
1.  Introduction
Recent evidence has indicated an expanding set of health outcomes associated with traffic-related air pol-
lution (TRAP). For example, studies have demonstrated associations of TRAP with several important child-
hood health outcomes, including incident asthma, childhood overweight and obesity, autism spectrum dis-
order, and neurodevelopmental delays (Bowatte et al., 2015; Chiu et al., 2016; Gong et al., 2017; McConnell 
et al., 2016; Volk et al., 2013). Among adults, TRAP exposures have been associated with cardiovascular, 
pulmonary, metabolic, and neurodegenerative diseases (Alderete et al., 2018; Bowatte et al., 2018; Clifford 
et al., 2016; Costa et al., 2017; Howell et al., 2019; Laumbach & Kipen, 2012; Monrad et al., 2017). Due to 
the logistical and cost challenges associated with measuring pollutants for large study areas, TRAP expo-
sures are often modeled using GIS-based metrics, chemical transport or dispersion models, or land use 
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Plain Language Summary  Black carbon, a constituent of particulate matter linked to the 
incomplete combustion of carbonaceous fuels, has been used in an increasing number of studies as a 
proxy for traffic exposures. In this study, we explored the potential of large wildfire events to bias heath 
effect estimates relying on black carbon as a proxy measure for traffic pollutants. We found that, for 
Denver, CO, wildfire smoke biased traffic exposure measures in a spatially-dependent way and resulted 
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regression models with nitrogen dioxide, carbon monoxide, or fine particulate matter as the primary indica-
tor of exposure (Batterman et al., 2014; Howe et al., 2018; Hu et al., 2019; Khreis & Nieuwenhuijsen, 2017; 
Khreis et al., 2018). However, a growing number of studies are using black carbon (BC) as a source-specific 
indicator of traffic exposures (Caplin et al., 2019; Carlsen et al., 2018; Dons et al., 2017; Liu et al., 2017; 
Suglia et al., 2008). BC is an inert carbonaceous aerosol derived from fossil fuel and biomass combustion 
that is characterized by its absorbance of visible light, making it appear black (Petzold et al., 2013). BC 
typically displays sharp gradients in urban settings with the highest concentrations found near roads (Apte 
et al., 2017; Patton et al., 2014; Wu et al., 2015; Xing & Brimblecombe, 2018), making it a useful indicator 
of TRAP exposures.

In North America, roughly 70% of BC emissions are due to on-road and off-road diesel engines (Bond 
et al., 2013). However, biomass burning is also an important intermittent source (Briggs & Long, 2016), 
particularly in wildfire-prone regions such as the western United States. In the western United States, wild-
fires can emit significant amounts of light-absorbing carbon (LAC) particles into the atmosphere (Chow 
et al., 2010; Ditas et al., 2018; Mao et al., 2011). These particles typically have the same graphite core as 
pure BC and similarly absorb light at 880 nm (Andreae & Gelencsér, 2006; Lack et al., 2014); common op-
tical methods using infrared (880 nm) absorption measure carbon mass but generally cannot distinguish 
between fossil fuel combustion or biomass burning (e.g., wildfires) as sources for LAC or BC. Thus, studies 
using BC measurements as a proxy for traffic may be biased by nearby or regional wildfire events or other 
sources of LAC.

The inability of common optical methods to distinguish LAC or BC originating from fossil fuel combustion 
and biomass burning may have important implications on the results of health effects studies using BC as 
a proxy for TRAP in wildfire-prone regions. Using BC as an indicator of traffic emissions requires the as-
sumption that most regional BC comes from these mobile sources and that the influence from other natural 
or anthropogenic sources is minimal. This assumption may not hold in regions where there are seasonal 
variations in background BC concentrations due to wildfires or biomass burning (Dekoninck et al., 2015; 
Stampfer et al., 2020). Further, previous studies have suggested PM emissions from traffic sources are more 
strongly associated with health effects compared to those from biomass burning (Beelen et al., 2015; Ostro 
et al., 2015; Thurston et al., 2016). Although evidence of a causal relationship between BC and adverse 
health effects is growing (Janssen et al., 2011; Nichols et al., 2013), it is not yet clear if BC is the etiologi-
cal agent in all cases or rather a proxy for other constituents in the PM mixture (Kirrane et al., 2019). In 
epidemiology studies relying on BC as a TRAP exposure metric, misclassification can result in biased ef-
fect estimates. This mischaracterization of the etiological agent can result in ineffective policies to reduce 
source-specific exposures.

As wildfires are expected to increase in both frequency and intensity as climate change progresses (Brey 
et al., 2018; Schoennagel et al., 2017; Spracklen et al., 2009), it is important to understand how wildfire BC 
emissions affect TRAP exposure assessments. To address this knowledge gap, we focused on two research 
objectives. The first was to understand how urban BC gradients (herein defined as all LAC) are altered 
during wildfire events and the degree to which this alteration results in TRAP exposure misclassification. 
The second aimed to assess the potential for exposure misclassification to bias associations between TRAP 
(measured as BC) and health outcomes using a simulation study. We framed our simulation study within 
the context of Healthy Start, an ongoing birth cohort study based in Denver, Colorado (Harrod et al., 2014). 
In the Denver metropolitan area, mobile sources remain the predominant intraurban air pollutant source 
(US Environmental Protection Agency, 2018; Vu et al., 2016). However, biomass burning represents an im-
portant intermittent source; wildfires both within the state and across western North America contribute 
to poor air quality in the region (Creamean et al., 2016; Val Martin et al., 2013). The ongoing Healthy Start 
study (5UH3OD023248; PI: Dabelea) is investigating the role of environmental and behavioral factors on 
childhood obesity and metabolic outcomes. Between 2009 and 2014, 1,410 pregnant mothers were enrolled 
into the cohort and delivered singleton births (Harrod et al., 2014). To support our ongoing research on the 
effects of environmental exposures on childhood health outcomes, we are actively developing retrospective 
models to predict prenatal and early life exposures to TRAP using BC as an exposure marker. Thus, it is im-
portant to our future work to understand the influence of wildfires on our ability to accurately characterize 
traffic exposures in this wildfire-prone region.
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2.  Methods
2.1.  Field Sampling Campaign

As part of the Healthy Start study (Harrod et al., 2014), we conducted a measurement campaign to develop a 
spatiotemporal model of BC in the Denver metropolitan area. Over the course of three sampling campaigns 
(Campaign 1: May 8 to July 3, 2018; Campaign 2: July 10 to August 27, 2018; Campaign 3: October 10 to 
November 11, 2018), we deployed between 35 and 53 low-cost monitors to locations across the study area 
(Figure 1). These sites were chosen to be spatially representative of the traffic exposures in the area based 
on the distribution of traffic in the region (US Department of Transportation, 2018). Campaigns 1 and 2 
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Figure 1.  Sampling locations. Some locations are jittered to protect participant privacy.
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also captured BC emissions from biomass burning during the summer wildfire season, including emissions 
from the Spring Creek fire. The Spring Creek fire, the third-largest in Colorado history at the time, burned 
from June 27 to September 10, 2018 and destroyed 108,045 acres ∼150 miles southwest of Denver (National 
Wildfire Coordinating Group, 2018).

We collected filter-based particulate matter samples using Ultrasonic Personal Air Samplers (UPAS; Access 
Sensor Technologies, Fort Collins, CO) (Volckens et al., 2017). Each UPAS was fitted with a size-selective 
cyclone inlet (2.5 µm) and housed within a custom protective case to facilitate use outdoors. Samples were 
collected on polytetrafluoroethylene filters (PTFE; MTL Corporation, Minneapolis, MN) using a flow rate of 
1 L/min. The UPAS monitors were connected to external batteries and allowed to run at an 80% duty cycle 
until battery power ran out. Our target sampling period was 5 days. We collected field blanks to examine the 
potential for contamination in the field.

2.2.  SootScan Measurements for BC

Filter-based particulate matter samples were analyzed for BC using a SootScan Model OT21 transmissom-
eter (Magee Scientific, Berkeley, CA). Here, we use the term BC to refer to all absorbing mass in the sam-
ple at a wavelength of 880 nm. Absorbance at 880 nm was used to quantify BC using methods described 
by Ahmed et al.  (2009). The mass absorption coefficient used to quantify BC was derived from an anal-
ysis by Presler-Jur et al.  (2017). Additional details on the BC measurement methods are available in the 
supporting information.

2.3.  Calibration of Low-Cost Monitor BC Concentrations

We calibrated our UPAS BC measurements using data from the local air quality monitoring network. The 
Colorado Department of Public Health and Environment (CDPHE, 2018) maintains an AE-33 aethalome-
ter (Magee Scientific, Berkeley, CA) at a near-road monitoring site. During two of our sampling campaigns 
(Campaign 2 and Campaign 3), we collocated a UPAS with the AE-33 instrument. Similar to a previous study 
using UPAS instruments to measure BC, we used Deming regression to fit the calibration curves (Quinn 
et al., 2018). Additional details on the calibration methods are available in the supporting information.

2.4.  Identifying Smoke-Impacted Filters

We identified wildfire smoke (WFS)-impacted filters using methods similar to those reported by Brey and 
Fischer (2016). First, we identified “smoke-impacted days” for each regional PM2.5 monitor using National 
Oceanic and Atmospheric Administration (NOAA) and Environmental Protection Agency (US EPA) data. 
We obtained daily smoke plume data from NOAA’s Hazard Mapping System (HMS) (National Oceanic and 
Atmospheric Administration, 2020). We downloaded smoke plume shapefiles for each day of our sampling 
campaign. Daily PM2.5 data for monitoring locations in the study area from 2008 to 2018 were obtained from 
the US EPA AQS Data Mart (US Environmental Protection Agency, 2016). Long-term data for BC in the 
area (prior to 2016) were not available. Time series plots for each PM2.5 monitor showed that concentrations 
were relatively stable over the 10-year period, with annual changes in PM2.5 at each monitor ranging from 
a 0.36 µg/m3 decrease to a 0.10 µg/m3 increase per year (Figure S3). For each monitor, we calculated the 
10-years monthly average PM2.5 concentration. A monitor was considered “WFS-impacted” if two criteria 
were met: first, the daily mean PM2.5 concentration was more than two standard deviations (SD) above the 
10-years monthly mean for that monitor; and second, an HMS smoke plume was located within 50 km of 
the monitor (Figure  S4). Due to local meteorology and time-varying fire characteristics, the location of 
smoke plumes can vary greatly from day-to-day (Figure S4). The original methods by Brey and Fischer used 
a 1-SD increase as their criterion for WFS; here we used two standard deviations as a more conservative 
criterion to account for typical diurnal or weekday-weekend variability in PM2.5 concentrations. We used 
a 50 km buffer around the monitor location to account for portions of the smoke plume that may not be 
visible in satellite imagery. We assessed the second criterion using spatial intersection methods in the “sf” 
package in R (Pebsema, 2018). These two criteria were designed to prioritize sensitivity to WFS over spec-
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ificity. Second, a filter was considered “WFS-impacted” if any EPA PM2.5 monitor in the Denver region re-
corded a smoke-impacted day during the sampling period for that filter. We also considered a more stringent 
criterion that only evaluated smoke-impacted days at the closest or three closest monitors and found broad 
agreement in which filters were considered WFS-impacted (i.e., the “any area monitor” metric agreed with 
the closest and three closest monitors metrics for 85% and 99% of filters, respectively).

2.5.  GIS-Based Indicators of Traffic Exposure and Other Land Use Characteristics

We used three GIS-based metrics for assessing traffic exposures for each filter sampling location based on 
existing methods commonly employed in environmental health studies (Khreis & Nieuwenhuijsen, 2017) 
using publicly available road network and traffic count data (CDPHE, 2018; US Department of Transporta-
tion, 2018). First, we averaged the annual average daily traffic (AADT) for all road segments within a 300 m 
buffer around the sampling location. Second, we measured the shortest distance between a sampling loca-
tion and a major road or highway. Third, we assessed the total roadway length (major roads and highways) 
within a 300 m buffer around the sampling location. A 300 m buffer was selected for these metrics because 
prior studies indicate that BC concentrations from traffic emissions typically return to background levels at 
a distance farther than 300 m from roadways (Apte et al., 2017; Beckerman et al., 2008; Patton et al., 2014; 
Zwack et al., 2011). We also had measurements of other key land use characteristics for these filters. We 
summarized the percentage of land that was classified as “open space” as defined by the National Land 
Cover Database and the percent impervious surface for each measurement location (Multi-Resolution Land 
Characteristics Consortium, 2017). Impervious surfaces were intended to represent areas with more BC 
sources (e.g., roads, including those not considered highways or major roads) and open space was consid-
ered a measure of BC sinks (e.g., parks and vegetation). These land use characteristics were also summa-
rized for a 300 m buffer around each sampling location.

2.6.  Agreement Between GIS-Based Indicators of Traffic and BC Measurements

We assessed the level of agreement between GIS-based indicators of traffic and measurements of BC in 
three analyses. First, we measured correlation between BC concentrations and GIS-based traffic indicators. 
Second, we examined differences between measured BC at each quartile of the traffic variables for WFS-im-
pacted and nonimpacted filters using the Kruskal-Wallis test. Third, we assessed the level of agreement 
between quartiles of BC concentrations and GIS-based traffic measures using Cohen’s kappa statistic. The 
results of this third analysis are presented in the supporting information.

2.7.  Simulation Study

We evaluated the potential for WFS to bias epidemiology studies using BC as a proxy for TRAP via sim-
ulation. For each of the unique sampling locations, we constructed two measures of long-term average 
exposure: one that was WFS-impacted and one that was nonimpacted. The WFS-impacted measure (BCWFS) 
was the average of all BC measurements collected at the site. The nonimpacted measure (BCno WFS) was 
the average of BC measurements collected from nonimpacted filters only. We used BC measurements only 
from sites with at least two WFS-impacted and two nonimpacted filters. We considered BCno WFS to be our 
unbiased proxy for TRAP. Although WFS has been shown to affect birth weight (Holstius et al., 2012), we 
assumed any effect on our outcome of interest was attributable to BC arising from TRAP alone. In total, we 
had estimates of BCWFS and BCno WFS for 51 unique sampling locations.

In our simulation study, we were interested in the potential bias in a linear regression analysis (i.e., that 
would be used to assess relationships between TRAP and a continuous outcome like birth weight). To es-
timate the effect of TRAP exposure misclassification during WFS events on the estimated regression coef-
ficients, we simulated our birthweight outcome variable as a function of TRAP not affected by WFS (BCno 

WFS) using the following equation:

        1 0 1 ,no WFSY BC � (1)
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where 0 was the intercept, 1 was the “true” effect estimate defined a priori and   was a random error 
term drawn from a normal distribution with a mean of 0 and a standard deviation of 1. For Equation 1, 
we set 0 to 3,205 g, which was the average birth weight for Healthy Start infants. The range of our true 
effects estimates was based on values previously reported in the literature. For the simulated birth weight 
variable, we used 1 values ranging from 0 to −50 g per 1 µg/m3 increase in BC based on similar effect sizes 
reported for prenatal fine particulate matter exposures in the Healthy Start cohort (Starling et al., 2020) and 
elsewhere (Brauer et al., 2008; Kingsley et al., 2017). For each of the true effect estimates, we simulated 
1,000 bootstrapped data sets with replacement to account for uncertainty introduced by the selection of the 
sampling sites across the study area. After simulating our outcome variable, we fit regression models using 
the true TRAP proxy measure (BCno WFS) and the biased TRAP proxy measure (BCWFS) as the predictors of 
interest. We hypothesized WFS would have widespread effects on BC measurements that would result in 
exposure misclassification and bias our results toward the null. We evaluated the effect of the biased proxy 
for TRAP (BCWFS) using absolute and relative (percent) bias in the regression coefficients, the root mean 
squared error (RMSE) of fitted values, and interval coverage, which was defined as the percentage of   co-
efficients within the 95% confidence interval (CI) of the true effect estimate.

All geospatial and statistical analyses were performed in R version 3.6.1 (R Core Team, 2019). For spatial 
methods, we used the “sf” package (Pebsema, 2018). Geocoding was completed using the Google Geocoding 
API. Maps were created in R using the “ggplot2,” “ggmap,” and “ggsn” packages (Kahle & Wickham, 2013; 
Santos Baquero, 2019; Wickham, 2016).

3.  Results
3.1.  BC Monitoring Results

In total, we collected 609 filter-based particulate matter samples across three seasons, with 247, 249, and 113 
filters collected during Campaigns 1, 2, and 3, respectively. The median number of samples collected at each 
location was 10 (range: 1–17 samples). The median runtime for the monitors was 5 days (range: 2–6 days) 
and the median volume collected was 5,715 L (range: 2,630–6,927 L).

BC concentrations varied by campaign (Table 1). Median concentrations were lowest for Campaign 1 (early 
summer; 0.97 µg/m3) and highest for Campaign 3 (fall; 1.50 µg/m3). The interquartile range (IQR) values 
also varied by campaign. Variability in BC concentrations was similar for Campaigns 1 (IQR = 0.15 µg/m3) 
and 3 (IQR = 0.14 µg/m3) and higher for Campaign 2 (late summer; IQR = 0.24 µg/m3).

3.2.  WFS-Impacted Filters

Of the 609 filters in our study, 239 (39%) were considered WFS-impacted. Most of these samples were col-
lected during Campaign 2 (late summer), which coincided with the start and containment dates of the 
Spring Creek fire in Colorado (Figure 2). Overall, BC concentrations were lower and variability was higher 
for nonimpacted filters compared to WFS-impacted filters (Wilcoxon rank sum test; p < 0.001) (Table 2). 
Median (IQR) BC concentrations were 1.04 (0.48)  µg/m3 and 1.14 (0.23)  µg/m3 for nonimpacted and 
WFS-impacted filters, respectively.
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Campaign Sampling dates n Mean (SD) Min 25th 50th 75th 95th Max IQR

All 609 1.16 (0.25) 0.78 0.96 1.09 1.34 1.63 2.27 0.38

1 May 8 to July 3, 2018 247 0.99 (0.11) 0.78 0.91 0.97 1.06 1.17 1.34 0.15

2 July 10 to August 27, 2018 249 1.17 (0.22) 0.84 1.02 1.15 1.26 1.50 2.27 0.24

3 October 10 to November 11, 2018 113 1.53 (0.13) 1.35 1.44 1.50 1.58 1.79 2.08 0.14

Note: BC, black carbon; IQR, interquartile range; SD, standard deviation.

Table 1 
Summary of Calibrated Filter-Based BC Concentrations (µg/m3) for Each Sampling Campaign



GeoHealth

3.3.  Comparisons Between GIS-Based Traffic Indicators and Filter-Based BC Concentrations

Although correlations between GIS-based traffic measures and filter-based BC measurements were gen-
erally weak (all Spearman correlation coefficients were ≤0.30), relationships were somewhat stronger for 
nonimpacted filters compared to WFS-impacted filters (Table S1). Across all filters, the Spearman correla-
tion coefficient between the minimum distance to a major road (m) and BC concentrations was −0.22; cor-
relation coefficients for nonimpacted and WFS-impacted filters were −0.30 and −0.11, respectively. Similar 
patterns were observed for the other GIS indicators of traffic (length of major roads and AADT in a 300 m 
buffer; Table S1).

Scatter plots of BC concentrations compared to the distance to highways demonstrated differences in the 
spatial gradients by campaign and by the presence of wildfire smoke (see supporting information). Absolute 
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Figure 2.  Time series plot of average weekly temperature (top panel), average weekly PM2.5 concentrations for regulatory monitors in the region (second 
panel), and weekly black carbon concentrations collected in 2018 (third panel). The shaded area represents the start and 100% containment dates of the Spring 
Creek fire.
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BC concentrations were higher when WFS was present compared to when WFS was not present (Table 2). 
However, across all campaigns, the gradient in BC relative to distance from the nearest highway was flatter 
when wildfire smoke was present, suggesting wildfire smoke had a proportionally higher impact on BC 
concentrations measured farther from roads (Figure S5). Counter to this finding, however, the impact of 
WFS was less evident when considering the length of roads in a 300 m buffer (Figure S6) or average AADT 
in a 300 m buffer (Figure S7). For these metrics, gradients were generally unchanged for WFS-impacted and 
nonimpacted filters. When stratifying BC measurements by the presence of WFS and high or low percent 
impervious surface in a 300 m buffer, we observed the strongest BC gradients for areas with low percent 
impervious surface and no wildfire smoke (Figure S8). Similar results were observed when stratifying filters 
by the presence of WFS and high or low percent open space in a 300 m buffer (Figure S9). The presence of 
WFS had an appreciable effect on BC gradients when categorizing filters by quartiles of GIS-based traffic 
measures (Figure 3). When WFS was not present, the highest median BC concentrations were observed in 
the highest traffic quartiles. However, when WFS smoke was present, BC concentrations were higher for all 
traffic quartiles and differences in median concentrations across quartiles of GIS-based indicators of traffic 
were minimal. Across the two lower quartiles of GIS-based traffic indicators, concentrations were lower for 
nonimpacted filters compared to WFS-impacted filters (Kruskal-Wallis test, p values <0.05; Table S2). For 
the highest GIS-based traffic quartiles, concentrations of BC were similar for nonimpacted and WFS-im-
pacted filters, suggesting that near major roads, traffic remained the dominant BC source even during dis-
tant wildfire events.

Agreement between BC quartiles and GIS-based traffic metric quartiles was poor, though agreement was 
generally better for nonimpacted filters compared to WFS-impacted filters Weighted Cohen’s κ values 
ranged from 0.11 to 0.25 (Table S1). The strongest agreement between the BC measurements and the GIS-
based traffic measures was for the lowest highest quartiles of exposure (Figure S10), suggesting the GIS-
based indicators of traffic exposure were sufficient to broadly classify BC exposures (e.g., “low” and “high” 
exposure) but did not fully capture intraurban gradients in TRAP concentrations.

3.4.  BC Exposure Misclassification With and Without WFS

Examining differences between BCnoWFS and BCWFS at each sampling location demonstrated the potential 
for WFS to bias exposure assessments of TRAP that rely on BC concentrations as a proxy measure (Table 3). 
Long-term averages of BCno WFS and BCWFS at each sampling location were highly correlated (r  =  0.96). 
When stratified by the GIS-based traffic indicator quartiles, percent difference in the exposures was high-
est for the lowest traffic exposure quartiles, though differences across quartiles were not large. The effect 
of WFS on long-term average BC concentrations was also evident when stratifying long-term BC concen-
trations by distance to highway quartiles; filters impacted by WFS showed relatively flat gradients across 
quartiles of distance to highways (Figure S11).

3.5.  Simulation Study

Counter to our original hypothesis, the results of our simulation study suggested that misclassification 
introduced by WFS biased regression coefficients away from the null and increased the magnitude of the ef-
fect of TRAP in our simulated linear regression (Figure 4). The effect of this bias was weakest when the true 
effect size is small (e.g.,   5) and strongest when the true effect size was large (e.g.,   50). Student’s 
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Filter type n Mean (SD) Min 25th 50th 75th 95th Max IQR

Nonimpacted 370 1.16 (0.28) 0.78 0.94 1.04 1.42 1.65 2.12 0.48

WFS-impacted 239 1.17 (0.21) 0.84 1.02 1.14 1.26 1.48 2.27 0.23

Note: BC, black carbon; IQR, interquartile range; SD, standard deviation; WFS, wildfire smoke.

Table 2 
Summary of Filter-Based BC Concentrations (µg/m3) for Nonimpacted and WFS-Impacted Filters
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paired t-test revealed evidence of differences in the average   coefficient for BCno WFS and BCWFS for all true 
  values except the   0 case (p values <0.01; Table S3).

Regression models using the unbiased BCno WFS as a proxy for TRAP exposures generally performed better 
compared to models using the biased BCWFS measurement (Table 4). Root mean squared errors (RMSEs) 
were low (all RMSE = 1.0 for each true ) for models using the BCno WFS exposure estimate. Percent bias 
in the estimated   for each simulation was low (<0.3% for all values of true ) and interval coverage of 
the true effect estimate reached 94.8% on average. For models using BCWFS, percent bias in the regression 
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Figure 3.  Boxplots of BC concentrations stratified by GIS-based traffic indicator quartile and the presence of WFS. BC, black carbon; WFS, wildfire smoke.

Median (IQR) percent difference in BC concentration

GIS metric Q1 Q2 Q3 Q4

Minimum distance to major roads (m) 4.85 (8.74) 4.30 (3.44) −0.41 (5.68) −0.58 (7.90)

Length of major roads in a 300 m buffer (m) 4.46 (6.04) 2.41 (6.45) 3.38 (8.10) −0.58 (4.90)

Average AADT in a 300 m buffer (vehicles/d) 4.46 (6.04) 3.20 (6.22) 3.65 (8.62) −0.86 (6.12)

Note: BC, black carbon; IQR, interquartile range; WFS, wildfire smoke.

Table 3 
Median (IQR) Percent Difference Between the Mean BCno WFS Concentration and Mean BCWFS Concentration at Each 
Sampling Location Stratified by GIS-Based Traffic Indicator Quartiles
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coefficients exceeded 12%. The average RMSE ranged from 1.0 for a true   of −5 to 2.8 for a true   of −50. 
Interval coverage only reached 95% for the true   = 0 scenario; the interval coverage metric was generally 
poor (28.0–72.6%) for all other values of the true  . Low interval coverage for models using BCWFS indicated 
a higher than acceptable Type I error rate and a greater chance for falsely detecting a positive association 
between TRAP and our simulated health outcome.
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Figure 4.  Distribution of   values generated from linear regression models (1,000 simulated data sets) using BCno WFS or BCWFS as the exposure metric. BC, 
black carbon WFS, wildfire smoke.

Unbiased TRAP exposure metric (BCno WFS) Biased TRAP exposure metric (BCWFS)

True 
β Bias %Bias RMSE

%Interval 
coverage Bias %Bias RMSE

%Interval 
coverage

0 0.0 (0.8) 1.0 (0.1) 94.7 (14.7) 0.0 (0.9) 1.0 (0.1) 94.7 (15.1)

−5 0.0 (0.7) 0.3 (14.6) 1.0 (0.1) 95.5 (14.2) −0.6 (1.0) 12.9 (19.6) 1.0 (0.1) 72.6 (11.5)

−10 0.0 (0.7) 0.1 (7.4) 1.0 (0.1) 93.8 (16.8) −1.2 (1.2) 12.5 (11.6) 1.1 (0.1) 51.8 (9.1)

−20 0.0 (0.7) 0.0 (3.7) 1.0 (0.1) 94.6 (15.1) −2.5 (1.8) 12.4 (9.2) 1.4 (0.1) 35.5 (8.3)

−50 0.0 (0.8) 0.0 (1.5) 1.0 (0.1) 95.3 (14.5) −6.3 (4.1) 12.6 (8.3) 2.8 (0.3) 28.0 (6.7)

Note: BC, black carbon; RMSE, root mean square error; SD, standard deviation; TRAP, traffic-related air pollution; 
WFS, wildfire smoke.

Table 4 
Mean (SD) Diagnostic Metrics for the Simulation Study
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4.  Discussion
Due to a major wildfire event during planned exposure assessment campaigns in which we collected BC 
samples, we assessed whether WFS diminished the ability of BC (defined here as all LAC in a sample) to 
accurately reflect exposures to traffic in Denver, CO. When wildfires were not present, we observed expected 
gradients in BC concentrations, with the highest levels of BC measured near roadways (Xie et al., 2012). 
However, WFS in the region during our second sampling campaign appeared to have broad effects on BC 
measurements. Although all sampling locations generally experienced higher BC measurements when 
WFS was present, smoke from the Spring Creek fire appeared to have a stronger effect on filters farther 
from traffic sources, resulting in proportionally higher concentrations farther away from highways and ma-
jor roads Thus, the WFS effect reduced expected BC gradients and resulted in more sampling locations 
with higher TRAP exposures during our simulation study. This spatially dependent effect of WFS on BC 
concentrations biased our results away from the null, overestimating the effect of traffic on our simulated 
birth weight outcome.

In wildfire-prone areas or areas where biomass burning is common, alternative indicators of biomass 
smoke may be helpful in disentangling the influence of these additional sources on ambient BC concentra-
tions. For example, the Delta-C metric has been used as an indicator of wildfire smoke in previous studies 
(Kimbrough et al., 2016; Landis et al., 2018; Wang et al., 2010). Subtracting brown carbon mass associated 
with biomass burning (which has an absorbance at 375 nm) from all mass absorbing at 880 nm may better 
reflect BC from traffic sources. The Delta-C metric has recently been used in epidemiology studies to bet-
ter differentiate the impacts of traffic and wood smoke exposures on health (Assibey-Mensah et al., 2020; 
Rich et al., 2018). Alternatively, specific elements (e.g., sulfur and potassium) or organic tracers such as 
levoglucosan may also differentiate biomass emissions from TRAP in particulate matter samples (Bhattarai 
et al., 2019; Chen et al., 2017; Li et al., 2003). However, routine, widespread monitoring for elements and 
biomass-specific organic aerosols is sparse or nonexistent in many areas and methods to collect such data 
can be prohibitively expensive.

The flatter gradients in BC concentrations observed for WFS-impacted filters, which primarily occurred 
during Campaign 2, may be due to lower traffic volumes during summer months. However, we do not be-
lieve changes in traffic patterns substantially altered the observed spatial patterns. Based on studies of other 
metropolitan areas, the black carbon burden in the Denver region is likely attributable to diesel emissions 
(McDonald et al., 2015). Diesel fuel sales in Colorado have seasonal trends, with the lowest sales occurring 
during the colder months (US Energy Information Administration, 2020). Importantly, these fuel sales tend 
to be relatively steady during the warmer summer months (April to September) when our WFS-impact-
ed filters were identified. Additionally, we examined time trend data for carbon monoxide and elemental 
carbon concentrations from regional regulatory monitors collected between 2016 and 2020 (Figures S12 
and S13). These two pollutants are correlated with combustion sources (i.e., traffic emissions and biomass 
burning) (Cyrys et al., 2003; Yoon et al., 2018; Zhang et al., 2005). In these plots, we observed the highest 
concentrations in the winter and relatively flat periods during the warmer months. Thus, we believe traffic 
volumes were not reduced substantially between the first, second, and third campaigns and that our flatter 
gradients were due to WFS from the Spring Creek fire.

There are some potential challenges to fully capturing the effect of a wildfire on BC measurements for 
TRAP exposure models. The rate of BC emissions from wildfires is governed by several factors, including 
the size of the fire, type of fuel, and combustion efficiency (Weise & Wright, 2014). Additionally, the spatial 
and temporal characteristics of wildfire smoke plumes (e.g., plume rise, dispersion) are determined by me-
teorology (e.g., wind speed and direction), the atmospheric chemistry of plume constituents, and the size 
and location of the fire, among other factors (Heilman et al., 2014; Larkin et al., 2010). Thus, the influence 
of local and regional wildfires on local BC concentrations does vary on relatively short time scales (e.g., 
hours or days). In contrast, filter-based measurements of BC require long sampling times to ensure ade-
quate mass collection. BC concentrations in Denver over the course of our study were low (the mean across 
all filters was 1.15 µg/m3); previous studies have reported modeled and measured BC concentrations across 
the United States ranging from <0.30 µg/m3 to roughly 3.0 µg/m3 (Clougherty et al., 2013; Fruin et al., 2014; 
Hankey & Marshall, 2015; Li et al., 2016). Aggregating daily WFS data to match the temporal scale of our 
BC measurements (i.e., 5-days samples) may have resulted in the misclassification of some WFS-impacted 
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filters. Other types of nonstationary monitors, e.g., microaethalometers capable of measuring at multiple 
wavelengths, may be better equipped to capture the short-term influences of WFS on intraurban BC concen-
trations and should be considered when designing TRAP exposure assessments in wildfire-prone regions.

It is important to note that the direction of bias attributable to WFS likely depends on the characteristics of 
the study area. We did not observe large differences in BC concentrations in the highest traffic quartiles re-
gardless of the presence of WFS. Because the Spring Creek fire was located ∼150 miles from our study area, 
it is likely that there were fewer behavioral changes (i.e., changes in commuting behavior) among study 
area residents than would have occurred if the fire were closer to the region. Differences in fire location 
and intensity, meteorological conditions, or traffic density may result in different exposure misclassification 
scenarios. Future studies relying on absorbance at 880 nm to measure BC as a proxy for traffic will need 
to carefully consider the potential impacts of nontraffic BC sources on exposure assessments, especially 
as wildfires are projected to increase in frequency and intensity in the coming decades (Brey et al., 2018; 
Schoennagel et al., 2017).

Our study has some notable strengths. Our longitudinal design captured BC measurements before, during, 
and after a severe wildfire season in Colorado. The size and duration of the fire allowed us to identify im-
pacts of WFS on BC measurements. The use of low-cost monitors allowed us to sample at 59 distinct loca-
tions across the Denver metropolitan area with a median 11 samples collected at each site. These locations 
were purposefully selected to better represent traffic exposures across the region and included both near-
road and nonnear-road locations. Our study also confirms results from prior studies of the weak relation-
ship between GIS-based traffic indicators and BC measurements. For example, Liu et al. (2017) compared 
BC measurements collected at sites in Detroit, MI located <150 or >300 m from a major road to GIS-based 
traffic and traffic density metrics (e.g., distance to major roads and major road density). This study reported 
correlation coefficients for BC and GIS-based indicators between 0.18 and 0.48, with the highest correlation 
for the heavy traffic density metric (0.48). In our study, the absolute values of the correlation coefficients 
ranged from 0.11 to 0.29.

There are also important limitations to note when interpreting the results of this study. First, our integrat-
ed samples did not allow us to identify specific days where wildfire smoke influenced BC concentrations. 
Second, there is likely some misclassification of wildfire smoke days using methods that rely on long-term 
monthly averages of PM2.5 at each monitoring location. PM2.5 concentrations fluctuate daily in ways that 
are likely to be unrelated to WFS (Kendrick et al., 2015; Yao et al., 2015). However, broad effects of the 
Spring Creek fire were emphasized by the level of agreement between the three metrics we considered for 
identifying WFS-impacted filters (smoke days at the nearest monitor, three closest monitors, or all area 
monitors). We selected a conservative approach to identifying days impacted by WFS that likely resulted in 
misclassification of some filters as nonimpacted. Future work should better incorporate other indicators of 
WFS such as brown carbon or elements associated with biomass burning when characterizing WFS-impact-
ed samples. Third, our third campaign extended into the fall and may have been impacted by residential 
wood burning. Increases in BC measurements collected during the third campaign suggest residential wood 
burning during colder months may be an important source of BC in the region. Our measured BC concen-
trations were highest during Campaign 3, coinciding with pollutant-trapping temperature inversions and 
increases in residential wood burning (Bailey et al., 2011; Dutton et al., 2010; Vedal et al., 2009). Similar 
seasonal trends in BC concentrations were observed for elemental carbon and carbon monoxide (Figures 
S11 and S12). However, <1% of Denver-area residents report wood as their primary heating fuel (US Census 
Bureau, 2020), so we assumed residential wood burning to be a less important local source relative to traffic 
emissions during this campaign and that the effects of wood burning emissions would be widespread across 
the area. Other potential sources of BC during the summer months in the region include fireworks used for 
Independence Day celebrations. However, the sale of exploding fireworks to the general public is prohibited 
in Colorado (Colo. Rev. Stat. § 24-33.5-20), and due to the increased fire danger during the 2018 summer 
season, many counties and municipalities enacted further bans and canceled public fireworks displays (Ru-
ble, 2018). Our first sampling campaign ended July 3, 2018 and our second campaign began July 10, 2018, 
therefore missing emissions from large municipal fireworks displays held on July 4th (Independence Day). 
Thus, we believe BC from fireworks had a minimal effect on our measurements during this time.
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5.  Conclusions
In a study comparing GIS-based indicators of traffic to BC measurements collected before, during, and after 
a major wildfire event in Denver, CO, we found that WFS had a measurable effect on our ability to use BC 
to represent TRAP exposure. When WFS was not present, we observed expected gradients in BC concentra-
tions across urban sampling locations, with the highest concentrations being observed near major roads. 
However, when WFS was present, BC concentrations were elevated across most of the study area and spatial 
gradients were reduced. Proportionally higher BC concentrations measured at locations characterized as 
low traffic exposure areas during WFS events resulted in a misclassification of health effects attributable to 
TRAP. Our results suggest that the future use of BC in studies of TRAP-related health effects requires con-
sideration of other sources in the region that may bias exposure estimates. Future epidemiological studies 
of traffic should consider additional exposure metrics such as Delta-C or sulfur-potassium ratios that may 
better isolate the effects of TRAP from other urban and nonurban sources.
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