig. 5). An increase in p120ctn
levels resulted in a dose dependent increase in VE-cadherin
accumulation, whereas up-regulation of 3-catenin levels had
little or no effect on VE-cadherin expression levels (Fig. 5
A). Control experiments indicated that overexpression of
p120ctn or B-catenin had no effect on the expression of PE-
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CAM-1, a member of the Ig family of cell-cell adhesion
molecules (Newman et al., 1990; Albelda et al., 1991; Fig. 5
B). Furthermore, expression of exogenous p120ctn increased
VE-cadherin cell surface levels as determined by ELISA (Fig.
5 C). Finally, siRNA was used to knock down p120ctn ex-
pression in MEC, and the resulting effects on VE-cadherin
levels were monitored by Western blot analysis. Transfec-
tion with irrelevant negative control siRNA had no effect on
p120ctn or VE-cadherin levels (Fig. 5 D). However, West-
ern blot analysis revealed that the loss of p120ctn expression
resulted in a dramatic and dose-related down-regulation of
VE-cadherin levels (Fig. 5 D). Collectively, these data indi-
cate that cellular levels of VE-cadherin are tightly and specif-
ically coupled to p120ctn expression levels.

p120ctn regulates the internalization and degradation
of cell surface VE-cadherin

As shown in Fig. 1, the vesicular pool of VE-cadherin in
MEC treated with chloroquine represents cadherin that is
localized to degradative endocytic compartments. To di-
rectly test if the cytoplasmic availability of p120ctn regu-
lates internalization of cell surface cadherin, live cell label-
ing and immunofluorescence analysis was performed to
monitor VE-cadherin internalization in MEC expressing
various cadherin mutants. Cell surface VE-cadherin was la-
beled at 4°C using an mAb directed against the VE-cad-
herin extracellular domain. The cells were switched to
37°C for 3 h in the presence of chloroquine to allow for
VE-cadherin internalization. Antibody bound to cell sur-
face VE-cadherin was removed using a low pH wash, and
the internalized pool of VE-cadherin was detected by fix-
ing and processing the cells for immunofluorescence mi-
croscopy. Antibodies directed against the myc epitope tag
were applied after fixation to verify expression of the mu-
tant cadherins. Similar to the results shown in Fig. 1, an
internalized vesicular pool of VE-cadherin could be de-
tected in control MEC expressing empty adenoviral vector

A p120 Expression  [-Catenin Expression B S s Figure 5.  Cellular levels of VE-cadherin
y vy vy vy vy Sy oy oy Fs & are tightly coupled to p120ctn expression
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surface levels of VE-cadherin. Error bars
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to knock down p120ctn levels in MEC.
Western blot analysis was performed to
determine p120ctn, VE-cadherin, and
vimentin levels in untreated and siRNA-
treated MEC. The loss of p120ctn results

in a corresponding and dose-related loss
of VE-cadherin.
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Figure 6. Sequestration of cytoplasmic p120ctn by
exogenously expressed cadherin mutants causes inter-
nalization of cell surface VE-cadherin. The internaliza-
tion of cell surface VE-cadherin was monitored in MEC
expressing various IL-2R-VE-cadherin mutants. MEC were
incubated with the BV6 antibody at 4°C and transferred
to 37°C for 3 h in the presence of chloroquine. The cells
were acid washed to remove surface bound VE-cadherin
antibody, and fixed and processed for dual label immuno-
fluorescence microscopy to detect both the internalized
cadherin and the IL-2R-VE-cadherin mutants. Internalized
VE-cadherin was detected in control MEC expressing
empty adenoviral vector (A and B). VE-Cadherin internal-
ization was dramatically increased in MEC expressing
either the IL-2R-VE-cad,y,, (C and D) or the IL-2R-VE-cadacsp
mutant (E and F). However, the IL-2R-VE-cadjypaaa mutant
(G and H), which does not bind and compete for cyto-
plasmic p120ctn, failed to cause increased VE-cadherin
internalization relative to cells expressing empty vector.
(I) Quantitative representation of vesicular VE-cadherin
detected in cells expressing the various cadherin mutants
(results representative of greater than three independently
conducted experiments. Error bars indicate the SD; n >
10 cells). (J) MEC were infected with empty virus, IL-2R-
VE-cad.yy, IL-2R-VE-cadacgp, or the IL-2R-VE-cadjup.aaa
mutant and Western blot analysis was performed using an
antibody against the extracellular domain of VE-cadherin
to monitor endogenous VE-cadherin levels. Expression
of the mutants was verified using the c-myc epitope tag
(not depicted). Mutant cadherins that bind p120ctn cause
down-regulation of endogenous VE-cadherin (top). In
untreated cells, VE-cadherin was completely removed by
trypsinization (middle). In MEC treated with chloroquine
for 8 h, VE-cadherin is detected in trypsinized cells
(bottom), indicating that this pool of VE-cadherin is
intracellular. The results indicate that the IL-2R-VE-cadcy,
and the IL-2R-VE-cadacgp mutant cause internalization
of endogenous VE-cadherin, whereas the IL-2R-VE-
cadjup-aaa mutant does not trigger VE-cadherin internal-
ization. Bar, 50 pm.
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(Fig. 6 B). However, VE-cadherin internalization was dra-
matically increased in MEC expressing either the IL-2R-
VE-cad, (Fig. 6 D) or the IL-2R-VE-cadycgp mutant
(Fig. 6 F). In contrast, the IL-2R-VE-cadjypasa mutant,
which does not bind to p120ctn, failed to increase VE-cad-
herin internalization over background levels (Fig. 6 H).
These results are shown quantitatively in Figure 6 I.

To determine if the increase in VE-cadherin internaliza-
tion observed using this live cell labeling approach correlated
with the accumulation of an intracellular pool of VE-cad-
herin, MEC expressing the cadherin mutants were treated
with chloroquine to prevent lysosomal degradation and
trypsinized to remove cell surface cadherin (Fig. 6 ]). In un-
treated cells, the IL-2R-VE-cad,,,, mutant and the IL-2R-
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Figure 7. Expression of exogenous p120ctn
decreases internalization of cell surface
VE-cadherin. MEC were transduced with
adenovirus carrying B-catenin or p120ctn
overnight. The cells were surfaced labeled
with the BV6 VE-cadherin mAB and trans-
ferred to 37°C for 6 h in the presences of
chloroquine to allow for the accumulation
of internalized VE-cadherin (Fig. 1). The
cells were acid washed to remove cell
surface cadherin and processed for immuno-
fluorescence microscopy to detect both
internalized VE-cadherin and the exogenously
expressed catenins. Extensive vesicular
accumulation of internalized VE-cadherin
was apparent in chloroquine-treated MEC
expressing (A-C) empty virus or (D-F)
B-catenin. In contrast, expression of exoge-
nous p120ctn dramatically inhibited (G-1)
VE-cadherin internalization. () Quantita-
tive representation of the results shown in
A-l (results representative of three indepen-
dent experiments. n > 10 cells. Error bars
represent the SD. (K) MEC were transduced
with adenovirus carrying p120ctn or
B-catenin. The cells were chloroquine treated
overnight and harvested for Western blot
analysis. As reported previously (Xiao et al.,
2003), chloroquine treatment results in the
accumulation of an intracellular truncated
form of VE-cadherin (arrows). To distinguish
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intracellular from cell surface cadherin,
cells were trypsinized before harvesting
the cells for Western blot analysis to remove
cell surface pools of cadherin (K, right).
p120ctn, but not B-catenin, inhibited the
accumulation of this intracellular-processed
form of VE-cadherin. Bar, 50 pm.

Whole Cell Trypsinized
(Total) (Intracellular)

+ Chloroquine

VE-cadacpp caused down-regulation of endogenous VE-
cadherin, whereas the IL-2R-VE-cadjyp.aaa did not signifi-
cantly alter endogenous VE-cadherin levels (Fig. 6 J, top).
Trypsinization of untreated cells quantitatively removed cell
surface VE-cadherin (Fig. 6 J, middle). However, in MEC
treated with chloroquine for 8 h before trypsinization (Fig. 6
J, bottom), significant levels of intracellular VE-cadherin
were detected in trypsinized MEC expressing either the IL-
2R-VE-cad, and the IL-2R-VE-cadycpp mutants, but not
the IL-2R-VE-cadjyp aaa mutant (Fig. 6 J). As described
previously (Xiao et al., 2003), chloroquine treatment results
in the intracellular accumulation of a 100-kD processed
form of VE-cadherin lacking the B-catenin binding domain
(Fig. 6 ], bottom band). Interestingly, in cells expressing the
IL-2R-VE-cad,, mutant, the intracellular VE-cadherin re-
mains intact, and is not processed to the 100-kD fragment.
The precise reason for this difference is not known, but this
result is highly reproducible and may reflect competition be-
tween the IL-2R-VE-cad, mutant and endogenous VE-
cadherin for a processing event. These results indicate that
mutant cadherins that compete for p120ctn cause internal-
ization of cell surface cadherin (Fig. 6, A—H) and lead to the
accumulation of intracellular pools of cadherin in chloro-
quine-treated cells (Fig. 6 J). These data suggest that mutant

cadherins trigger the internalization and degradation of en-
dogenous cadherins through an endosomal-lysosomal path-
way, and that competition for p120ctn causes VE-cadherin
internalization.

If the depletion of cytoplasmic p120ctn by cadherin mu-
tants increases VE-cadherin internalization, then increased
levels of p120ctn in the cytosol should inhibit cadherin in-
ternalization. To test this possibility, exogenous p120ctn
was expressed in MEC and the amount of VE-cadherin in-
ternalization was monitored. For these experiments, MEC
were surface labeled at 4°C with VE-cadherin antibody and
switched to 37°C for 6 h in the presence of chloroquine to
allow for extensive VE-cadherin internalization. Under these
conditions, numerous cytoplasmic vesicles containing cell
surface-derived VE-cadherin were visualized (Fig. 7 A). Very
little p120ctn (Fig. 7 B) or B-catenin (not depicted) colocal-
ized with the internalized cadherin. Expression of exogenous
B-catenin had no discernible impact on the amount of VE-
cadherin internalization (Fig. 7, D-F). In contrast, expres-
sion of exogenous p120ctn dramatically inhibited entry of
cell surface VE-cadherin into cytoplasmic vesicles (Fig. 7,
G-I). These results suggested that p120ctn expression was
inhibiting constitutive internalization and degradation of
VE-cadherin. Therefore, the accumulation of an intracellu-
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lar pool of VE-cadherin in chloroquine-treated cells was
monitored by Western blot analysis in MEC expressing
p120ctn or B-catenin. As discussed above (Fig. 6 ]), chloro-
quine treatment results in the accumulation of an intracellu-
lar 100-kD processed form of VE-cadherin. As shown in
Fig. 7 K, the accumulation of this intracellular pool of VE-
cadherin was prevented by the expression of exogenous
p120ctn but not B-catenin. These data are consistent with
the inhibition of VE-cadherin internalization observed in
MEC expressing exogenous p120ctn (Fig. 7, G-I). Collec-
tively, these findings indicate that cytoplasmic availability of
p120ctn regulates the delivery of cell surface VE-cadherin
into endocytic compartments for endosomal-lysosomal deg-
radation.

Discussion

The results of the present work indicate that VE-cadherin is
constitutively internalized and degraded in MEC, and that
the armadillo family protein p120ctn plays a central role in
regulating this process. p120ctn was found to regulate cad-
herin expression by controlling entry of the cadherin into an
endosomal-lysosomal pathway. These findings reveal a new
mechanism by which armadillo family proteins contribute
to the regulation of cadherin-mediated cell adhesion, and
clearly establish a role for p120ctn as a modulator of the ad-
hesive properties of the plasma membrane in MEC.

The findings presented here reveal a remarkable reciproc-
ity in the regulation of cadherin and catenin expression lev-
els. Previous studies demonstrated that cytoplasmic pools of
B-catenin and plakoglobin are metabolically unstable, and
that cadherin binding to B-catenin or plakoglobin rescues
these armadillo family proteins from degradation (Kowal-
czyk et al., 1994; Aberle et al., 1997). Because of the impor-
tant functions of B-catenin in the regulation of gene expres-
sion, the rapid turnover of cytosolic B-catenin is central to
the regulation of B-catenin entry into the nucleus and in the
modulation of cell proliferation and migration (Willert
and Nusse, 1998; Polakis, 1999; Gottardi and Gumbiner,
2001). As shown here, p120ctn rescues VE-cadherin from
entry into a degradative pathway. VE-Cadherin is degraded
in an endosomal-lysosomal compartment when p120ctn is
removed from the cadherin tail, either by competition with
cadherin mutants or by siRNA knock down approaches. Be-
cause cadherins antagonize B-catenin signaling (Heasman et
al., 1994; Fagotto et al., 1996; Sadot et al., 1998), the regu-
lation of cadherin expression by p120ctn may control 3-cat-
enin availability to signal transduction pathways. Thus, in-
teractions between p120ctn and the cadherin cytoplasmic
domain may function as a global regulator of cadherin and
catenin signaling.

The role of p120ctn in junction assembly and cadherin
function has been difficult to establish and the results ob-
tained through the use of various model systems have been
difficult to reconcile (Aono et al., 1999; Ohkubo and
Ozawa, 1999; Thoreson et al., 2000). The Reynolds labora-
tory recently demonstrated in a colon carcinoma cell line
that the loss of p120ctn expression due to gene mutation re-
sulted in a corresponding loss of E-cadherin (Ireton et al.,
2002). This was an important finding because it provided a

potential explanation for the widespread down-regulation of
E-cadherin expression that is observed in tumor cells, even
when mutations in the E-cadherin gene are not apparent
(Thoreson and Reynolds, 2002). However, recent studies in
Drosophila indicate that p120ctn is not required for adher-
ens junction assembly or for DE-cadherin expression (Mys-
ter et al., 2003; Pacquelet et al., 2003). It is possible that
certain tumor cell lines might harbor additional genetic
anomalies that would render E-cadherin vulnerable to the
loss of p120ctn. However, our current results using siRNA
knock down approaches in primary cultures of MEC indi-
cate clearly that p120ctn is required for cadherin expression
in normal human cells. The reason for this apparent discrep-
ancy between flies and mammalian systems is not clear.
However, it is interesting that vertebrates express not only
p120ctn, but also several other related armadillo family
members, including ARVCEF, 8-catenin, and p0071 (Hatz-
feld, 1999; Anastasiadis and Reynolds, 2000). Thus, the ap-
pearance of multiple p120ctn family members in vertebrates
may reflect the evolution of distinct cadherin regulatory
mechanisms that are required for tissue patterning or integ-
rity in higher organisms.

The present work, as well as our previous work (Xiao et al.,
2003), indicates that cadherin mutants trigger endocytosis
and degradation of endogenous cadherins. Elimination of the
p120ctn binding site on the mutant cadherin severely com-
promised the ability of the mutant to trigger VE-cadherin in-
ternalization (Fig. 6). In contrast, deletion of the B-catenin
binding domain had very little effect on this process, at least
over the relatively short time courses that were examined.
Thus, we conclude that VE-cadherin mutants trigger deg-
radation of endogenous VE-cadherin by competing for
p120ctn binding. This interpretation is based on the fact that
overexpression of p120ctn could prevent the down-regula-
tion of endogenous VE-cadherin, whereas (3-catenin overex-
pression could not. Furthermore, knock down of p120ctn
levels using siRNA resulted in a corresponding decrease in
VE-cadherin expression. Interestingly, overexpression of
N-cadherin also caused the down-regulation of VE-cadherin in
this model system (unpublished data). These data are consis-
tent with previous studies suggesting that cells possess mecha-
nisms that function as sensors for cadherin levels (Troxell et
al., 1999). The results presented here indicate that p120ctn is
the central component of this sensing mechanism.

Recently, endocytosis has emerged as a regulatory mecha-
nism that modulates cadherin cell surface levels in epithelial
cells (Le et al., 1999; Akhtar and Hotchin, 2001; Palacios et
al., 2002). E-Cadherin is internalized and recycled back to
the plasma membrane (Le et al., 1999), and this process is
modulated by PKC (Le et al., 2002). It is formally possible
that p120ctn does not regulate the initial cadherin internal-
ization event, but rather that p120ctn regulates subsequent
sorting decisions. The juxtamembrane domain of E-cad-
herin binds to Hakai, an E3 ubiquitin ligase that targets
E-cadherin for internalization and degradation in epithelial
cells (Fujita et al., 2002). Although Hakai binds to se-
quences unique to E-cadherin, these findings suggest that
the cadherin juxtamembrane domain, and proteins that
bind this region of cadherins, are critical in the control of
cadherin expression levels. Consistent with this possibility,
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we found that p0071, which also binds to the VE-cadherin
juxtamembrane domain (Calkins et al., 2003), also regulates
VE-cadherin expression levels (unpublished data). Reynolds
and colleagues (Ireton et al., 2002) found that p120ctn mu-
tants that are unable to bind to E-cadherin are also unable to
rescue E-cadherin expression in a p120ctn null background.
These data suggest that p120ctn family proteins bind to the
cadherin juxtamembrane domain and function as a “cap”
that prevents cadherin internalization and degradation. Such
a model is consistent with the competitive association of Ha-
kai and p120ctn for the cadherin juxtamembrane domain
(Fujita et al., 2002) and with the apparent dissociation of
p120ctn from the cadherin tail (Fig. 2) during endocytosis.
Regardless of the precise mechanism, this work reveals a key
role for p120ctn in the regulation of cadherin cell surface
levels by modulating cadherin delivery to degradative en-
docytic pathways.

Materials and methods

Cell culture

Primary cultures of human dermal MEC were obtained from the Emory Skin
Diseases Research Center (Core B) and cultured as described previously
(Venkiteswaran et al., 2002; Xiao et al., 2003). In brief, the cells were
grown in MCDB131 medium (Invitrogen) supplemented with 10% FBS
(HyClone), L-glutamine (Mediatech, Inc.), cAMP (Sigma-Aldrich), hydrocor-
tisone (Sigma-Aldrich), EGF (Intergen), and antibiotic/antimycotic (Invitro-
gen). Cells were typically cultured overnight and grown to 80% confluence
for most experiments. For adenovirus production, a human embryonic kid-
ney cell line QBI-293A (Qbiogene) was routinely cultured in DME supple-
mented with 10% FBS and penicillin/streptomycin/amphotericin. Chloro-
quine was purchased from Sigma-Aldrich and used at 100 uM.

cDNA constructs

A cDNA clone encoding full-length human VE-cadherin was provided by
E. Dejana (FIRC Institute of Molecular Oncology, Milan, Italy; Navarro et
al., 1995), and an expression construct encoding the extracellular and
transmembrane domains of the IL-2R was provided by S. LaFlamme (Al-
bany Medical College, Albany, NY; LaFlamme et al., 1994). This IL-2R
construct was used to generate a chimeric cDNA with the IL-2R extracellu-
lar domain, the entire VE-cadherin cytoplasmic domain, and a carboxyl-
terminal c-myc epitope tag, as described previously (Venkiteswaran et al.,
2002). A deletion mutant of the VE-cadherin cytoplasmic tail lacking the
catenin binding domain of VE-cadherin was constructed based on a previ-
ous report in which the catenin binding domain of VE-cadherin was
mapped (Navarro et al., 1995). This catenin binding domain deletion con-
struct encodes VE-cadherin amino acid positions 621-702 followed by a
carboxyl-terminal c-myc epitope tag. To generate this construct, a VE-cad-
herin ¢cDNA was used as a template for PCR using the 5’ primer
5'ATGGAAGCTTCGGCGGCGGCTCCGGAAGCAGGCC3', which includes
a Hindlll site and the 3’ primer 5’ACGTCTCGAGCTACAAGTCCTCT-
TCAGAAATGAGCTTTTGCTCCACGGGCCCTCCGTGTGC3’, which in-
cludes a c-myc tag, stop codon, and a Xhol site. The resulting PCR product
was ligated in frame to the IL-2R extracellular domain using the HindlIl
and Xhol restriction sites. An additional VE-cadherin cytoplasmic mutant
lacking the p120ctn binding domain was generated as described else-
where (Calkins et al., 2003). This mutant encodes the VE-cadherin cyto-
plasmic tail with mutations altering the sequence EMD-AAA at amino acid
positions 562-564, which abrogates binding of the VE-cadherin cytoplas-
mic tail to p120ctn as determined by yeast two hybrid analysis (Calkins et
al., 2003). This mutant lacking the p120ctn binding site was ligated to the
IL-2R extracellular domain as described above to generate the IL-2R-
VE-cadjvp-aaa mutant. p120ctn TA cDNA was provided by A.B. Reynolds
(Vanderbilt University School of Medicine, Nashville, TN) and a human,
myc tagged B-catenin cDNA was obtained from P. McCrea (University of
Texas M.D. Anderson Cancer Center, Houston, TX).

Adenovirus production
The VE-cadherin mutants, B-catenin, and p120ctn 1A were subcloned into
the pAd-Track vector, which coexpresses GFP with the cDNA of interest
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(He et al., 1998). Adenoviruses carrying the VE-cadherin constructs,
p120ctn, and B-catenin were produced using the pAdeasy adenovirus-
packaging system as described previously (Xiao et al., 2003). For most ex-
periments, infection rates of 80-90% were used as monitored by GFP ex-
pression.

Immunofluorescence

MEC cultured on gelatin-coated glass coverslips were fixed in methanol
or 3.7% PFA followed by extraction in 0.5% Triton X-100. Endogenous
VE-cadherin was detected using mouse mAbs cad-5 (Transduction Labo-
ratories), BV6 (Research Diagnostics Inc.), or a goat polyclonal VE-cad-
herin antibody (Santa Cruz Biotechnology, Inc.). VE-Cadherin mutants
were followed using a rabbit antibody directed against the c-myc epitope
tag (Bethyl Laboratories, Inc.). The localization of p120ctn and B-catenin
was determined using rabbit polyclonal antibodies against p120ctn (Santa
Cruz Biotechnology, Inc.) or B-catenin (Neo Markers), respectively. An
mAb H5C6 directed against CD63 (Developmental Studies Hybridoma
Bank at the University of lowa) was used to detect late endosomes/lyso-
somes. Secondary antibodies conjugated to various Alexa Fluors (Molecu-
lar Probes) were used for dual label immunofluorescence. The mouse
BV6 and CD63 antibodies were distinguished using secondary antibodies
specific for IgG2a and IgG1 subtypes. Microscopy was performed using a
fluorescence microscope (model DMR-E; Leica) equipped with narrow
band pass filters and a camera (model Orca; Hamamatsu). Images were
captured, pseudo colored, and processed using Open Lab software (Im-
provision Inc.).

VE-Cadherin internalization assay

VE-cadherin internalization assays were performed using procedures
adapted from Paterson et al. (2003). An mAb directed against the VE-cad-
herin extracellular domain (BV6) was dialyzed into MCDB 131 medium
containing 20 mM Hepes and 3% BSA. The dialyzed antibody was incu-
bated with MEC cultures at 4°C for 1 h. Unbound antibody was removed
by rinsing cells in ice-cold MCDB 131. Cells were incubated at 4°C or
transferred to 37°C for various amounts of time (3—6 h) in the presence of
100-150 wM chloroquine. To remove cell surface bound antibody while
retaining internalized antibody, cells were washed for 15 min in PBS, pH
2.7, containing 25 mM glycine and 3% BSA. The cells were rinsed, fixed,
and processed for dual label immunofluorescence as described in the pre-
vious paragraph. For experiments to monitor internalization in response to
the IL-2R-VE-cadherin mutants, MEC were infected with adenovirus for 6 h
to allow time for infection and expression of the mutants. The cells were
surface labeled at 4°C and transferred to 37°C for 3 h. To determine if
p120ctn inhibits internalization, cells were infected with p120ctn or
B-catenin overnight to allow expression of the proteins. Cells were labeled at
4°C and transferred to 37°C for 6 h to allow time for significant levels of in-
ternalization in control cells. In each case, the amount of vesicular VE-cad-
herin present was quantified by a blinded observer by counting VE-cad-
herin vesicles/cell.

Western blot analysis

MEC were harvested in Laemmli gel sample buffer (Bio-Rad laboratories)
and analyzed by SDS-PAGE and immunoblot using antibodies directed
against the extracellular domain of VE-cadherin (cad-5; Transduction
Laboratories), the myc epitope tag (Bethyl Laboratories), p120ctn (Santa
Cruz Biotechnology, Inc.), B-catenin (Transduction Laboratories or Neo
Marker), PECAM-1 (Santa Cruz Biotechnology, Inc.), or vimentin (V9;
Sigma-Aldrich). HRP-conjugated secondary antibodies (Bio-Rad Laborato-
ries) were used at 1:3,000 dilution and detected using ECL (Amersham Bio-
sciences). In some experiments, MEC were rinsed and incubated in trypsin/
EDTA at 37°C for 2 min to proteolytically remove cell surface VE-cadherin
before Western blot analysis (Xiao et al., 2003). Trypsin was inactivated
using normal growth medium and cells recovered by centrifugation. Cell
pellets were dissolved in SDS-PAGE sample buffer for Western blot analy-
sis. Control cells were harvested in SDS-PAGE sample buffer without
trypsinization.

siRNA

Inhibition of p120ctn expression in MEC was performed using p120ctn-
directed siRNA reagents. A human p120ctn-specific 21-nt siRNA (5’'-AAC-
GAGGTTATCGCTGAGAAC-3") was constructed using the Silencer™
siRNA Construction Kit (Ambion). MEC were transfected with the 21-nt du-
plexes using Oligofectamine (Invitrogen) according to the manufacturer’s
instructions. Ambion’s Silencer™ negative control siRNAs were purchased
and used as controls. Cells were rinsed and harvested for Western blot
analysis 48-72 h after transfection.
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ELISA

ELISA was performed to measure cell surface VE-cadherin levels. MEC
were seeded into a 96-well plate overnight and infected by empty virus or
adenoviruses carrying p120ctn or B-catenin for 18 h. Cells were rinsed and
fixed in 1% formaldehyde at room temperature for 10 min. Cells were
blocked in HBSS supplemented with T mM Ca** and 10% FBS for 45 min,
and incubated in a mouse VE-cadherin antibody directed against the cad-
herin extracellular domain (BD Biosciences). Antibodies directed against
vimentin were used as negative controls to verify that only cell surface an-
tigens were being detected in the assay. HRP-conjugated goat anti-mouse
secondary antibodies (Bio-Rad Laboratories) were used at 1:500 and de-
tected using TMB One Step Substrate System (DakoCytomation). The reac-
tion was stopped using 8 N sulfuric acid and the results were determined
by Microplate Autoreader.
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