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Patients with malignant peripheral nerve sheath tumor (MPNST), a

rare soft tissue cancer associated with loss of the tumor suppressor

neurofibromin (NF1), have poor prognosis and typically respond

poorly to adjuvant therapy. We evaluated the effect of 299 clinical and

investigational compounds on seven MPNST cell lines, two primary

cultures of human Schwann cells, and five normal bone marrow aspi-

rates, to identify potent drugs for MPNST treatment with few side

effects. Top hits included Polo-like kinase 1 (PLK1) inhibitors (volaser-

tib and BI2536) and the fluoronucleoside gemcitabine, which were vali-

dated in orthogonal assays measuring viability, cytotoxicity, and

apoptosis. DNA copy number, gene expression, and protein expression

were determined for the cell lines to assess pharmacogenomic relation-

ships. MPNST cells were more sensitive to BI2536 and gemcitabine

compared to a reference set of 94 cancer cell lines. PLK1, RRM1, and

RRM2 mRNA levels were increased in MPNST compared to benign

neurofibroma tissue, and the protein level of PLK1 was increased in

the MPNST cell lines compared to normal Schwann cells, indicating an

increased dependence on these drug targets in malignant cells. Further-

more, we observed an association between increased mRNA expression

of PLK1, RRM1, and RRM2 in patient samples and worse disease
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outcome, suggesting a selective benefit from inhibition of these genes in

the most aggressive tumors.

1. Introduction

Malignant peripheral nerve sheath tumors (MPNST)

are rare and aggressive soft tissue cancers that arise

from cells of neuroectodermal origin in the peripheral

nervous system. MPNST often strikes young adults

and adolescents, and nearly half of all cases are associ-

ated with the genetic syndrome neurofibromatosis type

1 (NF1, MIM 162200). The median age for the NF1-

associated cases is around 25 years, while the sporadic

cases have a median in the forties (Kolberg et al.,

2013). The 5-year overall survival rate for MPNST is

less than 50%, and in recent years, the prognosis has

been similar for NF1 and non-NF1 patients (Kolberg

et al., 2013). There are currently no consensus guideli-

nes for adjuvant treatment with curative intent for

MPNST (Bradford and Kim, 2015), and there is a crit-

ical need for new treatment options.

Management of MPNST is currently based on gen-

eral soft tissue sarcoma guidelines and involves surgery

and occasionally chemo- and radiotherapy (ESMO,

2014). Some relapse control has been reported follow-

ing radiotherapy (Yang et al., 1998); however, radia-

tion itself can be a significant risk factor, especially for

patients with NF1 (Sharif et al., 2006). The rareness of

MPNST and other soft tissue cancers precludes robust

clinical trials, and the trials will often include several

sarcoma entities with different genetic composition,

tumor biology, and hence different drug response.

There are 62 interventional trials listed in the US-

based National Institutes of Health (NIH) database

that are eligible for patients with MPNST, and 16 of

these are currently open or are recruiting patients

(Table S1). However, most trials include several differ-

ent sarcomas, often leaving the numbers of MPNSTs

too low, lacking statistical power to conclusively docu-

ment any benefit for these patients. Only a handful of

trials have focused specifically on MPNST with focus

on compounds that target the biological processes

involved in MPNST development (Table 1). So far,

however, none of these trials have compelled changes

in the management of this malignancy. Notably, the

SARC006 trial, which tested the effect of the TOP2A

inhibitors doxorubicin and etoposide in combination

with ifosfamide, reported an overall response rate of

33% in the sporadic and 17% in NF1-associated

MPNST, respectively, although both were below the

set target of 40% (Widemann et al., 2013). The

TOP2A gene has previously been identified as ampli-

fied and upregulated in a large subset of MPNST

patient samples (Skotheim et al., 2003), which could

explain the positive effect of TOP2A inhibition in

these patients.

Malignant peripheral nerve sheath tumors are highly

complex malignancies with multiple copy number

alterations (Brekke et al., 2010; Lothe et al., 1996;

Mertens et al., 2000) including alterations in several

clinically relevant target genes at chromosome arm 17q

(Kolberg et al., 2015; Skotheim et al., 2003; Storlazzi

et al., 2006). Inactivating mutations in the NF1 tumor

suppressor gene are found in both NF1-associated and

sporadic MPNST (Bottillo et al., 2009; Upadhyaya

et al., 2008). Loss of NF1 activity leads to activation

of RAS and consequently contributes to the PI3K/

AKT/mTOR and RAF/MEK/ERK signaling in

MPNST (�Agesen et al., 2005; Berner et al., 1999;

Brems et al., 2009; Danielsen et al., 2015; Endo et al.,

2013; Nielsen et al., 1999). Components of this net-

work have been investigated as potential therapeutic

targets (Fig. S1). In preclinical MPNST models, some

drugs targeting these pathways have shown encourag-

ing results, including the mTOR inhibitors everolimus

and AZD8055 (De Raedt et al., 2011; Endo et al.,

2013; Varin et al., 2016), and the multikinase Raf inhi-

bitor sorafenib (Ambrosini et al., 2008; Castellsague

et al., 2015), as well as a selection of other drugs that

inhibit pathways associated with NF1, such as gemc-

itabine (Schoeler et al., 2007), erlotinib (Mahller et al.,

2007), imatinib (Aoki et al., 2007; Patwardhan et al.,

2014), pexidartinib (Patwardhan et al., 2014), and

sunitinib (Zietsch et al., 2010). However, clinical trials

have not confirmed any therapeutic benefit for the lim-

ited number of drug candidates identified by a knowl-

edge-based approach (Table 1). Of note, a recent study

suggests the effect of MEK inhibitor selumetinib

against inoperable plexiform neurofibromas in children

with NF1 (Dombi et al., 2016).

As a complement to the knowledge-based drug dis-

covery approach, we here present a comprehensive

high-throughput approach to identify new therapeutic

opportunities for MPNST among a large panel of clin-

ical and investigational drugs. We identify and rank

the compounds with the highest effect and specificity

for MPNST cells by pharmacological analysis of seven
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MPNST cell lines using two normal Schwann cell cul-

tures and bone marrow aspirates from healthy donors

as controls. Candidate drugs showing the highest selec-

tivity were subjected to validation in independent

experiments.

2. Material and Methods

2.1. Cell lines, primary cultures, and patient

material

The original drug testing assay included two primary

cultures of human Schwann cells (HSC) termed HSC1

and HSC2 that were isolated from human spinal

nerves (ScienCell, Carlsbad, CA, USA) and four

MPNST cell lines, STS26T (Dahlberg et al., 1993) and

ST8814 (Reynolds et al., 1992) (kindly provided by

Nancy Ratner, Cincinnati Children’s Hospital Medical

Center, Cincinnati, OH, USA), and S462 (Frahm

et al., 2004) and S1507-2 (Spyra et al., 2011) (kindly

provided by Lan Kluwe, University Medical Center

Hamburg-Eppendorf, Germany). Later, the three

MPNST cell lines HS-PSS, HS-Sch-2 (Sonobe et al.,

2000), and YST-1 (Nagashima et al., 1990) (Riken

BioResource Center, Ibaraki, Japan) were assayed with

an extended and updated drug library (see below).

Table 1. Clinical trials with main focus on MPNSTa.

Trial ID Intervention Drug class Phase Patient enrollment Status and results

NCT01661283

(SARC016)

Bevacizumab/everolimus Cell surface receptor

antibody

and mTOR inhibitor

II 17 NF1-associated

MPNST, 8 sporadic

MPNST

Active, not recruiting

Clinical benefit rate (CBR):

12% (3 of 25)

(Widemann et al., 2016)

NCT00464620

(SARC009)

Dasatinib Kinase inhibitor (KIT Src) II 14 MPNST Active, not recruiting

All progressed within

4 months (Schuetze et al., 2016)

NCT00304083

(SARC006)

Doxorubicin/ifosfamide

followed by

etoposide/ifosfamide

Conventional

chemotherapy

II 33 NF1-associated

MPNST, 15 sporadic

MPNST

Completed

Overall response rate 17% in

NF1, 33% in sporadic

(Widemann et al., 2013)

NCT00068367 Erlotinib Kinase inhibitor II 24 MPNST; 20 patients

were evaluable for

response.

Completed

One stable disease; 19 no

response. Median

progression-free survival:

2 months. Median overall

survival: 4 months

(Albritton et al., 2006)

NCT02008877

(SARC023)

Ganetespib, sirolimus HSP inhibitor and

mTOR inhibitor

I/II 38 MPNST Active, not recruiting

NCT01418001 Pazopanib in combination

with gemcitabine and

docetaxel

Kinase inhibitor and

conventional

chemotherapy

I/II 5 sarcoma Terminated

NCT00427583 Imatinib mesylate Kinase inhibitor II/III 7 MPNST Terminated

All were taken off study;

5 due to progressive disease,

one due to toxicity, and one

withdrawal (Chugh et al., 2009)

NCT02691026 Pembrolizumab Cell surface receptor

antibody

II 18 MPNST Recruiting

NCT02584647 Pexidartinib (PLX3397),

sirolimus

Kinase inhibitor, mTOR

inhibitor

I/II 49 MPNST Recruiting

NCT00837148 Sorafenib, dacarbazine Kinase inhibitors (BRAF

and VEGFR) and

conventional

chemotherapy

II 12 MPNST evaluated Completed.

All progressed within 12 months.

Mean PFS: 1.7 months.

Two patients with MPNST

had regression or cystification

of metastatic disease without a

RECIST response

(Maki et al., 2009)

aData from clinicaltrials.gov.
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STS26T and YST1 were derived from non-NF1

patients and have been reported to express wild-type

NF1 (Miller et al., 2006; Nagashima et al., 1990), and

the remaining cell lines are derived from NF1 patients

and do not express NF1.

All cancer cell lines were maintained in DMEM-F12

medium supplemented with 10% fetal bovine serum,

2 mM L-glutamine, 100 units�mL�1 penicillin, and

100 lg�mL�1 streptomycin (Gibco, Thermo Fisher Sci-

entific, Waltham, MA, USA). The HSC were main-

tained in Schwann cell medium (SCM, Cat. no. 1701,

ScienCell) supplemented with Schwann cell growth

supplement (SCGS, Cat. no. 1752, ScienCell) accord-

ing to the suppliers’ recommendations.

The identity of the cell lines was validated by geno-

typing of the isolated DNA (Table S2, Appendix S1)

according to the protocol of the AmpFLSTR Identifiler

PCR Amplification Kit (Life Technologies by Thermo

Fisher Scientific). For the cell lines YST-1, HS-PSS, HS-

Sch-2, identical STR profiles were provided by Riken

(also available at www.expasy.org/cellosaurus), and for

STS26T and ST8814, identical STR profiles were

obtained by N. Ratner (personal communication). All

the cell lines were tested and found negative for myco-

plasma contamination using the MycoAlert detection

kit (Lonza Ltd, Basel, Switzerland).

Fresh-frozen tumor material was available from 30

MPNSTs (17 NF1-associated and 13 non-NF1 cases)

and eight benign neurofibromas (seven dermal and one

plexiform) from Oslo University Hospital, Oslo, Nor-

way, and Sk�ane University Hospital, Lund Sweden, as

previously described (Kolberg et al., 2015). Briefly,

DNA and RNA were extracted from tissue sections

consisting of >90% representative tumor tissue as iden-

tified by a reference sarcoma pathologist. Informed

consent was obtained from all living patients, and the

study was approved by the South-Eastern Norway

Regional Health Authority and the Regional Ethics

Committee at Lund University according to national

legislation. Bone marrow aspirates were collected from

five healthy donors after informed consent using

approved study protocols (Helsinki Ethical Committee

239/13/03/00/2010 and 303/13/03/01/2011).

2.2. Drug sensitivity and resistance testing and

data analysis

Drug sensitivity and resistance testing (DSRT) was

performed as described earlier (Pemovska et al., 2013)

on all seven MPNST cell lines and two normal HSC

cultures. The initial drug library contained 309 com-

pounds, while three MPNST cell lines were screened

with 527 compounds (303 overlapping). Reference

DSRT data were also available for 299 overlapping

drugs for five primary cultures of adult human bone

marrow cells derived from healthy donors, and from

a reference collection of cell lines from different can-

cer types, including colorectal (n = 36), ovarian

(n = 30), and acute myeloid leukemia (n = 28)

(Mpindi et al., 2016). Briefly, the compounds were

dissolved in 100% dimethyl sulfoxide (DMSO) or

water (Table S3) and dispensed on tissue culture-

treated 384-well plates (Cat. No. 3707, Corning,

Tewksbury, MA, USA) using an acoustic liquid han-

dling instrument, Echo 550 (Labcyte Inc., Sunnyvale,

CA, USA). The compounds were plated in five con-

centrations using 10-fold dilutions covering a 10 000-

fold concentration range (e.g., 1–10 000 nmol�L�1).

The preprinted plates were kept in pressurized Stor-

agePods (Roylan Developments Ltd., Fetcham, UK)

under inert nitrogen gas until needed. Five microlitre

of CellTox-Green (CTX) Cytotoxicity Assay Reagent

(Promega, Fitchburg, WI, USA), 1 : 200 dilution in

growth media, was added to each 384-well plate prior

to seeding of cells to achieve a final concentration of

1 : 1000. The CTX assay is based on quantification of

fluorescence-labeled DNA released from disrupted

cells. Plates were subsequently centrifuged briefly and

put on an orbital shaker for 10 min. Twenty micro-

liters of single-cell suspension (750–1000 cells) was

transferred to each well using a Multidrop Combi

Reagent Dispenser (Thermo Fisher Scientific). Prolif-

eration rates and growth patterns of the cell lines

were evaluated prior to the experiments in order to

determine the optimal cell seeding density to assure

logarithmic growth throughout the 72-h incubation

period. The plates were incubated in a humidified

environment at 37 °C and 5% CO2, and after 72 h,

cell cytotoxicity and cell viability (assessed using Cell-

Titer-Glo (CTG) Luminescent Cell Viability Assay,

Promega) were measured according to the manufac-

turer’s instructions with a PHERAstar FS microplate

reader (BMG Labtech GmbH, Ortenberg, Germany).

The CTG assay generates luminescence proportional

to the amount of ATP that is extracted from living

cells in the culture. The data were normalized to neg-

ative control (0.1% DMSO) and positive control wells

(containing 100 lM benzethonium chloride, effectively

killing all cells). Quality control (QC) metrics, Z0, and
strictly standardized mean difference (SSMD, i.e., the

effect size) for each plate were calculated as described

(Mpindi et al., 2015; Yadav et al., 2014). Drug sensi-

tivity scores (DSS) were calculated for both the CTG

assay (DSSCTG) and the CTX assay (DSSCTX) by fit-

ting of the dose–response curves on the basis of a

four-parameter logistic fit function defined by the top
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and bottom asymptote, the slope, and the inflection

point (IC50). In the curve fitting, the bottom asymp-

tote of the curve was fixed to 0% inhibition (=100%
viability), whereas the top asymptote was allowed to

float above 10% inhibition (i.e., drugs causing < 10%

inhibition were considered inactive, DSS�0), and the

slope was allowed to float between 0 and 2.5 (Mpindi

et al., 2015; Yadav et al., 2014). For validation, the

orthogonal ApoToxGlo Triplex assay (Promega) was

performed according to the manufacturer’s instruc-

tions, in parallel with the CTG assay (using 15 dilu-

tions from 1 000 nM to 0.0625 nM for each drug). The

Triplex assay allows for luminescence measurements

of caspase 3/7 activity as a measure of apoptosis

levels in addition to viability and cytotoxicity in

response to drug treatment. Cells treated with 0.1%

DMSO were used as negative controls, 10 lM stau-

rosporin was used as positive control for apoptosis,

while 100 lM benzethonium chloride was used as pos-

itive control for viability and cytotoxicity.

The average quality control value (Z0) for all cell lines
in the viability assay was 0.72 � 0.04 and average

SSMD was 14.1 � 2.4 for each drug plate (Table S4A).

The two cell lines S462 and S1507-2 were re-tested for

technical validation demonstrating high reproducibility

of the CTG data [Pearson’s correlation r = 0.990 and

0.975, respectively (Fig. S2A and S2B)]. For the two

independent normal HSC cultures, the Pearson’s corre-

lation was r = 0.982 (Fig. S2C). Overall, there was also

a strong correlation in drug response patterns between

the MPNST cell lines and the HSC primary cultures

(Pearson’s correlation r = 0.924) and to a lesser extent

between MPNST and bone marrow (Pearson’s correla-

tion r = 0.752) (Fig. S2D). For the cytotoxicity assay,

three cell lines (S462, YST-1, and HS-Sch-2) failed the

quality control. The remaining cell lines had an average

Z0 of 0.58 � 0.13 and an average SSMD of �10.5 � 3.0

(Table S4B).

2.3. Reverse-phase protein array analyses

Expression of 297 cancer-related proteins and phos-

phoproteins was evaluated by reverse-phase protein

array analyses (RPPA) at the MD Anderson RPPA

core facility (Houston, TX, USA) in the four MPNST

cell lines, S1507-2, S462, ST8814, and STS26T, and

normal HSC1 according to the published protocol

(Tibes et al., 2006). Later, the MPNST cell lines YST-

1, HS-PSS, and HS-Sch-2, as well as a replicate of the

HSC1, were submitted to the same analysis using an

updated RPPA version including 306 antibodies, of

which 271 were overlapping with the initial 297 anti-

bodies.

2.4. Gene expression analysis

The genome-wide gene expression levels of the seven

MPNST cell lines, HS-PSS, HS-Sch-2, S1507-2, S462,

ST8814, STS26T, and YST-1, as well as the normal

HSC1, were assessed by synthesis of cDNA from iso-

lated RNA and subsequent hybridization to the Gene-

Chip Human Transcriptome Array 2.0 according to

the supplier’s protocol (Affymetrix, Thermo Fisher

Scientific Inc.) (see Appendix S1).

2.5. DNA copy number analyses

DNA from four MPNST cell lines, S1507-2, S462, ST8814,

and STS26T, were individually processed and hybridized

on Genome-Wide Human SNP Array 6.0 from Affymetrix

(Thermo Fisher Scientific Inc.) as described in the Affyme-

trix Cytogenetics Copy Number Assay User Guide (P/N

702607 Rev. 2) (see Appendix S1).

2.6. Mutation analyses

The genes TP53 (exon 2–11) and BRAF (exon 15) were

sequenced using DNA extracts of the four MPNST cell

lines S1507-2, S462, ST8814, and STS26T by Sanger

sequencing using in-laboratory-established protocols (Ahl-

quist et al., 2008; Berg et al., 2010) (see Appendix S1).

2.7. Statistical analyses

Association between gene expression and disease-speci-

fic survival was analyzed using Cox proportional haz-

ards regression modeling with Wald test to provide

univariate hazard ratios (HR) and confidence intervals

(CI) and visualized by Kaplan–Meier plots. Compar-

ison of gene expression differences between MPNST

cell lines and other cell lines, and between MPNST

patient samples and neurofibromas, was assessed by

two-tailed Student’s t-test for independent samples,

and correlations between drug screen data from

repeated or separate runs were assessed by Pearson’s

test. Spearman’s correlation was used to compare IC50

from different screening platforms to reduce influence

of outliers. All statistical analyses were performed

using the SPSS 21 software (IBM Corporation,

Armonk, NY, USA).

3. Results

3.1. Identification of MPNST-specific drugs

Four MPNST cell lines S1507-2, S462, ST8814, and

STS26T and two HSC primary cultures were subjected
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to high-throughput DSRT with 309 emerging and clin-

ical oncology compounds. Three additional MPNST

cell lines HS-PSS, HS-Sch-2, and YST-1 were screened

using an updated compound library of 527 compounds

(with 303 compounds overlapping between both

libraries). Data for 299 of these drugs were also avail-

able from normal bone marrow aspirates from healthy

donors. As drug sensitivity readout, we used two

chemically different assays measuring cell viability

(CTG; Fig. 1A; Table S5) and cytotoxicity (CTX;

Fig. S3, Table S6).

Twenty of the tested compounds are used in the

clinic to treat MPNST (ESMO, 2014), or have been

tested in recent clinical trials including patients with

MPNST (MPNST trials: Table 1; sarcoma trials:

Table S1). Twelve of these showed strong to moderate

response in MPNST cells (DSSCTG > 5) in our assay,

and they also showed differential response in MPNST

cells as compared to bone marrow cells (missing data

for ganetespib and carboplatin in bone marrow)

(Fig. 1B). Only three, docetaxel, vincristine, and

BI2536, showed selectively higher response in MPNST

cells as compared to HSC (Fig. 1B, Table S5). Strik-

ingly, both mTOR inhibitors temsirolimus and everoli-

mus appear to be more effective in normal HSC than

in MPNST cells, while sirolimus did not inhibit any of

the cells in our assay at the concentrations used.

To systematically identify the most potent drugs, the

DSSCTG values were filtered according to MPNST

specificity and off-target toxicity (Fig. 2). Of the 299

drugs tested in all cell types, including bone marrow,

111 had DSSCTG ≥ 10 in at least one MPNST cell line.

Eighty-one of these were well, or moderately, tolerated

in bone marrow cells (DSSCTG < 10 in bone marrow),

and of these, 49 drugs showed differential sensitivity in

MPNST cells with five or more DSSCTG units higher

in MPNST cells as compared to normal bone marrow.

Nine of these drugs also showed higher selectivity for

MPNST cells as compared to HSC (DDSSCTG(MPNST

vs. HSC) ≥ 5). These included the polo-like kinase 1

(PLK1) inhibitor BI2536, three tubulin/kinesin inhibi-

tors (vinorelbine, vincristine, and SB 743921), two

nucleoside analogs (floxuridine and thioguanine), two

folate analogs (methotrexate and pemetrexed), as well

as one proteasome-ubiquitin inhibitor [NEDD8-acti-

vating enzyme (NAE) inhibitor pevonedistat]. Four of

these nine compounds were selected for validation:

BI2536 was selected as a targeted kinase inhibitor,

floxuridine was selected due to its association with thy-

midine kinase 1 (TK1), previously identified as a prog-

nostic biomarker (Kolberg et al., 2015), while

methotrexate and pemetrexed were selected for their

differential response in MPNST cell lines. In addition,

a second PLK1 inhibitor, volasertib, and a second flu-

oronucleoside, gemcitabine, were included from the list

of 49 compounds with selectivity toward MPNST cells

over bone marrow cells. Three of these six compounds,

BI2536, volasertib, and gemcitabine, also showed a

strong cytotoxic effect (DSSCTX > 10) in the MPNST

cells, while methotrexate, pemetrexed, and floxuridine

showed limited or no cytotoxicity in the CTX assay

(Table S6).

The validation experiments for BI2536, volasertib,

gemcitabine, methotrexate, pemetrexed, and flox-

uridine were performed using orthogonal assays in

four MPNST cell lines (Fig. S4). A good correlation

between the initial screen and the validations was

observed for the two PLK1 inhibitors, BI2536 and

volasertib, as well as for gemcitabine (Fig. 3A). How-

ever, the high drug responses for methotrexate, peme-

trexed, and floxuridine observed in the initial DSRT

were not confirmed (Fig. S4). Interestingly, the

DSSCTG values of BI2536 and volasertib appear to be

slightly higher for the seven MPNST cell lines as com-

pared to the DSSCTG values of a panel of 94 cell lines

from colon and ovarian cancer and leukemia

(Fig. 3B), and significantly higher in MPNST cells for

gemcitabine. Notably, in the extended drug panel con-

sisting of 527 compounds tested on the three MPNST

cell lines HS-PSS, HS-Sch-2, and YST-1 only, another

PLK1 inhibitor, GSK-461364, showed even higher

DSSCTG values for all three cell lines than BI2536 and

volasertib (Table S5), while the PLK1 inhibitor TAK-

960 did not inhibit these cells. High DSS values were

also observed for the kinase inhibitor rigosertib, which

is an inhibitor of both PLK1 and PI3K.

3.2. Cellular responses on specific compounds

The apoptotic response to specific compounds was

measured using a photometric caspase 3/7 assay in the

four cell lines S1507-2, S462, ST8814, and STS26T

after 72 h of drug exposure normalized to cells treated

with staurosporin as positive control. We found that

both PLK1 inhibitors, BI2536 and volasertib, induced

apoptosis in the TP53-mutant cell lines S1507-2 and

S462, as well as in the TP53 wild-type cells ST8814,

while the STS26T cell line, which harbors a homozy-

gous 10-bp deletion in exon 4 of TP53, had the lowest

level of apoptosis induced by PLK1 inhibition

(Fig. 3C). In the presence of gemcitabine, all the four

cell lines showed a moderate apoptotic response at 15–
30% under our assay conditions (Fig. 3C).

One of the MPNST cell lines, STS26T, had an onco-

genic V600E mutation in BRAF (Fig. 3C), which is a

known marker for benefit of BRAF inhibition in
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melanoma. We only detected a weak sensitivity against

the five tested BRAF inhibitors, RAF265, vemu-

rafenib, regorafenib, dabrafenib, and sorafenib in

STS26T, with similar results found for the BRAF wild-

type cell lines. Actually, the normal HSCs were moder-

ately more sensitive than all the MPNST cell lines.

3.3. Gene and protein expression of drug targets

in MPNST

The expression of drug targets in the MPNST cell lines

and HSC was examined by exon-level gene expression

arrays and protein expression arrays in vitro. On the

gene expression level, there was little variation in the

expression of PLK1 between MPNST cell lines and

HSC (Fig. S5A). On the protein level, however, we

found that the expression of PLK1 was higher in the

MPNST cell lines as compared to normal HSC

(Fig. 4A). Among all the 271 tested proteins on the

RPPA array, PLK1 ranked among the top 10 with

respect to difference between MPNST and normal cells

(Table S7), suggesting that PLK1 is an accessible tar-

get in MPNST cells. The increased expression of

PLK1 in MPNST as compared to HSC was not asso-

ciated with gain of gene copy number, as assessed in

four MPNST cell lines. Actually, two of the cell lines,

S1507-2 and ST8814, had genomic losses from a chro-

mosomal region covering PLK1 (16p12.2), and for

ST8814, this may partly explain the relatively low

PLK1 protein level as compared to the other MPNST

cell lines (Fig. 4B).

Gene expression data were also available for 30

MPNST patient samples and eight benign neurofibro-

mas (Kolberg et al., 2015), and in these patient sam-

ples, the gene expression of PLK1 was significantly

upregulated in malignant tumors as compared to

benign tumors (P = 0.004, two-sided independent sam-

ples t-test with equal variance; Fig. 4C, left panel).

Among the 30 MPNST samples, a high level of PLK1

expression was associated with large tumor size and

high tumor grade (Fig. 4C, right panel). Patients with

higher PLK1 expression also showed worse outcome in

univariate analysis, although slightly above the 5%

significance level (Fig. 4D). The mechanism of action

is more complex for gemcitabine, but one of its direct

targets is RRM1 where gemcitabine acts as a suicide

substrate (Kolberg et al., 2004; Pereira et al., 2004).

We did not observe any significant difference in

RRM1 or its activator and binding partner RRM2 in

the MPNST cell lines as compared to HSC1

(Fig. S5A); however, these genes were both signifi-

cantly upregulated in MPNST patient tumor samples

as compared to benign neurofibromas (Fig. 4E). The

level of RRM2 was positively correlated with tumor

grade and size, and strongly associated with poor

patient outcome (Fig. 4E,F). For RRM1, there was
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also an association with poor outcome, although not

statistically significant in our patient sample series

(Fig. S5E). There was no significant difference in gene

expression of the three genes in patient samples from

non-NF1- and NF1-associated MPNSTs (Fig. S5B–
D).

4. Discussion

There is a need for improved treatment options

against MPNST, and to this end, we have systemati-

cally tested a comprehensive library of approved and

investigational compounds to identify drug candidates

that show differential inhibition of MPNST cell

growth compared to normal Schwann cells and bone

marrow cells. This approach was chosen to identify

drugs with low neuro- and myelotoxicity, which are

common dose-limiting side effects in the clinical set-

ting. Due to the young age at onset and long life

expectancy after curative treatment, avoiding systemic

side effects is of particular importance for patients

with MPNST. The selection thresholds for the identifi-

cation of potential new drug candidates were chosen

to ensure robust selection of candidate drugs based

on true biological differences between MPNST cell

lines, normal nerve sheath cells, and bone marrow

cells. Other dose-limiting side effects associated with

the drugs, such as gastrointestinal, dermatological,

and liver toxicities, were not tractable in our preclini-

cal models.

Recently, several landmark studies have demon-

strated how cell lines recapitulate the major molecular

phenotypes of cancer and have substantiated their

value as preclinical model systems to assess a variety

of pharmacogenomic relationships with potential ther-

apeutic impact (Barretina et al., 2012; Garnett et al.,

2012; Greshock et al., 2010; Haverty et al., 2016).

Unfortunately, no MPNST cell lines were included in

these studies, highlighting the need for a large system-

atic screen of available and emerging drugs in a panel

of MPNST cell lines to select promising candidates for

clinical testing. In our study, we present drug response

as DSS values which are derived from the area under

the dose–response curves for each drug, and this mea-

sure has recently been demonstrated to provide better

agreement when comparing results from different labo-

ratories than the inflection points of the dose–response
curve (IC50) (Mpindi et al., 2016).

The most promising drug candidates identified here

include the PLK1 inhibitors volasertib and BI2536,

and the fluoronucleoside gemcitabine. PLK1 plays an

important role in progression of the cell cycle and is

known to be overexpressed in many different cancer

types, which makes this gene an interesting therapeutic

target (Abbou et al., 2016; Gjertsen and Schoffski,

2015; Gutteridge et al., 2016). In patient biopsies of

MPNST, we and others have shown expression

changes in various cell cycle-associated proteins (�Age-

sen et al., 2005; Berner et al., 1999; Endo et al., 2011;

Kourea et al., 1999; Nielsen et al., 1999). Here, we

report that PLK1 is overexpressed in MPNST com-

pared to benign patient samples; in MPNST cell lines,

PLK1 protein expression is higher than in normal

HSC. However, the increased expression of PLK1 can-

not be explained by DNA copy number aberrations,

neither in patient samples (Brekke et al., 2010) nor in

the cell lines reported here. Furthermore, there was no

clear difference in mRNA levels between the mean of

the MPNST cells and HSC1 cells. This suggests that

the PLK1 is stabilized at the protein level, at least in

the MPNST cell lines. A possible mechanism for

PLK1 stabilization might be the deregulation of the

SCFbTrCP/proteasome degradation pathway, which has

recently been described as a degradation pathway for

PLK1 (Giraldez et al., 2017).

Ongoing efforts aim to develop PLK1 inhibitors

with improved pharmacokinetic and dynamic profiles,

and volasertib is currently the most clinically advanced

PLK1 inhibitor (Gjertsen and Schoffski, 2015). BI2536

was among the first PLK1 inhibitors to be tested in

the clinic, but the efficacy was limited, partly due to

the short terminal half-life. Nevertheless, the drug

seemed to be well tolerated (Schoffski et al., 2010).

The effect of the PLK1 inhibitor TAK-960 was

recently assessed in a panel of sarcoma cell lines,

including two MPNST cell lines (Nair and Schwartz,

2015). Nair and Schwartz found that all tested cell

lines were sensitive to TAK-960 at nanomolar concen-

trations. The authors also found that inhibition of

PLK1 in the TP53-mutant MPNST cell lines, both by

small compound inhibition and by siRNA-mediated

gene knockdown, led to the induction of polyploidy,

which was in contrast to TP53 wild-type or TP53�/�

sarcoma cell lines where PLK1 inhibition led to G2

arrest and apoptosis (Nair and Schwartz, 2015). In our

study, however, we also observed apoptosis in the two

TP53-mutant cell lines S1507-2 and S462, which carry

point mutations P152L and R110P, respectively

(Fig. 3C). Apparently, the TP53 status is not sufficient

to explain the relationship between PLK1 inhibition

and induction of apoptosis. The available data from

other cancer cell lines indicated that MPNST cells

have a uniquely high sensitivity toward gemcitabine

and PLK1 inhibitors (Fig. 3B), which suggests that the

biological processes inhibited by these drugs cannot be

easily compensated by other pathways in MPNST
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cells, at least not within the timeframe of the com-

pound screen. The high sensitivity toward PLK1 inhi-

bitors in MPNST as compared to other cancer cell

lines may at least in part be linked to the increased

RAS signaling due to the loss of tumor suppressor

NF1. This is supported by studies of colon cancer

models showing increased sensitivity toward PLK1

inhibition in KRAS-mutated cells (Luo et al., 2009;

Wang et al., 2016).

We have previously reported that enzymes in the

nucleotide metabolism, in particular thymidine meta-

bolism, are upregulated in MPNST (Kolberg et al.,

2015). Several drugs interfering with this pathway

were indicated as potential candidates in the drug

screen performed here, including the fluoronucleosides

gemcitabine and floxuridine, the thiopurines thiogua-

nine and mercaptopurine, as well as the folate antag-

onists methotrexate and pemetrexed. Of these, we

validated the effect of gemcitabine, an inhibitor of

RRM1 and de novo DNA synthesis (Kolberg et al.,

2004). Gemcitabine is already approved for many dif-

ferent cancer types, including sarcoma (Ducoulombier

et al., 2016). Resistance against gemcitabine may

partly be mediated by metabolic inactivation of gemc-

itabine catalyzed by cytidine deaminase (CDA) (Gil-

bert et al., 2006). However, we did not see any

differences in CDA expression levels in the MPNST

cells as compared to HSC.

The gene expression data from patients with

MPNST and benign tumors suggest that the drug tar-

gets PLK1 and RRM1, as well as the RRM1 activator

RRM2, are upregulated in malignant tumors and that

the level of aggressiveness, as indicated by patient sur-

vival, is directly associated with the gene expression

levels, especially for RRM2 (Fig. 4C–F). A continuous

supply of deoxyribonucleotides provided by the

RRM1/RRM2 complex is required in rapidly growing

and dividing cells, and PLK1 is needed to promote cell

cycle progression and to avoid apoptosis. Therefore,

inhibition of these factors might be especially effective

in the most aggressive tumors. In a clinical setting,

PLK1 and RRM2 expression may have both prognos-

tic and predictive values, as patients with high expres-

sion of these genes are most likely to experience

disease progression, and at the same time, those with

the highest levels are most likely to respond to PLK1

inhibitors and gemcitabine treatment. Interestingly, a

recent study in pancreatic cancer cells showed that

PLK1 inhibition enhances the effect of gemcitabine,

also in gemcitabine-resistant cells (Li et al., 2016). In

view of the current results, a therapeutic combination

strategy with gemcitabine and PLK1 inhibitors seems

rational also for patients with MPNST.

Novel drug targets for MPNST have also been sug-

gested by others based on preclinical findings (Semen-

ova et al., 2017; Teicher et al., 2015; Yamashita et al.,

2014). A recent drug screen of 63 sarcoma cell lines,

including the two MPNST cell lines MPNST and

ST8814, confirmed the heterogeneous responses among

different soft tissue cancers (Teicher et al., 2015).

None of the highlighted drugs in that study were

found to be targeting MPNST cells, with the exception

of a moderate inhibition by the PARP1 inhibitor tala-

zoparib, and weak effect of selected aurora kinases

(TAK-901, SCH-1473759, AS-703569, and ABT-348)

(Teicher et al., 2015). However, in the available raw

data, which were recorded after 96-h drug exposure,

both PLK1 inhibitors BI2536 and volasertib, as well

as gemcitabine, were among the top-ranked drugs with

respect to low IC50 values, which are in agreement

with our own data (Fig. S6).

In conclusion, we have identified two PLK1 inhibi-

tors, BI2536 and volasertib, and the DNA synthesis

inhibitor gemcitabine as highly effective against

MPNST cells, while being tolerable to normal HSC

cells and bone marrow cells, and we propose these

drugs as good candidates for future clinical testing,

alone or in combination. The expression levels of tar-

get genes for these treatments also carry prognostic

value, and we advocate for their potential as prognos-

tic and predictive factors for future clinical trials to be

further elucidated.
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