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Predicting visual information facilitates efficient processing of visual signals. Higher visual
areas can support the processing of incoming visual information by generating predictive
models that are fed back to lower visual areas. Functional brain imaging has previously
shown that predictions interact with visual input already at the level of the primary visual
cortex (V1; Harrison et al., 2007; Alink et al., 2010). Given that fixation changes up to four
times a second in natural viewing conditions, cortical predictions are effective in V1 only if
they are fed back in time for the processing of the next stimulus and at the corresponding
new retinotopic position. Here, we tested whether spatio-temporal predictions are updated
before, during, or shortly after an inter-hemifield saccade is executed, and thus, whether
the predictive signal is transferred swiftly across hemifields. Using an apparent motion
illusion, we induced an internal motion model that is known to produce a spatio-temporal
prediction signal along the apparent motion trace in V1 (Muckli et al., 2005; Alink et al.,
2010). We presented participants with both visually predictable and unpredictable targets
on the apparent motion trace. During the task, participants saccaded across the illusion
whilst detecting the target. As found previously, predictable stimuli were detected more
frequently than unpredictable stimuli. Furthermore, we found that the detection advantage
of predictable targets is detectable as early as 50–100 ms after saccade offset. This result
demonstrates the rapid nature of the transfer of a spatio-temporally precise predictive
signal across hemifields, in a paradigm previously shown to modulate V1.
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INTRODUCTION
Comparing incoming sensory stimulation with previously gener-
ated predictions is an efficient strategy for processing the wealth
of visual information. Predicted stimuli can be processed more
efficiently and unpredicted surprising stimuli are allocated more
processing resources. The brain constantly constructs predictive
models of the world which are updated in anticipation of planned
movements. With respect to vision, both Descartes and later von
Helmholtz made an important discovery about the visual system:
when external pressure is used to displace the eyeball, the visual
scene moves. However, when we saccade our eyes, the visual world
remains stable (Descartes, 1642–1648; von Helmholtz, 1962). This
was the first evidence that internal models do not anticipate
the mechanically induced change of the visual stimulus but are
updated in anticipation of voluntary eye movements. An inter-
nal copy of the motor command, called efference copy, is used
to update these internal predictions (Sperry, 1950). In hierarchi-
cal models of cortical processing, it is conceptualized that higher
cortical areas incorporate planned motor signals and provide
spatio-temporal predictions for lower level visual areas. Lower
visual areas can use these top-down predictive signals to antici-
pate expected change and process visual information more rapidly
and efficiently (Merriam and Colby, 2005; Bar, 2007; Gilbert and
Sigman, 2007; Harrison et al., 2007; Kveraga et al., 2007; Friston,
2009; Alink et al., 2010). For example, predictions developed from
previous experience can allow an individual to correctly represent
the entire shape of an object when it is partially occluded (van Lier

et al., 1994; Sugita, 1999; Erlhagen, 2003; Johnson and Olshausen,
2005).

Many models have suggested that predictions are generated in
higher cortical areas. Mumford (1992) proposed that flexible tem-
plates are formed in higher cortical areas and sent down to lower
cortical areas where they explain away the bottom-up input sig-
nal. In such a predictive model, only the non-explained, surprising
incoming signal is fed forward whereas all other signals explainable
by spatio-temporal context are filtered out at the earliest possi-
ble cortical processing stage. Rao and Ballard (1999) modeled a
hierarchical predictive coding architecture in which higher levels
of the model predict responses of the next lower level using feed-
back. Feedforward connections from lower to higher cortical areas
communicate any errors between the predicted response and the
actual response. When new models are learned new synaptic con-
nections need to be formed reflecting learned associations (den
Ouden et al., 2009). Several models have been proposed demon-
strating the importance of the bidirectional influence between
higher and lower cortical areas for perception and recognition (Bar
et al., 2006; Lamme, 2006; Meyer, 2012). A more formal account
of predictive coding has been developed by Friston (2005, 2009,
2010).

For predictive coding to facilitate visual processing it is impor-
tant that the predictive signal transfers across hemifields rapidly,
ensuring that it continues to aid visual recognition across visual
fields. This study aims to demonstrate whether a predictive signal is
transferred across hemifields and, more precisely, how quickly after

www.frontiersin.org June 2012 | Volume 3 | Article 176 | 1

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/about
http://www.frontiersin.org/Perception_Science/10.3389/fpsyg.2012.00176/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=PetraVetter&UID=49949
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=GraceEdwards&UID=50050
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=LarsMuckli&UID=4057
mailto:{petra.vetter@glasgow.ac.uk;} {Lars.Muckli@glasgow.ac.uk}
http://www.frontiersin.org
http://www.frontiersin.org/Perception_Science/archive


Vetter et al. Visual prediction transfer across saccades

saccade completion we can detect prediction effects previously
related to V1 processing (Alink et al., 2010).

Previous evidence indicated that the transfer of information
across saccades is rapid and accelerates visual perception by about
40 ms (Hunt and Cavanagh,2009). When subjects saccaded toward
a ticking clock and reported the time displayed on the clock,
subjects’ response was 39 ms earlier than the actual time. Hunt
and Cavanagh (2009) attributed this effect to anticipatory sensory
enhancement in the target area in which the eyes fall after saccade.
Peterburs et al. (2011) found three ERP components which were
related to saccadic updating. The antecedent potential building
from 80 to 40 ms prior to saccade was thought to be associated with
the planning of the impending saccade, consistent with previous
findings in monkey lateral intraparietal area (LIP) and frontal eye
field (FEF; Duhamel et al., 1992; Umeno and Goldberg, 2001). The
next component in the time course related to spatial updating was
a negative ERP 30–70 ms post-saccade onset. Finally the last com-
ponent to occur in relation to the saccade arrived 200–500 ms after
the saccade onset. On closer inspection of this late updating, Peter-
burs et al. (2011) found evidence in the ERP traces to suggest that
positive ERP activity in the time window between 100 and 150 ms
after onset was related to interhemispheric transfer. Bellebaum
and Daum (2006) also found an early post-saccadic component at
50 ms after offset which was thought to be imperative for saccadic
updating. Allowing for approximately 80 ms for saccade duration
(Baloh et al., 1975; see also Results below), Peterburs et al. (2011)
evidence suggests predictive coding transfer should occur within
20–70 ms after saccade offset if it is indeed relevant for efficient
processing.

In this experiment we used an apparent motion paradigm
which has previously been proven useful to demonstrate the effect
of a predictive mechanism (Schwiedrzik et al., 2007; Alink et al.,
2010; see also Hidaka et al., 2011). Visual illusions reflect the fact
that the brain draws inferences from the visual input and that prior
beliefs (or predictions) are used to construct the percept (Goebel
et al., 1998; Brown and Friston, 2012). Apparent motion is an illu-
sion of motion induced by two stationary stimuli that blink on and
off alternately. It gives rise to an illusory object moving between
the inducing stimuli along the shortest path, but avoiding obsta-
cles (Kolers, 1963; Attneave and Block, 1974; Shepard and Zare,
1983; Goebel et al., 1998; Muckli et al., 2002, 2005; Liu et al., 2004;
Larsen et al., 2006). Long distance apparent motion is a particu-
larly suitable paradigm as higher visual areas have larger receptive
fields which enable them to process the spatio-temporal dynamics
of the illusion, thus creating a prediction with regard to where the
illusory motion token is at a certain time (Alink et al., 2010).

In the experimental paradigm used here, targets were presented
on the apparent motion trace either in-time or out-of-time with
the illusory motion token. Targets were similar in visual features
to those stimuli inducing apparent motion. In-time targets fitted
the predicted time and place of the illusory motion token better
than those presented out-of-time. Moreover, we have shown that
participants are significantly more accurate in detecting the more
predictable in-time targets than the unpredictable out-of-time
targets (Schwiedrzik et al., 2007). However, it should be noted
that both in-time and out-of-time targets are masked by illu-
sory motion and are detected less frequently than control stimuli

that are not embedded in apparent motion (Schwiedrzik et al.,
2007). Our previous brain imaging results with the same para-
digm showed that the effect of prediction interacts with incoming
information at the level of V1 (Alink et al., 2010). Alink et al. found
that unpredictable, out-of-time targets caused a higher activation
in V1 than predictable, in-time targets even though out-of-time
targets were detected less frequently. In line with predictive coding
frameworks (Mumford, 1992; Rao and Ballard, 1999; Friston, 2005,
2009, 2010), the decreased BOLD signal in response to predictable
targets was interpreted as consistent with the notion that pre-
dicted information is processed more efficiently and thus causes
less neural activation. The increased BOLD signal in response to
unpredictable targets was thought to be a result of prediction
errors. Alink et al. experiments were performed under condi-
tions of central fixation and it is unclear whether predictability
effects would also occur when cortical predictions need to be trans-
ferred across an eye movement. Since V1 has a precise retinotopic
structure, feedback must interact with incoming information at
a high spatial and temporal precision. It is unclear whether a
predictive signal can quickly transfer to new retinal coordinates
or even across visual hemifields. The objective of this study was
to examine whether visual predictions transfer across hemifields
and to measure the critical time window for such trans-saccadic
predictions.

Here, we combined our previous apparent motion paradigm
with inter-hemifield saccades to investigate the transfer of the pre-
dictive signal to the other hemifield. In contrast to a related study
by Szinte and Cavanagh (2011), we added in-time and out-of-time
targets on the apparent motion trace to investigate effects of visual
predictions. By presenting targets along the apparent motion trace
immediately after a saccade we were able to determine how long it
takes for the predictive signal to transfer to the new retinal position.

MATERIALS AND METHODS
SUBJECTS
Thirty subjects were recruited via the online departmental subject
pool, 27 were included in the final analysis (see Task and Proce-
dures for reasons of exclusion; mean age 25, range 19–38 years, 19
females). Fourteen subjects performed version A of the experiment
and 13 subjects version B. Of those, three subjects took part in both
versions. All subjects had normal or corrected-to-normal eye sight,
no history of brain damage, and signed informed consent.

STIMULI
Two white rectangles (2.1˚ each, 12.3˚ vertically apart) were flashed
alternately to induce apparent motion (see Figure 1). Each appar-
ent motion stimulus was displayed for five frames (67 ms) followed
by an inter-stimulus interval of another five frames, resulting in a
frequency of 3.75 Hz. Targets were the same shape and color, but
slightly smaller (1.7˚) than the inducing stimuli, to ensure they fall
on the apparent motion trace and to account for cortical magni-
fication. Targets were presented on the apparent motion trace at
either an upper or lower position (2.5˚ from the midline) in either
the second or fourth frame of the ISI. The targets were presented
for 13.3 ms (1 refresh rate) either in-time with a linearly moving
illusory token or out-of-time (i.e., at the same time but at the
wrong target position, Figure 1B). Targets occurred equally often
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FIGURE 1 | (A) Schematic depiction of the stimulus display (not in scale). The
two apparent motion stimuli flashed in alternation (at 3.75 Hz). During the ISI,
a target was flashed at either an upper or lower position on the apparent
motion trace. The target was of the same shape and luminance as the
apparent motion stimuli though slightly smaller. Subjects maintained their
eyes at the red fixation cross and saccaded across the illusion when the

fixation cross changed color (every 2.66 s). (B) Time-space diagram of the
stimulus display. Predictable targets were flashed in-time with a linearly
moving illusory token whereas unpredictable targets were flashed out-of-time
with an illusory token, i.e., at the same time as the corresponding predictable
target but at the wrong place. Targets were presented either at an early or late
delay, and either during upward or downward apparent motion.

at the upper and lower target position and during both upward
and downward apparent motion. Each trial consisted of 10 cycles
of apparent motion. Apparent motion stimulation was continuous
and the onsets and offsets of trials were not noticeable. The appar-
ent motion stimulus was placed at the center of the screen with two
fixation crosses (0.62˚ each, one green, one red) at either side (7˚

eccentricity). Fixation crosses changed color every 2.66 s (10 cycles
of apparent motion),always at the beginning of cycle 6 of each trial.
In version A of the experiment, targets were displayed in the cycle
immediately before and immediately after the color change of the
fixation cross (cycles 5 and 6) and also in between the color change
(cycle 1). In version B of the experiment, targets were displayed in
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cycles 7, 8, 9, and 10, i.e., 2–4 cycles after the color change of the
fixation cross (see explanation below). Apparent motion stimula-
tion was interrupted with a natural scene display once a minute,
enabling subjects to rest their eyes for 20 s and preventing apparent
motion breakdown due to adaptation (Anstis and Giaschi, 1985).
Stimuli were created using Presentation (Neurobehavioural Sys-
tems, Inc.,Albany, USA) and presented on a 16 inch Sony Trinitron
CRT Monitor (resolution: 1024 by 768, refresh rate: 75 Hz). The
setup was similar to Szinte and Cavanagh (2011), however we used
a larger vertical distance of the apparent motion stimulus and a
much slower saccading rhythm.

TASK AND PROCEDURE
Each subject was seated in a dark room at a distance of 70 cm
from the computer monitor using a chin rest and a forehead sup-
port. Eye movements (EyeLink, SR Research, ON, Canada) were
recorded throughout.

Pre-test
Prior to the main experiment, a 10 min pre-test was conducted to
familiarize subjects with the task, determine their optimal stim-
ulus contrast, and their baseline performance without saccades.
Here, the same apparent motion stimulus was presented in the
right visual field (7˚ eccentricity) with a single white fixation
cross at the center. The subjects’ task was to keep their eyes at
the central fixation cross and detect the targets on the apparent
motion trace. The background gray values were varied block-wise
in five steps [Michelson contrasts derived from luminance mea-
surements with a photometer (Minolta): 0.80; 0.69; 0.56; 0.43;
0.29] to determine subjects’ individual stimulus contrast for high-
est detectability of in-time targets compared to out-of-time targets.
This optimal contrast value was then used throughout the main
saccading experiment. On average, a mean Michelson contrast of
.052 (SEM.027) was employed. Mean detection rates across the
five contrast values are plotted in Figure 2. Replicating previous
findings (Schwiedrzik et al., 2007), in-time targets were detected
better than out-of time targets [repeated-measures ANOVA: F(1,
23) = 42.09, p < 0.001]. Overall, detection rates increased with
decreasing contrast [F(4, 92) = 3.21, p = 0.016; no interaction].
However, contrast blocks were not counter-balanced, so this could
reflect a training effect instead of an effect of contrast.

Main experiment
In the main experiment, participants were instructed to fixate their
eyes on the red fixation cross and saccade over the central illu-
sion when the cross changed color, whilst never to rest their eyes
directly at the illusion. At the same time, participants detected
targets on the apparent motion trace and responded via a button
press. Three subjects with frequent saccades to the center of the
screen were excluded from the analysis. The experiment was bro-
ken up into four runs of 10 min and lasted in total about 1.5 h
including pre-test, practice trials, and breaks.

EXPERIMENTAL DESIGN
Two versions of the experiment were run. In version A we antici-
pated that subjects would rhythmically saccade from left to right
without much saccade latency after cue, similarly to Szinte and
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FIGURE 2 | Results of the pre-test. Here, subjects performed the task
without saccading, with a fixation cross at the center and the apparent
motion display at an eccentricity of 7˚ to the right. Contrast between
background and stimuli was varied in five steps to determine the optimal
stimulus contrast for each subject individually. Replicating previous results
(Schwiedrzik et al., 2007), mean detection rates were higher for in-time
targets than for out-of-time targets (p < 0.001). Error bars indicate 1 SEM.

Cavanagh (2011). Thus, we presented the targets mainly in the
cycle before and after the fixation cross color change. However,
after initial data analysis we realized that the timing of the cross
color change was comparably slow and that subjects in fact showed
a significant saccade latency (about 300 ms, see Results below).
Therefore, we took this delay in saccading into account in ver-
sion B of the experiment and presented the targets between 346
and 1303 ms after the saccade cue. We pooled the data from both
versions of the experiment in the final data analysis to achieve
maximum data coverage across all time windows.

Across all time windows, a total of 1300 trials were presented.
To increase statistical power across all time windows, 40% of tri-
als contained in-time targets, 40% contained out-of-time targets,
and 20% contained no target. Note that our critical measure was
not overall detection rate, but the difference between in-time and
out-of-time target detection. Target presence, target timing (in-
time or out-of-time), target position along the apparent motion
trace, and target presentation time window were randomized and
counter-balanced.

ANALYSIS
Only trials with large horizontal saccades occurring within 500 ms
after saccade cue were included. From all trials containing a target,
detection rates were derived as the proportion of trials where a
button press occurred between 150 and 1200 ms after target onset.
Trials were sorted with respect to target time distance from indi-
vidual saccade offset (for each trial and each subject). Note that as
we were interested in the re-occurrence of a predictive effect after
saccade, saccade offset was our critical point of reference rather
than saccade onset as used in several other studies (e.g., Peterburs
et al., 2011).

Detection rates for in-time and out-of-time targets were binned
into 50 and 100 ms time windows (or bigger, see Figure 3A) and
averaged, first within subjects, then across subjects. Data were
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only included in a bin if more than three trials per subject and
more than three subjects contributed to that bin (outlier reduc-
tion). Relative differences in detection rates were computed on

a single subject level as detection rate [in-time] – detection rate
[out-of-time]/(detection rate [in-time] + detection rate [out-of-
time]).
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FIGURE 3 | Results of the main experiment. (A) Diagram of the time
windows of interest. Detection rates were analyzed for target occurrence
relative to subjects’ individual saccade offset. (B) Mean detection rates for
predictable in-time and unpredictable out-of-time targets for the data
averaged across the four large time windows of interest. Error bars indicate 1
SEM. (C) Mean detection rates averaged across bins of 100 ms from 600 ms

before and 200 ms after saccade offset (zoom). Note that bins always included
data centered around the time point labeled on the x -axis. For example, the
data point at 50 contains detection rates for targets occurring from 0 (saccade
offset) to 100 ms after saccade offset. (D) Detection rates averaged across
bins of 50 ms (further zoom) from 150 ms before to 200 ms after saccade
offset. Dashed lines indicate data ±1 SEM, stars indicate p < 0.05.

Note that our experimental design implied that we could not
compute d′. Subjects only responded to the presence of a target
but not its absence due to the fact that apparent motion stimu-
lation was on-going and the onset and offset of trials were not
noticeable. That is, while we could compute hits, misses, and false
alarms, correct rejections are not captured with this experimental
design.

RESULTS
Mean latency between saccade cue and saccade onset was 307.9 ms
(SEM 7.3), mean saccade duration was 89.3 ms (SEM 6.7).

Detection rates for in-time and out-of-time targets, pooled
within large time windows according to mean saccade latency
and mean saccade duration, are plotted in Figure 3B. As
expected, in-time targets were detected more accurately than out-
of-time targets [repeated-measures ANOVA; F(1, 26) = 110.26,
p < 0.001]. Detection rates decreased after saccade cue and dur-
ing saccades, leading to a main effect of time window [F(3,
78) = 25.13, p < 0.001]. This effect interacted with target tim-
ing [F(3, 78) = 2.77, p = 0.047]. Post hoc comparisons (paired-
sample t -tests) for individual time windows revealed a signif-
icant detectability difference between in-time and out-of-time
targets before the saccade cue and after saccade offset (p < 0.05,
Bonferroni-corrected). At the uncorrected level, the detectability
difference was also significant in the time window between saccade
cue and saccade onset (p = 0.027), and marginally significant dur-
ing saccade (p = 0.060). Note that the number of trials, and thus
statistical power varied across time windows due to their variable

length. The average percentage of trials contributing to the indi-
vidual time windows were as follows: 68% (before and between
saccades), 15% (after saccade cue), 5% (during saccade), and 12%
(0–200 ms after saccade offset).

Detection rates were binned into 100 ms (Figure 3C) and
50 ms time windows (Figure 3D). Note that bins always included
data centered around a specific time point. For example, in the
data binned by 100 ms, the data point at 50 pooled over tar-
gets occurring from 0 (saccade offset) to 100 ms. Paired-sample
t -tests (uncorrected) revealed that the detection advantage of
in-time targets disappeared within 100–200 ms after saccade cue
(Figure 3C) and reappeared as early as 50–100 ms after saccade
offset (Figure 3D).

In Figure 4, the relative difference between in-time and out-
of-time target detection rate is plotted for single subjects, for the
data binned by 100 ms (Figure 4A) and for the data binned by
50 ms (Figure 4B). Note that some data points overlap and that
the number of data entries varies across bins due to differences in
individual saccade latencies, differential target presentation in rela-
tion to saccade offset, and outlier reduction (see Analysis above).
The plots show a positive difference in detection rates (i.e., better
detection for in-time than for out-of-time targets) in the majority
of subjects in those time window in which we found a significant
effect (cf. Figures 3C,D).

A control analysis showed that the detectability difference
between in-time and out-of-time targets did not change over the
four runs of the experiment [repeated-measures ANOVA; F(3,
27) = 2.916, p > 0.05]. Therefore, targets became neither more
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FIGURE 4 | Relative difference in detection rates between predictable

in-time and unpredictable out-of-time targets for single subjects. Data
were binned by 100 ms (A) and by 50 ms (B) across the same time
windows as in Figures 3C,D. Data points above the midline at 0 depict a
positive difference, i.e., in-time targets were better detected than

out-of-time targets in that particular subject. Vice versa for negative
differences. Note that data points for several subjects may overlap and
that the number of data entries varied across individual bins (see Results).
As in Figures 3C,D, bins always included data centered around the time
point labeled on the x -axis.
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nor less predictable within the experimental session, precluding
a potential confound of training as raised e.g., by de-Wit et al.
(2010).

DISCUSSION
Subjects were required to detect targets presented along the appar-
ent motion trace whilst saccading across the illusion. As a main
effect, targets that appeared in-time with the motion illusion were
detected more frequently than those appearing out-of-time, repli-
cating previous results (Schwiedrzik et al., 2007; Hidaka et al.,
2011). The increased detection rate of in-time targets is an indica-
tion that the visual system generates an illusion-related prediction
along the apparent motion path. Predicted in-time targets are
processed more efficiently, detected better, and cause less fMRI
brain activity in V1 (Alink et al., 2010). Previous results indicate
that predictions of moving tokens are generated with the contri-
bution of hMT/V5+ and are fed back to retinotopic visual areas
(Sterzer et al., 2006; Wibral et al., 2009). Simulations of area V1
show that combined cortical feedback and lateral interaction can
lead to precise spatial predictions (Erlhagen, 2003).

The main aim of our experiment was to determine the length
of time taken by the predictive signal on the apparent motion trace
to transfer across saccades and to re-occur at the new retinotopic
position. This effect should occur swiftly (i.e., between 20 and
70 ms) after saccade offset to facilitate visual processing (Belle-
baum and Daum, 2006; Peterburs et al., 2011), given that the next
saccade is often initiated already after 250 ms in natural viewing
conditions. Our results show that the predictive detection advan-
tage of in-time targets is present as early as 50–100 ms after saccade
offset. The transfer of the predictive signal occurs timely for visual
processing in the next fixation period. This finding suggests that
a spatio-temporally precise internal model is transferred across
saccades and updated within 50–100 ms. This fast time window
relates to the earliest time window in which stable vision is possi-
ble after saccades due to saccadic suppression. It is also too early
to allow for an entirely new rebuilt apparent motion illusion in
the new hemifield and subsequent post-diction to take place. For
rebuilt and post-diction, at least half a cycle of apparent motion
(133 ms) would need to be presented in the new hemifield (see
discussion below).

Interestingly, the same time window of 50 ms and above was
found to be critical for the release of saccadic suppression (Deubel
et al., 1996). Subjects are unable to detect relatively large displace-
ments of saccadic target stimuli if they occur during saccade or up
to 50 ms after saccade offset. Our data is in accordance with this
finding: Projecting the predicted target position to a new post-
saccadic retinotopic position takes about 50–100 ms. Before this
time period, spatio-temporal target displacements will go largely
unnoticed because the precise location is not yet transferred.
Indeed, Deubel et al. (1996) found that when the target stimulus
remains off (“blanked”) for 50 ms or longer after saccade offset,
subjects recover the ability to detect target displacements. Further-
more, the earliest ERP time component related to trans-saccadic
updating and integrating of visual information starts at 50 ms after
saccade offset (Bellebaum and Daum, 2006). The authors relate
the parietal ERP component starting at 50 ms to the updating
process that matches the efference copy of the motor command

to the stimulus location. It is plausible to assume that this reflects
the process that transfers the prediction to the new retinotopic
position at which it will facilitate processing of in-time targets.

Our data also show that the overall detection of targets is
reduced during saccade and until 50 ms after saccade offset. In
theory, we cannot exclude the possibility of an in-time prediction
effect during these time windows, but the low detection rates do
not allow for sufficient statistical power (see Results).

It seems that the visual prediction system has learned its delay
times and found ways to compensate the lost 50 ms by correcting
its forward prediction. Hunt and Cavanagh (2009) showed that
subjects who follow the arms of a fast moving clock with peripheral
vision will predate the fixation of the clock by 40–60 ms – a process
that might be thought of as a temporal filling-in process to avoid
discontinuities introduced by each saccadic eye-movement and its
saccadic suppression. Other motion illusions are related to this
temporal filling-in: movement into the blind spot is extrapolated
in its expected coordinates even when no retinal signal is received
(Maus and Nijhawan, 2008). A common demonstration of for-
ward adjustment of predictions is the flash lag illusion (Nijhawan,
2008). It seems that we act on predictions corrected forward in-
time unless there is a strong signal overwriting this prediction.
Weak error signals as our out-of time stimulus are likely to remain
unnoticed like a small signal in a noisy pattern. Strong unexpected
transients, however, allow for an immediate update (Maus et al.,
2010).

To perceive apparent motion during saccadic eye-movements,
the visual system has to keep track of the spatiotopic position of
the moving illusion and correct for eye-movement induced shifts
at retinotopic positions. Szinte and Cavanagh (2011) measured
the precision with which spatiotopic coordinates of the appar-
ent motion illusion are updated while saccadic eye-movements
are performed. If the remapping compensation is perfect, ver-
tical apparent motion should appear precisely vertical even if a
horizontal saccade is performed across the illusion. However, the
findings of Szinte and Cavanagh (2011) suggest differently: the
trans-saccadic remapping of the apparent motion end points leads
to an overcompensation of the eye-movement amplitude by 5%,
and the illusion appears tilted by up to 9˚. Interestingly, the com-
pensation was tested at nine different positions and it was found to
vary between positions individually, suggesting that the compen-
sation does not follow an overall global correction but depends on
locally acquired experience.

Our experiment does not inform us about the spatial precision
with which a signal is transferred (apart from the fact that the
transfer is precise enough for the in-time/out-of-time difference
to take effect). Also, it should be noted that the horizontal saccadic
rhythm was much slower in our paradigm compared to Szinte
and Cavanagh (2011) and that the illusion did not appear tilted,
suggesting that no overcompensation occurred.

The decrease in mean detection rate seen in Figure 3C prior and
during saccade could be explained by trans-saccadic suppression
and peri-saccadic mislocalization. During trans-saccadic suppres-
sion there is a general reduction in visual sensitivity which can
occur even prior to saccade onset (Vallines and Greenlee, 2006).
Peri-mislocalization could also account for a decrease in target
detection as objects which are flashed close to saccade onset are
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largely mislocalized on the retina from their actual physical posi-
tion (Ostendorf et al., 2007). This mislocalization may occur due
to spatio-temporal mismatch between the saccade and extraretinal
eye position information (Ross et al., 2001). Both these models
of vision breakdown over saccades could predict a decrease in
detection rate of both in-time and out-of-time targets within the
illusion.

Szinte and Cavanagh (2011) findings as well as evidence by
Rolfs et al. (2011) suggest that there is a close interplay between the
remapped visual information and attention. Our observed predic-
tion effect could be explained by smoothly moving visuo-spatial
attention, similar to what Shioiri et al. (2002) demonstrated behav-
iorally. That is, subjects’ attention may have been trained on the
dynamics of the illusory motion as they were instructed to detect
targets along the apparent motion trace. As attention is transferred
across saccades as much as visual information (Rolfs et al., 2011),
this may lead to a better detection rate of in-time targets as they
appear in the focus of attention. Our results are consistent with
dynamical concepts of a fast moving attentional searchlight: such
a moving searchlight predicts the location where a stimulus is
expected – which is closely related to a moving token or a motion
prediction.

However, our results cannot be explained with conventional
notions of a static visuo-spatial attention searchlight, as it cannot
account for in-time/out-of-time differences. Even when visuo-
spatial attention is focused on a center task, the apparent motion
illusion in the periphery remains strong (Kohler et al., 2008) and
brain activity along the apparent motion trace is increased (Muckli
et al., 2005). Gilbert and Sigman (2007) highlight the wealth of
top-down influences and note that “the notion of attention itself
may be inadequate as a descriptor of the full range of top-down
influences that are exerted.”

We propose that the predictive signal is transferred from
one hemifield to the next. An alternative would be to assume
that the signal could be rebuilt anew or that the presence
of an in-time target was inferred by post-diction. Our data
show that rebuilding of a detectability advantage of in-time tar-
gets must occur until 50–100 ms after saccade offset. For post-
diction to be effective in the new hemifield, both the upper
and lower apparent motion stimuli must have been presented
and perceived for the in-time/out-of-time detectability differ-
ence to take effect. Given that half an apparent motion cycle
lasted 133 ms, it is unlikely that an entire rebuilt of the predic-
tive signal could have occurred within 50–100 ms after saccade
offset.

It is worth mentioning that our results are not in contrast to
Yantis and Nakama (1998). Yantis and Nakama (1998) showed
that target discrimination degrades if targets are presented on the
apparent motion trace, but they did not investigate in-time versus
out-of-time differences of target stimuli on the apparent motion

path. In line with Yantis and Nakama (1998), also our apparent
motion illusion induces motion masking and overall reduces the
detectability of both in-time and out-of-time stimuli (Schwiedrzik
et al., 2007). When apparent motion is not induced, both types of
stimuli are detected equally well. In the presence of the illusion,
in-time stimuli are less masked by apparent motion than out-of-
time-stimuli. Moreover, Yantis showed that high precision object
discrimination is reduced on the apparent motion trace, whereas
our paradigm just required the detection of a simple flash without
the need of high spatial frequency analysis. High precision object
discrimination may be incompatible with the apparent motion
illusion as is exemplified by interference of inconsistent stimulus
features on the apparent motion path with motion masking: for
example, orthogonally oriented Gabor patches along the apparent
motion trace slow down the perceived speed of the motion illusion
(Georges et al., 2002).

Motion induced blindness provides another example in which
static stimuli not fitting to the motion percept are overwritten
by a top-down motion prediction even though the non-perceived
stimulus induced a stronger V1 signal (Schölvinck and Rees, 2010).
One of the most convincing demonstrations of predictive coding
overwriting the physical stimulus is given by Hidaka et al. (2009).
Three blinking bars triggered a strong apparent motion prime that
was followed by a test stimulus of two blinking bars that could
either consistently continue the apparent motion direction or that
blinked in opposite sequence. In both cases, subjects see consistent
apparent motion, indicating that motion prediction overwrites the
non-fitting opponent motion. Both the out-of-time stimulus of
our study and the apparent motion stimulation in the opponent
direction of Hidaka et al.’s (2009) study are less detectable as they
are overwritten by top-down predictions.

CONCLUSION
Our findings are an additional piece of evidence for the theory of a
predictive mechanism in the visual system. Predictive signals trans-
fer rapidly across hemifields. At around 50–100 ms after saccade
offset, the apparent motion illusion, including its predicted path, is
remapped to the corresponding retinotopic position in the other
hemifield. The time interval corresponds well to other forms of
inter-hemifield update. Future brain imaging experiments could
then test whether the earlier observed V1 effect does also cross over
to the contralateral hemisphere in the same critical time window.

Consistent with previous research it seems that predictive codes
help to maintain information across saccades. Our results suggest
that the visual brain does not passively wait to be stimulated but
rather constantly forms predictions to allow for consistency across
saccades and over space and time.
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