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Abstract

The majority of genetic variants detected in genome wide association studies (GWAS) exert

their effects on phenotypes through gene regulation. Motivated by this observation, we pro-

pose a multi-omic integration method that models the cascading effects of genetic variants

from epigenome to transcriptome and eventually to the phenome in identifying target genes

influenced by risk alleles. This cascading epigenomic analysis for GWAS, which we refer to

as CEWAS, comprises two types of models: one for linking cis genetic effects to epigenomic

variation and another for linking cis epigenomic variation to gene expression. Applying

these models in cascade to GWAS summary statistics generates gene level statistics that

reflect genetically-driven epigenomic effects. We show on sixteen brain-related GWAS that

CEWAS provides higher gene detection rate than related methods, and finds disease rele-

vant genes and gene sets that point toward less explored biological processes. CEWAS

thus presents a novel means for exploring the regulatory landscape of GWAS variants in

uncovering disease mechanisms.

Author summary

The majority of genetic variants detected in genome wide association studies (GWAS)

exert their effects on phenotypes through gene regulation. Motivated by this observation,

we propose a multi-omic integration method that models the cascading effects of genetic

variants from epigenome to transcriptome and eventually to the phenome in identifying

target genes influenced by risk alleles. This cascading epigenomic analysis for GWAS,

which we refer to as CEWAS, combines the effect of genetic variants on DNA methylation

as well as gene expression. We show on sixteen brain-related GWAS that CEWAS
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provides higher gene detection rate than related methods, and finds disease relevant genes

and gene sets that point toward less explored biological processes.

Introduction

Genome wide association studies (GWAS) have discovered tens of thousands of common

genetic variants (SNPs) associated with complex traits and disease susceptibility [1]. Identifying

the target genes of these SNPs is critical for translating raw GWAS findings into disease mecha-

nisms. Yet, the majority of GWAS SNPs lie in non-coding regions [2], thus determining the

genes through which these SNPs act remains challenging. The conventional approach is to apply

univariate association analysis to map each SNP to its target gene based on the correlation

between SNP dosages and gene expression levels (i.e. expression quantitative trait loci (eQTL)

studies) [3]. This approach is often followed up by applying statistical techniques that test the

probability of colocalization between GWAS SNPs and molecular QTLs in finding causal SNPs

[4–7]. More recent approaches for finding disease-associated genes are converging toward using

sparse regression models to select the combination of cis SNPs near each gene that together are

predictive of gene expression levels [8,9]. A few studies have begun to investigate epigenomic

modifications by combining the effects of GWAS SNPs on phenotypes and DNA methylation

(mQTLs), in addition to gene expression (eQTLs) [10–12]. Along these lines, the use of epige-

nomic annotations to guide selection of expression-predictive SNPs has also been proposed [13].

Further, a recent approach attempts to go beyond modeling cis effects by additionally incorporat-

ing trans SNPs associated with epigenomic mediators of gene expression [14].

While the importance of combining multiple omics data types is increasingly recognized for

gene prioritization, most existing methods do not capture the cascading mechanism through

which regulatory SNPs eventually act on phenotypes. To better trace the functional consequence

of genetic variants, we propose a multi-omic integration method that mirrors the biophysics of

SNP effects on nearby epigenomic elements [15], which in turn impact gene expression and ulti-

mately phenotypes. Our method captures this cascading mechanism by coupling two types of pre-

diction models: one that links cis genetic effects to epigenomic variation, and another that links cis
epigenomic variation to gene expression, which is analogous to using two-stage regression to

model mediation effects of the epigenome on gene expression with SNPs being the instrumental

variables. Here, we focus on cis effects, since cis effects tend to be more replicable than their trans
counterparts [16]. Applying these models in cascade to GWAS summary statistics generates gene

level statistics that reflect genetically-driven epigenomic effects on a given phenotype. We thus

refer to our method as cascading epigenomic analysis for GWAS (CEWAS).

To test CEWAS, we first build the respective prediction models using imputed genotype

[17], DNA methylation (DNAm) [18], and RNAseq [19] data from the Religious Orders Study

and Rush Memory and Aging Project (ROSMAP) [20,21], a unique cohort study that has

assayed all three data types. We then apply CEWAS to sixteen well-powered, brain-related

GWAS [22–36], and compare it against the closest state-of-the-art methods, namely MetaXcan

[9] and EpiXcan [13]. We show that CEWAS achieves higher gene detection rate, and is able

to identify disease relevant genes and gene sets that are missed by the contrasted methods.

Results

Data and model building

CEWAS builds upon MetaXcan [9] by additionally modeling the cascading effects of SNPs on

gene expression through epigenomic marks. In particular, CEWAS entails learning a set of
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models for predicting DNAm levels from genotype data and a set of models for predicting

gene expression from predicted DNAm levels (Fig 1A, Methods). The former set of models are

applied to GWAS summary statistics to generate epigenomic level statistics, which are then

combined using the latter set of models on a gene-by-gene basis. CEWAS is thus analogous to

two-stage regression used in instrumental variable analysis in modeling the mediation effects

of CpGs on gene expression with SNPs being the instrumental variables. To build the predic-

tion models, we used imputed genotype [17], DNAm [18], and RNAseq [37] data from ROS-

MAP [20,21]. These data are all derived from dorsolateral prefrontal cortex (DLPFC) tissue of

~700 individuals. Both gene expression and DNAm data were corrected for hidden covariates

and measured technical confounders (see Methods). For each CpG, we built a DNAm predic-

tion model using elastic net [38] with dosages of SNPs within ±50Kb of that CpG as covariates.

Similarly, for each gene, we built an elastic net expression prediction model with predicted
DNAm level of CpGs within ±500Kb of that given gene. Using these learned model weights,

we applied CEWAS to a range of brain-related GWAS [22–36] to find their implicated genes,

as we describe next.

Prioritizing disease-associated genes

We applied CEWAS to sixteen well-powered, brain-related GWAS [22–36] (S1 Table), and

compared it against MetaXcan [9] and EpiXcan [13] (which CEWAS is built upon) in terms of

gene detection rate, defined as the proportion of tested genes identified as significant at an α of

0.05 with Bonferroni correction. MetaXcan and EpiXcan models were built using the same

input SNPs and expression dataset as CEWAS. As shown in Fig 1B (the number of tested and

detected genes summarized in S2 Table), CEWAS achieved higher detection rate than MetaX-

can (p = 0.00074, Wilcoxon sign rank test across GWAS), which shows the benefits of integrat-

ing DNAm information. This trend remained for MetaXcan models built using SNPs within

the typical window of ±500Kb from transcription starting site (TSS) of genes (denoted as

MetaXcan1Mb). CEWAS also achieved higher detection rate than EpiXcan (p = 0.00088),

which demonstrates that using DNAm data to incorporate additional models, instead of

weighting SNPs by epigenomic annotation, increases detection rate. The same trend was

observed with EpiXcan models built using SNPs within ±500Kb from TSS of genes (denoted

as EpiXcan1Mb). Since SNPs might be shared between models of spatially proximal genes and

some genes are co-expressed, we further estimated detection rate based on the number of dis-
tinct signals (see Methods), and confirmed that the higher detection rate attained by CEWAS

remains to hold with this analysis (S1 Fig).

A natural question is what gave rise to CEWAS’s higher detection rate. Since CEWAS does

not directly model the associations between SNP dosages and gene expression levels, as one

may expect, we observed that its R2 in gene expression predictions tend to be lower than

MetaXcan and EpiXcan (S2 and S3 Figs). This lower R2 rules out higher predictive accuracy as

the reason for CEWAS’s higher detection rate. Instead, we hypothesized that the higher detec-

tion rate arises from the type of SNPs selected by CEWAS. Specifically, SNPs selected by

CEWAS are largely mQTLs by construction, whereas SNPs selected by MetaXcan and EpiXcan

are primarily eQTLs. To test this hypothesis, we estimated the partitioned heritability of

mQTLs against eQTLs on the same sixteen brain-related GWAS using linkage disequilibrium

score regression (LDSC) [39]. We examined mQTLs and eQTLs derived from the ROSMAP

data [15], but restricted to those where the mQTL SNPs are within a 100Kb window from

CpGs (i.e. matching the window size used for CEWAS), and the eQTL SNPs are within a 1Mb

window from TSS of genes (i.e. typical window size for eQTL analysis). The baseline SNP sets

in LDSC corresponding to various regulatory attributes were included as background. As
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Fig 1. CEWAS and gene detection. (A) For each CpG j, a DNAm prediction model is built using dosage levels of proximal SNPs, and for each gene i, a

gene expression prediction model is built using predicted DNAm levels of proximal CpGs. Elastic net is used for model learning, where solid and dotted

lines pictorially indicate non-zero and zero weights for the corresponding variable pairs. These models are applied in cascade to GWAS summary statistics

to estimate gene level z-scores. (B) Bars show the detection rate (defined as the percentage of tested genes declared significant) for the examined GWAS.

(C) Bars show the log p-value of enrichment of mQTLs and eQTLs assessed by LDSC for each GWAS. The baseline SNP sets in LDSC corresponding to

various regulatory attributes are included as background. (D) Difference in mQTL vs. eQTL log p enrichment (from Fig 1C) plotted against difference in

detection rate between CEWAS and a contrasted method (color of the points indicate which method is being contrasted with CEWAS). The size of a point

is proportional to the polygenecity of the corresponding GWAS (approximated by the ratio of the number of reported GWAS loci over the sample size).

As shown, enrichment for mQTLs over eQTLs significantly correlates with improvement in detection achieved by CEWAS over contrasted methods

(p<0.05).

https://doi.org/10.1371/journal.pgen.1009918.g001
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shown in Fig 1C, the enrichment for mQTLs is higher than for eQTLs (p<0.0084, Wilcoxon

sign rank test across GWAS), and the same trend holds when we matched the window size of

eQTLs to that of mQTLs, i.e. 100Kb, as well as matching the number of mQTL SNPs to the

number of eQTL SNPs (S4 Fig). Indeed, in support of our hypothesis, this higher enrichment

for mQTLs over eQTLs was found to significantly correlate with the increase in detection rate

achieved by CEWAS over MetaXcan and EpiXcan (Fig 1D). Also, mQTLs tend to be more rep-

licable than eQTLs (S5 Fig), hence CEWAS would presumably be more robust than MetaXcan

and EpiXcan in selecting relevant SNPs across GWAS, which could further explain CEWAS’s

higher detection rate. In support of this observation, similar trends of higher GWAS enrich-

ment and reproducibility with mQTLs over eQTLs have also been seen in blood [40].

The next question is whether modeling DNAm mediated effects on GWAS phenotypes

alone, i.e. without using expression data, is adequate to attain higher detection rate. To answer

this question, we assessed DNAm mediated effects on GWAS phenotypes in three ways. First,

we directly examined results from models used in the first stage of CEWAS, i.e. MetaXcan

models built with each CpG taken as the response and SNPs within ±50Kb from that CpG as

predictors. Detection rate of these DNAm MetaXcan models, defined as the number of

detected CpGs among tested CpGs, is significantly lower than CEWAS (p = 0.0004), MetaXcan

(p = 0.0013), and EpiXcan (p = 0.0006) based on Wilcoxon sign rank test across GWAS (S6

Fig and S2 Table). Second, we mapped CpGs to genes without using expression data, by taking

the DNAm MetaXcan p-value of the closest CpG of each gene as the p-value of that gene. The

gene level detection rate is significantly lower than CEWAS (p = 0.0004), MetaXcan

(p = 0.0003), and EpiXcan (p = 0.0004). Third, we mapped CpGs to genes without using

expression data, by finding the CpG with the largest R2 in terms of DNAm prediction among

CpGs within ±500Kb from each gene (which we will refer to as the max R2 CpG), and taking

its DNAm MetaXcan p-value as the p-value of that gene. The detection rate is lower than

CEWAS (p = 0.1331) and EpiXcan (p = 0.3808), and higher than MetaXcan (p = 0.4235) but

not significant. Based on these comparisons, mapping CpGs to genes without using expression

data does not provide the same detection gain as CEWAS. Also, the highlighted genes are dif-

ferent from the expression-based models (i.e. CEWAS, MetaXcan, and EpiXcan) as assessed

using cross-method area under the receiver operating characteristic curve (AUC). Specifically,

for each GWAS, we ranked genes based on p-values from one of the expression-based models,

took the top 1% of genes as reference, and estimated AUC with gene level p-values of the

DNAm-based models (see replication AUC under Methods for details on AUC estimation).

The cross-method AUC between DNAm models with mapping based on the closest CpG to

each gene and expression-based models are 0.75±0.05, 0.70±0.04, and 0.70±0.05 for CEWAS,

MetaXcan, and EpiXcan, respectively. As for mapping based on the max R2 CpG of each gene,

the cross-method AUC are 0.65±0.05, 0.64±0.04, and 0.65±0.04 for CEWAS, MetaXcan, and

EpiXcan. Hence, while mapping based on max R2 CpG resulted in higher detection rate than

mapping based on closest CpG, the cross-method AUC against expression-based models are

lower, and these AUC are much lower than cross-method AUC between expression-based

models, which are in the range of 0.93 to 0.99. In fact, the two non-expression-based CpG-to-

gene mapping approaches themselves highlight quite different genes, with cross-method AUC

being only 0.63±0.05.

Calibration test

CEWAS is built upon MetaXcan, which entails an approximation in its z-score estimation [9],

and so the increase in detection rate could potentially be due to artificial z-score inflation

inherent in CEWAS’s mathematical formulation. To verify that the mathematical formulation
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is not the reason behind CEWAS’s higher detection rate, we performed simulations to test

whether z-scores estimated by CEWAS are calibrated (see Methods). As shown in Fig 2, with

null input z-scores having LD structure matched to the SNP covariance of the CEWAS models,

CEWAS correctly returned null z-scores as output, which verifies that CEWAS z-scores are

indeed calibrated when the input data match the model assumptions. However, in practice,

the LD structure of GWAS genotype data might not match CEWAS’s model covariance. To

test the effect of LD mismatch, we used the LD structure estimated from the 1000 Genome

phase 3 genotype data (European population) to generate null input z-scores. The resulting

CEWAS z-scores have standard deviation close to or less than 1 for majority of the genes

except for some outliers, but the number of outlier genes is similar to MetaXcan (Fig 2). Thus,

CEWAS’s higher detection rate is unlikely due to more false positive detections compared to

MetaXcan and EpiXcan. Nonetheless, this result highlights the importance of LD matching for

applying CEWAS (as well as MetaXcan and EpiXcan). We also note that CEWAS requires an

estimate of the covariance between CpGs. Such covariance must be estimated using predicted

DNAm levels since only the genetic component of DNAm is modeled in CEWAS. If the CpG

covariance is estimated from the measured DNAm data, the resulting output z-scores would

be inflated.

Replication of CEWAS models

To assess the generalizability of CEWAS, we built another set of prediction models using geno-

type and RNAseq data generated from DLPFC tissues of 592 subjects in the CommonMind

Consortium (CMC) study [41] in combination with mQTLs derived from DLPFC DNAm

data of 526 subjects in the DevMeth study [42] (see Methods), and applied these models to the

same set of GWAS [22–36] as with the ROSMAP models. We needed to combine datasets

Fig 2. Calibration test. (A) Testing CEWAS requires modeling the LD structure of SNPs when generating null input zk
s. Shown are probability density

functions of zi
g for an exemplar gene derived from 10000 sets of null zk

s under different input settings. Red curve: zk
s generated from N(0,1). Yellow curve: zk

s

generated with LD of only SNPs proximal to each CpG modeled. For both input settings, zi
g are underestimated, i.e. not matching the blue curve

corresponding to N(0,1). (B) By modeling LD of all SNPs proximal to CpGs of a given gene when generating null zk
s and using CpG covariance based on

predicted DNAm levels when estimating zi
g, the resulting zi

g (yellow curve) are calibrated (i.e. matching blue curve), whereas using CpG covariance based on

measured DNAm levels to estimate zi
g resulted in z-score inflation (red curve). In practice, the LD structure of GWAS genotype data might not match the SNP

covariance of the CEWAS models. To test the effect of LD mismatch, we further used the LD structure estimated from the 1000 Genome phase 3 genotype data

(European population) to generate zk
s. The resulting zi

g are well calibrated for this exemplar gene (purple curve). (C) Standard deviation of 10000 zi
g’s for each

gene i shown across all genes. A: zi
g drawn from N(0,1). B: input zk

s drawn from N(0,1). C: zk
s with LD of SNPs proximal to each CpG modeled. D and E: zk

s

with LD of all SNPs modeled and using CpG covariance based on measured and predicted DNAm levels, respectively, when estimating zi
g. Standard deviation

of zi
g in E is ~1 for all genes, confirming that CEWAS produces calibrated zi

g when LD of zk
s is matched to CEWAS’s model covariance. F and G: zk

s with LD

estimated from 1000 Genome data, and zi
g estimated by CEWAS and MetaXcan, respectively. Standard deviation of CEWAS zi

g are close to or less than 1 for

majority of genes except for some outliers, and the number of outlier genes is similar to MetaXcan.

https://doi.org/10.1371/journal.pgen.1009918.g002
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from different studies since, to the best of our knowledge, no current brain tissue-based studies

other than ROSMAP collected all three data-types from the same individuals. As the replica-

tion metric, we used AUC, as computed by ranking the genes of each GWAS based on p-values

estimated with the ROSMAP models, taking the top 1% of genes as the reference, and estimat-

ing AUC with p-values from the CMC models (see Methods). We opted to use the top 1% of

genes since less than a handful of genes are statistically significant for some of the GWAS,

which might be too few for robust AUC estimation. CEWAS achieved an average AUC of 0.76

±0.04 (S3 Table), which is significantly higher than the chance level AUC of 0.5 as confirmed

with permutation test. For comparison, we repeated this analysis for MetaXcan and EpiXcan

with their corresponding models built using ROSMAP and CMC data, which attained average

AUC of 0.80±0.05 and 0.87±0.03, respectively. Using the top 1% of genes detected by the

CMC-based models as reference resulted in the same trend, with average AUC of 0.80±0.05,

0.82±0.04, and 0.86±0.03 attained by CEWAS, MetaXcan, and EpiXcan, respectively. As one

would expect, the replication AUC of CEWAS is lower than MetaXcan and EpiXcan since rep-

lication of CEWAS requires combining two data sources (CMC and DevMeth) and matching

more variables across datasets. Indeed, following up on this result, we assessed cross-method

AUC (S3 Table) by using the top 1% of genes from CMC-based MetaXcan and EpiXcan mod-

els as reference and p-values from ROSMAP-based CEWAS models for AUC estimation. The

cross-method AUC are 0.83±0.05 and 0.87±0.04 with MetaXcan and EpiXcan as reference,

respectively, which are on par with replication AUC of MetaXcan and EpiXcan. Thus, the

need to combine two disparate data sources for replicating CEWAS seems to be the key reason

to its lower replication AUC.

Genomic correlation between GWAS

As another form of replication, we examined the correlation between CEWAS z-scores across

the sixteen GWAS [22–36] (Fig 3A), an idea that has been used for studying relationships

between complex traits [43]. For the same phenotype examined in separate GWAS samples,

the genomic correlations of CEWAS z-scores range from 0.44 to 0.93 (Fig 3B). For well-pow-

ered GWAS pairs of the same phenotype, coherent z-scores were observed (r>0.8, Fig 3B),

while the cases of lower genomic correlation could partly be explained by large differences in

sample size between the GWAS pairs (Fig 3C). When looking at genomic correlation between

different phenotypes, for schizophrenia and bipolar disorder, a correlation of 0.4 between

CEWAS z-scores was found, which recapitulates previous findings [44]. Both disorders show

correlations of ~0.17 with depression. CEWAS found four genes that are common across these

disorders (Fig 3D): GNL3, SPCS1, TMEM110, and MCHR1. Fittingly, overexpression of GNL3
was previously shown to reduce the density of mushroom dendritic spines in rats, which

might relate to dendritic spine pathology observed across patients with schizophrenia, bipolar

disorder, and depression [45]. Similar to GNL3, SPCS1 and TMEM110 also lie in the 3p21.1

region, and their expression levels were previously shown to be associated with risk variants of

schizophrenia, bipolar disorder, and depression [45]. In fact, CEWAS also detected GNL3,

SPCS1, and TMEM110 for intelligence with z-scores having opposite signs compared to

schizophrenia (S7 Fig), which aligns with how risk alleles in these loci were previously shown

to correlate with lower cognitive test scores [45]. Results obtained with MetaXcan and EpiXcan

display the same trend, but only CEWAS found MCHR1 to be common across schizophrenia,

bipolar disorder, and depression. Specifically, while MCHR1 was also found to be significant

for schizophrenia using MetaXcan and EpiXcan, their p-values for bipolar disorder and

depression are an order of magnitude higher than the Bonferroni threshold. Fittingly, MCHR1
and limbic regions, such as amygdala and hippocampus in which MCHR1 is expressed, are
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Fig 3. Genomic correlation across GWAS. (A) Correlation between CEWAS-derived z-scores for all GWAS pairs shown (values clipped at 0.1 to highlight

higher correlation). (B) Correlations between gene level z-scores for GWAS pairs of the same phenotype displayed. Note that wellbeing spectrum is partly

based on depressive symptoms, hence wellbeing2019 is expected to be highly correlated with DEP2019, MDD2019, and MDD2018. (C) Dissecting results in

panel b, log ratio between sample size of GWAS pairs is plotted against differences in genomic correlation between CEWAS vs. a contrasted method. The

size of a dot corresponds to the correlation between CEWAS z-scores of a GWAS pair. Two trends were observed: i. higher correlations between GWAS

pairs with similar sample size (dots closer to 0 on x-axis are larger), ii. CEWAS typically yields higher genomic correlation than the contrasted methods

(most dots above 0 on y-axis). (D) CEWAS z-scores of schizophrenia vs. bipolar disorder, schizophrenia vs. depression, and AD vs. PD shown as scatterplots.

Genes detected across schizophrenia, bipolar disorder, and depression highlighted in bold. Although AD and PD show little genomic correlation, a few

shared genes were found.

https://doi.org/10.1371/journal.pgen.1009918.g003
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modulators of stress response [46]. Also, although the genomic correlation between Alzhei-

mer’s disease (AD) and Parkinson’s disease (PD) is only 0.05 (which matches the low genetic

correlation of 0.08 observed in a previous study [47]), some shared genes were found (Fig

3D). In particular, all contrasted methods found C16orf93 and KAT8 to be common between

AD and PD, but only CEWAS additionally found PRSS36 and ZNF668. These genes were

also found by MetaXcan and EpiXcan for AD but not PD, with p-values being an order of

magnitude higher than the Bonferroni threshold. Knockdown of ZNF668 has been shown to

impair homologous recombination DNA repair [48]. Both PRSS36 and ZNF668 belong to

the KRAB-ZFP cluster, which is involved with cell proliferation [49], hence aligns with

impaired hippocampal neurogenesis being a potential mechanism underlying memory defi-

cits in AD [50] and impaired precursor cell proliferation due to dopamine depletion in PD

[51].

Method similarity and differential genes

We next assessed the similarity between methods by examining the correlation between their

z-scores for each GWAS. We observed an average correlation of 0.74 between CEWAS and

MetaXcan (Fig 4A), which mirrors the reported overlaps between eQTLs and mQTLs from

the same tissue [15]. As for CEWAS vs. EpiXcan, the average correlation is also 0.74, which

might seem surprising since both CEWAS and EpiXcan use epigenomic information, whereas

MetaXcan does not. The reason is that the average correlation between MetaXcan and EpiX-

can is 0.93, suggesting that SNPs selected by EpiXcan are largely eQTLs analogous to

MetaXcan.

Contrasting the significant genes detected by each method (S4 Table), we observed a larger

number of genes that were exclusively found by CEWAS but not by the other methods (Fig

4B). A similar trend was observed when we assessed the number of distinct signals (S8 Fig). To

interpret the genes only found by CEWAS, we first grouped these genes into key shared mech-

anisms using Mammalian phenotypes and GO terms [52], and then searched the literature for

experimental evidence of their disease relevance. For schizophrenia (Fig 4C), only CEWAS

detected DUS2, ENDOG, KIAA1279, LETM2, and ZMAT2, which are related to mitochondria

functions, as well as ASPHD1, ENDOG, MPPED2, RC3H1, SLX1B, YPEL3, ZBED4, ZFYVE21,

and ZMAT2, which are related to metal ion-binding. Detection of these genes aligns with how

the presence of reduced metal ions promotes formation of highly reactive hydroxyl radicals

from mitochondrial superoxide [53], which could increase oxidative stress, resulting in behav-

ioral and molecular anomalies seen in schizophrenia patients [54]. Also, only CEWAS found

FAHD2B, HDAC5, MBTD1, NME2, and XPNPEP3 for bipolar disorder. These genes are again

related to mitochondria and metal ion binding (Fig 4C), hence are linked to oxidative stress,

which is a key process in the progression of bipolar disorder [55]. Among the unique genes

found by CEWAS for AD, ADAM10 plays a prominent role in the cleavage of Alzheimer’s pre-

cursor protein [56], ERCC1-XPF endonuclease is involved with DNA repair and accelerated

aging [57], and FAM63B is involved with cleavage of ubiquitin and abnormal ubiquitin aggre-

gates are often seen in AD [58]. For PD, CEWAS detected PLEKHM1 and TTC19. PLEKHM1
is an effector that jointly binds LC3, Rab7, and HOPS complex for lysosomal protein degrada-

tion [59], and Rab7 has been shown to induce clearance of α-synuclein aggregates [60]. The

binding of TTC19 to mitochondrial respiratory complex III is required for UQCRFS1 fragment

clearance, deficiency of which could result in neurological impairments [61], and oxidative

stress arising from mitochondrial dysfunction has been associated with dopaminergic neuro-

nal death in PD [62]. For depression, CEWAS uniquely detected TNKS2 and ZDHHC5.

TNKS2 is a poly-ADP-ribosyltransferase involved in Wnt/β-catenin signaling, and β-catenin
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has been shown to mediate antidepressant responses [63]. ZDHHC5 is a palmitoyl acyltrans-

ferase, and attenuated 5-HT1AR palmitoylation has been shown to induce depression-like

behaviors [64]. Note that more than half of the genes exclusively found by CEWAS lie at least

100Kb away from any GWAS SNPs (S9 Fig). These distal relationships are unlikely to be

found using linear distance to map GWAS SNPs to target genes.

Genes only found by MetaXcan and EpiXcan also suggest interesting disease mechanisms.

For instance, DDHD2 was found for schizophrenia, which is a new candidate risk gene

recently discovered based on its effects on RNA-binding protein dysregulation [65]. Also,

HSD3B7 was found for AD, which is involved with bile acid synthesis, and altered bile acid lev-

els in relation to cognitive decline in AD has not been observed and studied until recently

[66,67]. SETD1A, which is a schizophrenia-susceptibility gene, was interestingly also found for

AD. Mutation of SETD1A has been shown to result in working memory deficit in mice [68]

and impaired excitatory synaptic transmission in pyramidal neurons within medial PFC [69],

which are indeed characteristics of AD.

Fig 4. Method similarity and differential genes. (A) For each GWAS, correlation between z-scores estimated by the contrasted methods are shown. EpiXcan

and MetaXcan tend to produce highly correlated z-scores. CEWAS z-scores are slightly more correlated with EpiXcan than with MetaXcan. (B) The darker

shaded bars show the number of significant genes that were exclusively found by each method. The lighter shaded bars show the total number of significant

genes found by each method. Only genes tested in all three methods were considered in computing the number of genes exclusively found by one method but

not the other two. The number of genes exclusively found by CEWAS outnumbered MetaXcan and EpiXcan. (C) z-scores estimated by CEWAS vs. EpiXcan

for SCZ2018 and BIP2019 displayed. Genes related to mitochondria dysfunction and oxidative stress exclusively detected by CEWAS but missed with

MetaXcan and EpiXcan annotated.

https://doi.org/10.1371/journal.pgen.1009918.g004
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Gene set enrichment and brain region association

To infer the biological processes captured by CEWAS, we applied MAGMA [70] (see Meth-

ods) to assess the enrichment for known gene sets (CNS [22] and MSigDB [71]) and brain

regions (regional expression profiles from Allen Institute [72]). In brief, the top gene sets

highlighted by CEWAS point toward similar biological processes as MetaXcan and EpiXcan

(S10 Fig and S5 Table) but with some notable differences as we describe next.

For psychiatric disorders (Fig 5A), only CEWAS highlighted CNS gene sets related to

abnormal glial cell morphology and abnormal prepulse inhibition for schizophrenia (Fig 5B),

bipolar disorder, and depression. Disruption of astrocytic functions arising from glial cell loss

Fig 5. Gene set enrichment. (A) Top CNS gene sets enriched for schizophrenia, bipolar disorder, and depression as found by CEWAS displayed against genes

belonging to at least one of these enriched gene sets and have CEWAS p<0.05 in at least one of the three psychiatric disorders. The color reflects the level of

association between a given gene and a disorder. For each gene set, only genes belonging to that gene set have their–log10(p) displayed, with the rest of the genes

masked to zero. (B) Top 25 CNS gene sets enriched for schizophrenia as found by CEWAS displayed. The binary representation of the gene sets are projected onto

2D space using UMAP, and the colors indicate the level of gene set enrichment. (C) Top 25 CNS gene sets enriched for AD as found by CEWAS displayed in 2D

UMAP space.

https://doi.org/10.1371/journal.pgen.1009918.g005
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has been suggested as a potential cause for the neuronal abnormalities, such as reduced neuro-

nal size, observed across major psychiatric disorders [73], and decreased prepulse inhibition has

been found in schizophrenia patients [74], bipolar patients during manic state [75], and depres-

sion patients to a lesser extent [76]. CEWAS also highlighted abnormal subventricular zone

morphology for schizophrenia and depression, which aligns with how dysregulated neurogen-

esis has been posited as a mechanism for aberrant pattern separation and abnormal reward pro-

cessing in schizophrenia and depression patients [77]. Fittingly, based on the Allen Institute

data (S6 Table), CEWAS highlighted the lateral nucleus of the amygdala for schizophrenia and

bipolar disorder, parahippocampal gyrus, the CA4 field of the hippocampus, and basolateral

nucleus of the amygdala for schizophrenia and depression, which aligns with the roles of these

brain regions in emotion and reward processing as well as in startle reflex [78] as used for pre-

pulse inhibition. CEWAS also highlighted the dentate gyrus for schizophrenia and depression,

which is the other main brain region, in addition to subventricular zone, where neurogenesis

persists in adulthood [79]. Further, CEWAS highlighted raphe nuclei of medulla, reticular

nucleus, and other thalamic nuclei for schizophrenia and depression. The raphe nuclei is the

origin of most forebrain serotonin innervation, which aligns with the abnormal serotonin levels

seen in psychiatric patients and how serotonin is used for treating psychiatric disorders [80].

The thalamic reticular nucleus (TRN) is largely composed of GABAergic neurons that express

parvalbumin, and the reduction of these neurons in the TRN of psychiatric patients has been

suggested to induce attentional, cognitive, and emotional deficits [81]. Moreover, CEWAS

highlighted a CNS gene set related to dopaminergic neuron morphology for schizophrenia,

which aligns with the dopamine hypothesis [82], and genes found by CEWAS for depression

are highly expressed in the ventral tegmental area, which is one of the main dopaminergic areas

in the brain with projections to amygdala and hippocampus for emotion and reward processing

as discussed, and reduced dopamine has been linked to depressed symptoms [83].

For neurodegenerative diseases, only CEWAS highlighted a CNS gene set related to abnor-

mal spatial working memory for AD (Fig 5C), PD, and amyotrophic lateral sclerosis (ALS).

Working memory deficit is a well-recognized characteristic of AD [84], and is also observed in

PD [85] and ALS [86]. Fittingly, genes found by CEWAS for AD, PD, and ALS (S6 Table) are

highly expressed in the parahippocampal gyrus, which relates to memory deficits seen in these

conditions [87,88]. CEWAS also highlighted lateral medullary reticular group, cuneate

nucleus, and gigantocellular nucleus for AD and PD, which aligns with how Lewy body accu-

mulation in PD pathology starts in the reticular zone of the medulla oblongata [89] and various

brainstem nuclei are implicated in neurodegenerative diseases [90]. In fact, CEWAS

highlighted a CNS gene set related to abnormal dopaminergic neuron morphology for AD,

which aligns with how hippocampal activity is modulated by dopaminergic signals from brain-

stem, and dopaminergic cell death has been shown to correlate with memory deficits in AD

mouse model [91]. Further, genes found by CEWAS for AD are highly expressed in the middle

temporal gyrus and precuneus, which belong to the posterior default mode network, whose

connectivity is disrupted in AD [92]. Lastly, CEWAS highlighted substantia nigra pars com-

pacta for PD, which is the signature region of PD pathology where dopaminergic cell death

occurs, resulting in the observed motor symptoms. Also, CEWAS highlighted a CNS gene set

related to abnormal subventricular zone morphology for PD, which aligns with how neurogen-

esis in the subventricular zone is modulated by dopamine [51].

Discussion

We proposed CEWAS for integrating genotype, DNAm, and gene expression data to model

the cascading effects of GWAS SNPs on DNAm, gene expression, and eventually phenotypes.
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We focused on this particular cascade of events since majority of GWAS SNPs lie in non-cod-

ing regions, hence their effects likely propagate from epigenome to transcriptome [15,93]. We

built the CEWAS models using the largest brain tissue datasets comprising all three data types

[20,21]. Higher detection rate was achieved by CEWAS compared to MetaXcan and EpiXcan,

with high genomic correlation attained between well-powered, related GWAS. Also, while

high correlations in z-scores between methods were observed, CEWAS identified numerous

genes that are distinct from MetaXcan and EpiXcan, though some of these genes might be

detectable with other methods not compared in this work. Stemming from large-scale GWAS,

the distinct genes found by CEWAS are likely high-value targets, especially given that they are

enriched for biologically relevant gene sets, and congruently, are highly expressed in disease-

relevant brain regions.

Although CEWAS only captures epigenomic-mediated effects, this property could be useful

for result interpretation. In particular, this property enables isolation of disease-relevant genes

whose effects are regulated by a specific molecular mechanism, such as DNAm as in this study.

As an example, YPEL3 and ZFYVE21 are significant for schizophrenia based on CEWAS but

p>0.05 based on MetaXcan. CpGs selected by CEWAS include cg06985993 and cg08213375

for YPEL3 and ZFYVE21, respectively, whose DNAm levels are associated with schizophrenia

GWAS SNPs: rs3814877 and rs4900597 [94]. Based on data from the same study, these SNPs

are not directly associated with expression, hence suggesting their effects on schizophrenia

might be mediated by DNAm. This result is supported by another study based on summary

data-based Mendelian randomization [11] that showed the effect of rs34813623 (LD = 0.84

with rs4900597) on schizophrenia is mediated by cg08213375 but not by expression. Though

not pursued in this work, we can also isolate disease-relevant genes whose effects are regulated

by histone acetylation, miRNA, and chromatin accessibility using the same approach. Hence,

CEWAS could serve as a complement to existing methods that directly model genetic effects

on gene expression in highlighting signals from the regulatory landscape of GWAS variants.

Nevertheless, CEWAS could be extended to model genetic effects on gene expression directly

by using dosages of cis SNPs, in addition to predicted DNAm levels of cis CpGs, as inputs to

the second stage for expression prediction. We note that analogous to MetaXcan and other

transcriptome wide association studies (TWAS), genes found by CEWAS might not be causal

due to effects of LD between SNPs propagating to the predicted expression as well as shared

GWAS variants across genes [95].

While CEWAS and EpiXcan have some similarities, the mechanisms being modeled are

distinct. In CEWAS, we associate SNPs to CpGs and then CpGs to genes to explicitly model

how certain GWAS SNPs affect gene regulation, which impacts gene expression and eventually

the downstream phenotypes. In contrast, EpiXcan only weights SNPs based on epigenomic

annotation during model learning. This distinction has two relevant implications. First, SNPs

annotated to the same chromatin state are assigned the same sparsity weight in EpiXcan,

whereas CEWAS estimates SNP-specific weights that reflect the association strengths between

SNPs and CpGs. Second, a SNP selected by EpiXcan that resides on an annotated position

might not necessarily be associated with epigenomic marks at or near that position, a property

that CEWAS imposes. In fact, just using mQTL p-values as sparsity weights in EpiXcan, which

captures the association strengths of SNPs on more distant CpGs, already increases detection

rate over MetaXcan and EpiXcan but to a lesser extent than CEWAS (S6 Fig). A plausible

explanation for CEWAS’s higher detection rate compared to mQTL-weighted EpiXcan is that

it enables more SNPs that are likely relevant to be modeled, since 543 samples are available per

CpG for selecting relevant SNPs with elastic net and each gene is associated with 9.62 CpGs on

average, whereas MetaXcan and EpiXcan have only 534 samples per gene for SNP selection

(S11 Fig).
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Another method that is conceptually similar to CEWAS is MOSTWAS, but its focus is on

incorporating trans genetic effects in predicting gene expression. Specifically, in addition to

using cis SNPs, MOSTWAS uses trans SNPs associated with epigenomic mediators of each

gene for expression model learning. Comparing the reported MOSTWAS z-scores (derived

from models also built using ROSMAP data) against CEWAS, MetaXcan, and EpiXcan, corre-

lations were low (<0.2) for both AD2013 and MDD2018. In contrast, correlations between z-

scores of CEWAS and MetaXcan/EpiXcan were 0.70 for AD2013 and 0.74 for MDD2018.

Hence, incorporating trans genetic effects seem to highlight very different genes. We opted to

focus on cis effects due to their higher replicability than trans effects [16]. Nonetheless, with

sample sizes of multi-omic data growing, we will be able to more robustly estimate trans effects

[96] and incorporate longer distance relationships into CEWAS by including more distal epi-

genomic mediators of each gene in the expression prediction models.

Overall, we showed that CEWAS provides a simple yet effective way for integrating multi-

omic data in estimating gene level z-scores from GWAS summary statistics. Genes and gene

sets highlighted by CEWAS point toward disease mechanisms that are promising but relatively

less explored. All code and prediction models are made available (https://github.com/

saramostafavi/CEWAS). This resource should prove useful for the research community to fur-

ther investigate the regulatory landscape of GWAS variants in generating new research direc-

tions and finding new potential therapeutic targets for various brain-related disease and traits.

Methods

Genotype, DNA methylation, RNAseq, and GWAS data

For building the prediction models in CEWAS, we used genotype [17], DNAm [18] (Illumina

450K array), and RNAseq [19] data from the ROSMAP study [20,21]. The genotype data were

acquired from 2067 subjects. The DNAm and RNAseq data were derived from DLPFC tissue

of 702 and 698 subjects, respectively. 543 subjects have both genotype and DNAm data, 485

subjects have both DNAm and RNAseq data, and 534 subjects have both genotype and RNA-

seq data. The data preprocessing pipelines are as previously described [15] except we used the

reference panel from the Haplotype Reference Consortium (HRC) to impute the genotype

data, and ~200 more subjects now have preprocessed RNAseq data available. We note that the

top ten principal components (PC) were regressed out from the DNAm and RNAseq data as

hidden confounders.

For replication, we used imputed genotype and preprocessed DLPFC-derived RNAseq data

from the CMC [41] study in combination with mQTLs from another large DLPFC tissue sam-

ple [42], since DNAm data were not collected in the CMC study. 592 subjects have both geno-

type and RNAseq data in the CMC study, and the mQTLs were generated from 526 subjects.

The DNAm data used in estimating the mQTLs were also acquired using Illumina 450K array.

For testing CEWAS, we used sixteen GWAS related to brain disease and traits [22–36] (S1

Table), namely schizophrenia (SCZ), bipolar disorder (BIP), AD, PD, ALS, depressive symp-

toms (DEP), major depressive disorder (MDD), wellbeing spectrum (wellbeing), insomnia,

and intelligence (IQ). We refer to each GWAS by the disease/trait studied and the year at

which the GWAS was performed, e.g. a schizophrenia GWAS performed in 2018 is referred to

as SCZ2018.

Cascading epigenomic analysis for GWAS

Motivated by the observation that GWAS SNPs are enriched in enhancers and open chromatin

regions [2,97], we propose CEWAS (Fig 1A) to analyze the cascading effects of genetics from

epigenome to transcriptome and eventually to phenome. We first build a model to extract the
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genetic component of DNAm for each CpG j:

Mj ¼
P

kεSj
wjk

cSk þ εj
c; ð1Þ

where Mj is a n×1 vector containing the DNAm levels of CpG j, Sk is a n×1 vector containing

the dosage of SNP k, wjk
c is kth element of a lj×1 model weight vector, wj

c, to be estimated, and

Sj is the set of lj SNPs within ±50Kb from the CpG j. Following MetaXcan [9], we estimated

wjk
c using elastic net regression by applying GLMNET [38] with its default settings, i.e. 10 fold

cross-validation to set the sparsity parameter. To extract the epigenomic component of expres-

sion for each gene i, we modeled expression level in a similar manner:

Ei ¼
P

jεCi
wij

gMj
p þ εi

g; ð2Þ

where Ei is a n×1 vector containing the expression level of gene i from n subjects, Mj
p is a n×1

vector containing DNAm levels of CpG j predicted using (1), and wij
g is the jth element of a

mi×1 model weight vector, wi
g, to be estimated with elastic net. Ci is the set of mi CpGs within

±500Kb from the TSS of gene i. Note that window sizes were chosen so that SNPs selected by

CEWAS would mostly lie within a typical 1Mb window from TSS as used in MetaXcan [9] and

EpiXcan [13]. Also, to estimate the R2 for each gene, we applied (1) and (2) sequentially and

computed the square of correlation between the predicted and measured expression levels

[98]. Only genes with R2 > 0.01 were retained for analysis.

Given wij
g and wjk

c, genetically-driven epigenomic effects at gene level can be estimated in a

manner analogous to sequentially applying MetaXcan:

zi
g ¼

P
jεCi

wij
gσj

c=σi
g � zj

c ¼
P

jεCi
wij

gσj
c=σi

g � ð
P

kεSj
wjk

cσk
s=σj

c � zk
sÞ

¼
P

jεCi
wij

gP
kεSj

wjk
cσk

s=σi
g � zk

s; ð3Þ

where zi
g is the z-score at gene level for gene i, zj

c is the z-score at CpG level for CpG j, zk
s is

the z-score at SNP for SNP k. σi
g and σk

s are the variance of gene i and SNP k, respectively. We

highlight that since only genetically-driven epigenomic effects are retained by (1), we must

estimate σi
g based on the genetic component of DNAm. For this, we set σi

g to wi
gTcov(Mp)wi

g,

where Mp is a n×mi matrix containing DNAm levels predicted using (1). As shown in the Fig

2, estimating σi
g with only the genetic component of DNAm is critical for zi

g to be calibrated.

Gene detection and distinct signal estimation

We applied (3) to sixteen well-powered, brain-related GWAS [22–36]. Genes were declared

significant at an α of 0.05 with Bonferroni correction for the number of tested genes. Since

some genes might have non-zero weights assigned to the same SNPs, we also estimated the

number of distinct signals within the significant genes and within the tested genes to provide

another estimate of detection rate (S1 Fig). To estimate the number of distinct signals, we used

an approach that combines permutation test with principal component analysis (PCA) [99].

Specifically, we first applied PCA to the predicted expression of queried genes (significant or

tested) for each method, and recorded the percentage variance explained by each PC. We then

permuted the predicted expression matrix along both rows and columns a thousand times to

generate the null distribution of the percentage variance for each PC as used for estimating p-

values. PCs with p< 0.05 were declared significant.

We note that due to difficulties in genotyping the MHC region, genes (defined as ±500Kb

from TSS) that overlap with the MHC region were excluded from analysis. Also, although the

ROSMAP subjects are of European descent, the reference allele for some SNPs could still be

different from those of GWAS. We thus accounted for allele flips by inverting the signs of the
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GWAS z-scores, and removed all ambiguous SNPs, i.e. cases where A1 and A2 are comple-

mentary, e.g. A1 = A, A2 = T. For comparison, we applied MetaXcan with expression predic-

tion models, wik
g, built using the same SNP sets as CEWAS as well as SNPs within ±500Kb

from TSS of each gene i. The former ensures the same SNPs as CEWAS are considered to test

the effect of incorporating DNAm, while the latter follows conventions in the literature [9].

For comparison against EpiXcan, similar expression prediction models were built using elastic

net except the sparse penalty was weighted based on epigenomic annotation of the SNPs [13].

Only genes with R2 > 0.01 were kept.

z-score calibration test

For the detected genes to be trustworthy, we need to ensure that zi
g generated by (3) is cali-

brated. In particular, applying (3) to null zk
s should output null zi

g. To test whether this crite-

rion is met, special care is needed in simulating null zk
s. Specifically, in addition to requiring

zk
s of each SNP k to follow N(0,1), the LD structure of all SNPs involved in (3) must be

accounted for. Otherwise, the correlations between CpGs would not be properly modeled. To

satisfy these two conditions, for each gene i, we drew 10000 sets of zk
s from N(0,Ri), where Ri

is the correlation between all SNPs in {Sj} for j ε Ci. Using correlation, as opposed to covari-

ance, ensures the standard deviation of each zk
s is 1. For generating Ri, we used the ROSMAP

imputed genotype data. To evaluate the resulting zi
g, we checked if each set of 10000 zi

g’s of

each gene i follows N(0,1). In practice, the LD structure of GWAS genotype data might not

match that of ROSMAP genotype data. To test the effect of LD mismatch, we further used Ri

estimated from the 1000 Genome phase 3 genotype data (European population) to generate

zk
s.

Replication

We used the CMC data [41] and mQTLs from another large DLPFC tissue sample [42] for rep-

lication. To align the allele across the CMC data, the mQTLs, and the GWAS, we matched the

allele of all these datasets to that of the 1000 Genomes panel [100]. All regression coefficients,

βjk
c, associated with each CpG j in the mQTL set were used as wj

c in (3). To estimate wi
g, we

first multiplied βjk
c to the corresponding SNPs in the CMC data (with allele matched) to gener-

ate predicted DNAm levels. We then applied elastic net regression to these predicted DNAm

levels and the CMC gene expression data to generate wi
g. σk

s was estimated using the 1000

Genomes data, and σi
g was estimated using the predicted DNAm levels. We applied (3) with

these model parameters to the same sixteen GWAS [22–36], and used area under the receiver

operating characteristic curve (AUC) as the replication metric. To estimate AUC, we ranked

the genes of each GWAS based on p-values estimated with the ROSMAP models, took the top

1% of genes as the reference, and computed true positive rate and false positive rate by apply-

ing a range of thresholds from 0 to 1 on p-values derived from the CMC models. We took the

top 1% of genes as reference since less than a handful of genes are significant for some GWAS,

which might be too few for robust AUC estimation. We further assessed statistical significance

by estimating AUC on 10000 sets of permuted p-values and confirmed that chance level AUC

is 0.5±0.02. For comparison, we evaluated the replication of MetaXcan [9] and EpiXcan [13]

derived from ROSMAP vs. CMC data, with the latter being provided by the respective authors.

ROSMAP models built with SNPs within ±500Kb from TSS were used to match the way the

CMC models were built. We also examined the correlations between zi
g’s across related

GWAS as another form of replication assessment. Note that well being spectrum is partly esti-

mated based on depressive symptoms [35], hence zi
g’s of wellbeing2019 are expected to be

highly correlated with DEP2019, MDD2019, and MDD2018.
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We note that the lack of another large brain tissue dataset with genotype, DNAm, and gene

expression data complicates replication. On the model learning side, we must first align the

allele of the CMC genotype data and the mQTLs to the same reference for generating (pre-

dicted) DNAm data. This alignment process includes flipping signs of mQTLs and flipping

dosage coding of CMC genotype data whenever allele mismatches occur, which is prone to

errors especially for SNPs with allele frequency close to 0.5. Also, mQTLs of ambiguous SNPs

need to be dropped, i.e. cases where A1 and A2 are complementary, e.g. A1 = A, A2 = T. On

the z-score estimation side, we must align the allele of the GWAS SNPs to the same reference

used for model learning, which is again prone to sign flip errors and variable mismatches.

Gene set enrichment

To infer the biological processes captured by CEWAS, we examined gene set enrichment by

adapting the contrastive analysis proposed in MAGMA [70]. Specifically, we used generalized

least square to model the gene level z-scores:

zg ¼ Cαþ xlβl þ ε; ð4Þ

where zg is a q×1 vector containing the gene level z-scores, C is a q×d matrix containing d con-

founds, xl is a q×1 binary vector with 1 indicating genes that belong to gene set l, ε ~ N(0,S),

and S is a q×q matrix to account for correlation between genes. We used C to account for the

number of SNPs selected by CEWAS for each given gene (i.e. Sjk (wijwjk> 0)), and we applied

oracle approximating shrinkage [101] to the gene expression data to estimate a well-condi-

tioned S that is closest to the unknown ground truth S in the least square sense. Having a

well-conditioned estimate of S is critical since S-1 is involved in the estimation of βl and se(βl).

CNS gene sets [22] as well as GO and canonical gene sets (MSigDB v7.1 [71]) having 10 to 200

genes [102] (that intersect with the tested genes of each method) were examined. Significance

was declared at an α of 0.05 with FDR correction for the number of gene sets in the CNS set

and in each MSigDB collection.

Brain region association

We also examined association with brain regions by applying (4) to the human brain microar-

ray data from Allen Institute [72]. Given gene-by-region expression matrices derived from six

post-mortem brains, we first averaged the expression values corresponding to the same gene-

region pairs for each subject. We then applied Student’s t-test to the average expression values

of each unique gene-region pairs across subjects. The vector of t-values for each region was

taken as xl in (4) to estimate brain region association. Only genes tested by CEWAS and avail-

able in the Allen Institute data were used in (4). The same analysis was performed with MetaX-

can and EpiXcan z-scores. Significance was declared at an α of 0.05 with FDR correction for

the number of regions.

Software availability

All results are generated using in-house MATLAB scripts. To increase portability, we have

built a python software that interfaces with the widely-used MetaXcan software, and assembled

all CEWAS models and parameters into the required format. The python software is available

on our GitHub page: https://github.com/saramostafavi/CEWAS. CEWAS can be executed

with a single command using this software and takes between 4–10 min to run for a typical

GWAS dataset on a 4 core machine. Installation details with a sample test case are provided on

the GitHub page.
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Supporting information

S1 Table. Sixteen brain-related GWAS analyzed.

(XLSX)

S2 Table. GWAS and detection summary.

(XLSX)

S3 Table. Replication AUC.

(XLSX)

S4 Table. Gene detection statistics.

(XLSX)

S5 Table. Gene set enrichment.

(XLSX)

S6 Table. Brain region enrichment.

(XLSX)

S1 Fig. Detection rate based on distinct signals. Ratio of the number of significant PCs

extracted from the significant genes over the number of significant PCs extracted from the

tested genes displayed. The number of significant PCs was used as an estimate of the number

of distinct signals within a set of genes (see Methods). This analysis accounts for how some

SNPs are shared between models of spatially proximal genes. The overall trend of CEWAS

attaining higher detection rate than MetaXcan and EpiXcan remains with this analysis.

(PDF)

S2 Fig. R2 of gene models. (a) R2 estimated by correlating the predicted and measured expres-

sion levels in ROSMAP. CEWAS attained lower R2 as expected, since CEWAS is designed to

extract a specific component of gene expression, namely the epigenomic component that is

driven by genetic effects. In contrast, MetaXcan and EpiXcan are optimized for predicting

gene expression. (b) R2 estimated by applying ROSMAP models to CMC genotype data and

correlating the predicted expression levels with that measured in CMC. R2 appears similar

across methods, but CEWAS actually attained slightly lower R2 if we zoom into the results (see

S3 Fig).

(PDF)

S3 Fig. Correlation between predicted and measured expression levels on CMC data. Mod-

els trained with ROSMAP data were applied to CMC genotype data to predict gene expression.

Correlation attained by CEWAS is slightly lower than MetaXcan and EpiXcan.

(PDF)

S4 Fig. Stability analysis of partitioned heritability. Bars show the log p-value of enrichment

of mQTLs and eQTLs assessed by LDSC for each GWAS. (a) The enrichment for mQTLs

remains higher than for eQTLs with the window size of eQTLs matched to that of mQTLs

(p = 0.0084, Wilcoxon sign rank test across GWAS). (b) The same trend holds but to a lesser

extent when we matched the number of mQTL SNPs to the number of eQTL SNPs by taking

mQTL SNPs that are closer to CpGs (p = 0.1122, Wilcoxon sign rank test across GWAS;

p = 0.0269, paired t-test).

(PDF)

S5 Fig. Replication of mQTLs vs. eQTLs. Using mQTLs in Jaffe et al., [42] as the reference,

we first found the top mQTL SNP for each CpG, and ordered the resulting top mQTLs based

on p-values. Taking q% of the top mQTLs as “ground truth”, q = 5% to 50%, we computed
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AUC on mQTL p-values derived from the ROSMAP data. Since mQTLs from Jaffe et al. were

estimated with a 20Kb window, we restricted the ROSMAP mQTLs to those within the same

window. The same procedure was applied to estimate AUC for eQTLs, with eQTLs from CMC

as the reference. Since eQTLs from CMC were estimated with a 1Mb window, we first exam-

ined ROSMAP eQTLs within a 1Mb window, but also examined CMC and ROSMAP eQTLs

restricted to the same window size as the mQTLs, i.e. 20Kb. To estimate the null, we permuted

the top eQTLs/mQTLs and repeated the procedure.

(PDF)

S6 Fig. Gene detection rate with DNAm mediated effects on GWAS phenotypes. We

assessed DNAm mediated effects on GWAS phenotypes in four ways. First, we examined

results from models used in the first stage of CEWAS, i.e. MetaXcan models built with each

CpG taken as the response and SNPs within ±50Kb from that CpG as predictors. Detection

rate of these DNAm MetaXcan models, defined as the number of significant CpGs among

tested CpGs, is significantly lower than CEWAS (p = 0.0004), MetaXcan (p = 0.0013), and

EpiXcan (p = 0.0006) based on Wilcoxon sign rank test across GWAS. Second, we assessed

CpG-to-gene mapping that does not use expression data, by taking the DNAm MetaXcan p-

value of the closest CpG of each gene as the p-value of that gene. The gene level detection rate

is significantly lower than CEWAS (p = 0.0004), MetaXcan (p = 0.0003), and EpiXcan

(p = 0.0004). Third, we took the DNAm MetaXcan p-value of the CpG with the largest R2 in

terms of DNAm prediction among CpGs within ±500Kb from each gene as the p-value of that

gene. The detection rate is lower than CEWAS (p = 0.1331) and EpiXcan (p = 0.3808), and

higher than MetaXcan (p = 0.4235). Fourth, to contrast using epigenomic annotation against

explicitly modeling associations between SNPs and CpGs, we modified EpiXcan by weighting

the sparse penalty using mQTL p-values. We first associated each CpG to SNPs that are within

±50Kb. We then found the smallest p-value, pk, across CpGs for each SNP k, and used

1010pk+0.5 (capped at 1) as the weight for its sparse penalty. Multiplying by 1010 accounts for

the number of SNP-CpG pairs tested, and +0.5 penalizes SNPs with the strongest mQTL

effects by half the amount as SNPs with weak/no mQTL effects. The detection rate of mQTL-

weighted EpiXcan is significantly higher than both MetaXcan (p = 0.00006) and EpiXcan

(p = 0.00006), and lower than CEWAS on average (p = 0.3881).

(PDF)

S7 Fig. Genomic correlation between schizophrenia and IQ. Gene level z-scores estimated

by CEWAS for schizophrenia vs. IQ displayed. A genomic correlation of -0.15 was observed.

The genes that were detected by CEWAS across schizophrenia, bipolar disorder, depression,

and IQ are highlighted in bold. Observing opposite signs in z-scores for the highlighted genes

matches how risk alleles in these loci were shown to correlate with lower cognitive test scores

[45].

(PDF)

S8 Fig. Number of distinct signals among differential genes. Number of distinct signals (i.e.

number of significant PCs, see Methods) among differential genes (darker shade) and signifi-

cant genes (lighter shade) detected by each method. Only genes tested in all three methods

were considered in extracting differential genes exclusively found by one method but not the

other two. The overall trend of CEWAS finding more distinct signals than MetaXcan and

EpiXcan remains.

(PDF)

S9 Fig. Comparison with spatially mapping GWAS SNPs. (a) The distance between TSS of

differential genes exclusively found by CEWAS and their closest GWAS hits summarized.
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Each bar corresponds to the percentage of differential genes lying in a range of distance, e.g. a

bar between 100 and 1000 corresponds to the percentage of differential genes with distance

between 100 and 1000 base pairs. More than half of the differential genes are >100Kb away

from any GWAS hits. (b) The percentage of differential genes exclusively found by CEWAS

but missed by spatially mapping GWAS SNPs to their closest genes shown. Note that no differ-

ential genes were found for ALS2018, hence why the percentage is zero.

(PDF)

S10 Fig. Correlation of gene set enrichment scores between CEWAS and contrasted meth-

ods. The average correlation over GWAS for each gene set category displayed. The observed

correlation suggests moderate similarity in enriched gene sets between CEWAS and the con-

trasted methods, which we confirmed by manual inspection.

(PDF)

S11 Fig. Number of selected SNPs. (a) Number of SNPs selected per CpG by elastic net. (b)

Number of SNP selected per gene by elastic net. CEWAS tends to have more SNPs selected

since 543 samples are available per CpG for selecting relevant SNPs with elastic net and each

gene is associated with 9.62 CpGs on average, whereas MetaXcan and EpiXcan have only 534

samples per gene for SNP selection.

(PDF)
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71. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures

Database Hallmark Gene Set Collection. Cell Syst. 2015 Dec 23; 1(6):417–25. https://doi.org/10.

1016/j.cels.2015.12.004 PMID: 26771021

72. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically com-

prehensive atlas of the adult human brain transcriptome. Nature. 2012 Sep 20; 489(7416):391–9.

https://doi.org/10.1038/nature11405 PMID: 22996553

73. Cotter DR, Pariante CM, Everall IP. Glial cell abnormalities in major psychiatric disorders: The evi-

dence and implications. Vol. 55, Brain Research Bulletin. Elsevier; 2001. p. 585–95. https://doi.org/

10.1016/s0361-9230(01)00527-5 PMID: 11576755

74. Braff D, Stone C, Callaway E, Geyer M, Glick I, Bali L. Prestimulus Effects on Human Startle Reflex in

Normals and Schizophrenics. Psychophysiology. 1978; 15(4):339–43. https://doi.org/10.1111/j.1469-

8986.1978.tb01390.x PMID: 693742

75. Perry W, Minassian A, Feifel D, Braff DL. Sensorimotor gating deficits in bipolar disorder patients with

acute psychotic mania. Biol Psychiatry. 2001 Sep 15; 50(6):418–24. https://doi.org/10.1016/s0006-

3223(01)01184-2 PMID: 11566158

76. Perry W, Minassian A, Feifel D. Prepulse inhibition in patients with non-psychotic major depressive

disorder. J Affect Disord. 2004 Aug; 81(2):179–84. https://doi.org/10.1016/S0165-0327(03)00157-5

PMID: 15306146

77. Yun S, Reynolds RP, Masiulis I, Eisch AJ. Re-evaluating the link between neuropsychiatric disorders

and dysregulated adult neurogenesis. Vol. 22, Nature Medicine. Nature Publishing Group; 2016. p.

1239–47. https://doi.org/10.1038/nm.4218 PMID: 27783068

PLOS GENETICS Cascading epigenomic analysis for identifying disease genes GWAS variants

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009918 November 22, 2021 24 / 26

https://doi.org/10.1016/j.molcel.2014.11.006
http://www.ncbi.nlm.nih.gov/pubmed/25498145
https://doi.org/10.1111/jnc.13712
http://www.ncbi.nlm.nih.gov/pubmed/27333324
https://doi.org/10.1038/ng.761
http://www.ncbi.nlm.nih.gov/pubmed/21278747
https://doi.org/10.1038/nature13976
https://doi.org/10.1038/nature13976
http://www.ncbi.nlm.nih.gov/pubmed/25383518
https://doi.org/10.1038/s41467-018-07882-8
http://www.ncbi.nlm.nih.gov/pubmed/30602773
https://doi.org/10.1038/s41588-020-00761-3
http://www.ncbi.nlm.nih.gov/pubmed/33462483
https://doi.org/10.1016/j.jalz.2018.07.217
http://www.ncbi.nlm.nih.gov/pubmed/30337151
https://doi.org/10.1016/j.xcrm.2020.100138
http://www.ncbi.nlm.nih.gov/pubmed/33294859
https://doi.org/10.1016/j.neuron.2019.09.014
http://www.ncbi.nlm.nih.gov/pubmed/31606247
https://doi.org/10.1016/j.celrep.2020.108126
http://www.ncbi.nlm.nih.gov/pubmed/32937141
https://doi.org/10.1371/journal.pcbi.1004219
https://doi.org/10.1371/journal.pcbi.1004219
http://www.ncbi.nlm.nih.gov/pubmed/25885710
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1016/j.cels.2015.12.004
http://www.ncbi.nlm.nih.gov/pubmed/26771021
https://doi.org/10.1038/nature11405
http://www.ncbi.nlm.nih.gov/pubmed/22996553
https://doi.org/10.1016/s0361-9230%2801%2900527-5
https://doi.org/10.1016/s0361-9230%2801%2900527-5
http://www.ncbi.nlm.nih.gov/pubmed/11576755
https://doi.org/10.1111/j.1469-8986.1978.tb01390.x
https://doi.org/10.1111/j.1469-8986.1978.tb01390.x
http://www.ncbi.nlm.nih.gov/pubmed/693742
https://doi.org/10.1016/s0006-3223%2801%2901184-2
https://doi.org/10.1016/s0006-3223%2801%2901184-2
http://www.ncbi.nlm.nih.gov/pubmed/11566158
https://doi.org/10.1016/S0165-0327%2803%2900157-5
http://www.ncbi.nlm.nih.gov/pubmed/15306146
https://doi.org/10.1038/nm.4218
http://www.ncbi.nlm.nih.gov/pubmed/27783068
https://doi.org/10.1371/journal.pgen.1009918


78. Lee Y, Davis M. Role of the hippocampus, the bed nucleus of the stria terminalis, and the amygdala in

the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. J Neurosci. 1997

Aug 15; 17(16):6434–46. https://doi.org/10.1523/JNEUROSCI.17-16-06434.1997 PMID: 9236251

79. Gross CG. Neurogenesis in the adult brain: Death of a dogma. Nat Rev Neurosci. 2000; 1(1):67–73.

https://doi.org/10.1038/35036235 PMID: 11252770

80. Lucki I. The spectrum of behaviors influenced by serotonin. Biol Psychiatry. 1998 Aug 1; 44(3):151–

62. https://doi.org/10.1016/s0006-3223(98)00139-5 PMID: 9693387

81. Steullet P, Cabungcal JH, Bukhari SA, Ardelt MI, Pantazopoulos H, Hamati F, et al. The thalamic retic-

ular nucleus in schizophrenia and bipolar disorder: role of parvalbumin-expressing neuron networks

and oxidative stress. Mol Psychiatry. 2018 Oct 1; 23(10):2057–65. https://doi.org/10.1038/mp.2017.

230 PMID: 29180672

82. Howes OD, Kapur S. The Dopamine Hypothesis of Schizophrenia: Version III-The Final Common

Pathway.

83. Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression. Vol. 64,

Archives of General Psychiatry. American Medical Association; 2007. p. 327–37. https://doi.org/10.

1001/archpsyc.64.3.327 PMID: 17339521

84. Baddeley AD, Bressi S, Della Sala S, Logie R, Spinnler H. THE DECLINE OF WORKING MEMORY

IN ALZHEIMER’S DISEASE A LONGITUDINAL STUDY. Vol. 114, Brain. 1991. https://doi.org/10.

1093/brain/114.6.2521 PMID: 1782529

85. Cools R. Dopaminergic modulation of cognitive function-implications for L-DOPA treatment in Parkin-

son’s disease. Vol. 30, Neuroscience and Biobehavioral Reviews. Pergamon; 2006. p. 1–23. https://

doi.org/10.1016/j.neubiorev.2005.03.024 PMID: 15935475

86. Goldstein LH, Abrahams S. Changes in cognition and behaviour in amyotrophic lateral sclerosis:

Nature of impairment and implications for assessment. Vol. 12, The Lancet Neurology. Elsevier;

2013. p. 368–80. https://doi.org/10.1016/S1474-4422(13)70026-7 PMID: 23518330

87. Takeda T, Uchihara T, Arai N, Mizutani T, Iwata M. Progression of hippocampal degeneration in amyo-

trophic lateral sclerosis with or without memory impairment: Distinction from Alzheimer disease. Acta

Neuropathol. 2009; 117(1):35–44. https://doi.org/10.1007/s00401-008-0447-2 PMID: 19002475

88. LèNe Hall H, Reyes S, Landeck N, Bye C, Leanza G, Double K, et al. Hippocampal Lewy pathology

and cholinergic dysfunction are associated with dementia in Parkinson’s disease. A J Neurol.
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