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Abstract We propose a computerized framework that, given
a region of interest (ROI) circumscribing a lesion, not only
predicts radiological observations related to the lesion charac-
teristics with 83.2% average prediction accuracy but also de-
rives explicit association between low-level imaging features
and high-level semantic terms by exploiting their statistical
correlation. Such direct association between semantic con-
cepts and low-level imaging features can be leveraged to build
a powerful annotation system for radiological images that not
only allows the computer to infer the semantics from diverse
medical images and run automatic reasoning for making di-
agnostic decision but also provides Bhuman-interpretable
explanation^ of the system output to facilitate better end user
understanding of computer-based diagnostic decisions. The
core component of our framework is a radiological observa-
tion detection algorithm that maximizes the low-level imaging
feature relevancy for each high-level semantic term. On a liver
lesion CT dataset, we have implemented our framework by
incorporating a large set of state-of-the-art low-level imaging
features. Additionally, we included a novel feature that quan-
tifies lesion(s) present within the liver that have a similar ap-
pearance as the primary lesion identified by the radiologist.

Our framework achieved a high prediction accuracy (83.2%),
and the derived association between semantic concepts and
imaging features closely correlates with human expectation.
The framework has been only tested on liver lesion CT im-
ages, but it is capable of being applied to other imaging
domains.
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Background

Next-generation medical informatics approaches aim to go
beyond analyzing radiological images (the basis of most
current computerized diagnosis systems), to integrating
the image data and their semantics, providing a single,
unified, and searchable data structure. Such integrated data
could support automated reasoning on both image content
and image semantic levels to better infer diagnoses and
inform management decisions. However, since radiologists
record their imaging observations in free text reports, the
Bsemantic content^ of the image data is not easily machine
accessible. Moreover, inter-observer variability and
inappropriate/incomplete imaging observations limit their
usefulness in the clinical environment [1].

Computer-assisted image annotation with controlled vo-
cabulary could overcome the aforementioned limitations, but
granular-structured reporting challenges efficient radiology
workflow, and automated semantic annotation of radiological
images is still a challenging research direction. We divide the
semantic annotation problem into two major subproblems: (i)
extracting quantitative imaging features (Blow-level features^)
and (ii) reducing the Bgap^ between low-level imaging fea-
tures and the imaging observations reported by radiologists,
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hereafter called Bvisual semantic terms^ (VSTs). The VSTs
are often standardized terms—ideally from controlled termi-
nologies—that the radiologists use in their reports, such as
clinical indications, anatomy, visual features of abnormalities,
diagnostic interpretations, and recommended management
[2]. Recognition of VST patterns can have a strong influence
on the final diagnostic decision made by radiologists, since
many diagnoses are characterized by particular VSTs or com-
binations of them.

Much of the recent focus in computer vision has been on
finding the solution for the first subproblem, and there are cur-
rentlymanymethods that can compute awide range of quantita-
tive parameters from 2D/3D images to represent quantitative
aspects of image contents [3]. However, the second subproblem
remainschallengingbecauseagood feature isnot always thebest
feature for representing a VST, and, yet, there is no clear associ-
ation between the VSTs and the low-level image features. A
number of studies [4, 5] have been undertaken that create com-
puterized models for predicting VSTs from the raw image by
computing a fixed set of low-level image features and solving a
classificationproblem.However, theclassificationdecisions tak-
enbysuchmodelscanbedifficult fora radiologist to reasonabout
since the models either derive a binary output or assign a proba-
bility or confidence score. Without a formalized mechanism to
reason aboutwhy an automatic classifier detects the set ofVSTs,
clinicians tend to distrust them. On the other hand, the low-level
imaging features lack semanticmeaning, and therefore, the clas-
sification decisionsmade by a combination of low-level features
aredifficult to justify to radiologists andclinicians,who typically
use subjective heuristics to diagnose patient cases.

A precise mapping between the low-level quantitative im-
age features and the high-level VSTs can help radiologists
better understand computerized prediction results, and the
mapping can even incorporate the expert feedback on the pre-
diction results. In addition, mappings between VSTs and
quantitative imaging features could be leveraged to infer ad-
ditional semantic concepts that were not even considered be-
fore for the targeted prediction and could improve radiological
image interpretation.

We propose a framework that not only predicts radiological
semantic terms from low-level quantitative image features but
also derives explicit association between the low-level imag-
ing features and VSTs based on statistical correlation. We
make two key research contributions. First, we develop a
VST detection algorithm called BAn iterative approach for
Partial Max Dependency with Equal Importance^ (PmEI) that
maximizes the feature relevancy for each targeted VST while
giving a fair chance to all low-level quantitative imaging fea-
tures to be included in the learning. The main hypothesis be-
hind PmEI scheme is if the correlated features are demon-
strating nearly equal relevancy with the targeted annotation,
they deserve to be incorporated in the machine learning phase
with equal importance. In the PmEI algorithm setting, we test

the significance of a wide range of low-level imaging features
targeting the liver lesion CT image annotation task. As a sec-
ond contribution, we design a specialized feature that is com-
puted in an automatic way by analyzing CT image of the liver
to quantify lesion(s) present within the liver which have sim-
ilar appearance as the primary lesion identified by the
radiologist.

For this initial analysis, we implemented our framework as
a prototype that analyzes liver lesion CT images and that
achieved 83.2% overall VST prediction accuracy. The remain-
ing article is organized as follows: Second section describes
our methodology, third section describes experimental results,
and fourth section presents a summary of the work and some
concluding remarks.

Methods

Figure 1 presents a summary of the proposed workflow for
VST prediction. A set of expert-annotated CT liver lesion
images are used to train and validate the system (see
BDataset: Annotated Liver Lesion in CT Images^ for details).
The feature extraction block computes a wide variety of tra-
ditional and a novel quantitative feature from each image by
considering the lesion’s intensity and texture characteristics
and its shape and position, and it concatenates all the individ-
ual feature vectors to create a 496-dimensional feature matrix.
The dimension of individual traditional features (495 dimen-
sions) is mentioned in Table 1, and we also compute a novel
quantitative feature that captures the number of similar
appearing lesions within the liver. The VST2ImageFeature
training block iteratively learns the mapping between the
496 different quantitative features that represent lesion char-
acteristics at the pixel level and 21 valid VSTs by using incre-
mental search in the image feature space employing the PmEI
algorithm. By employing the pre-trainedmodel, the prediction
block can automatically annotate unseen CT liver images with
a set of pre-defined VSTs.We detail each core block (dotted in
Fig. 1) in the following sections, and corresponding section
indices are also mentioned within the figure. We present the
results in BResults^ section.

Dataset: Annotated Liver Lesion in CT Images

With the approval of the institutional review board (IRB), we
used a dataset containing 79 contrast enhanced de-identified
CT images of patients having liver lesions, obtained in the
portal venous phase with a slice thickness of 5 mm [4]. The
dataset contains three common types of liver lesions: cyst,
metastasis, and hemangioma (see Fig. 2). On each scan, a
radiologist (with more than 16 years’ experience) annotated
the ROI circumscribing each liver lesion in a mid-axial slice
that contains the largest lesion area using Electronic
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Physician’s Annotation Device (ePAD) [15]. The RadLex on-
tology [16] was used to define most of the VSTs for image
annotation; a few additional descriptive terms not in RadLex
were also used to describe the liver lesions and thus included
in the VST set used for image annotation.

Each lesion was annotated with 10–12 VSTs, and the final
diagnosis was recorded. All VSTs were not equally used
throughout the dataset, since the number of samples is not
equally distributed among each diagnosis class and even le-
sions with same diagnosis had a varying visual appearance,
resulting in different annotations. Therefore, we compute the
statistics of VST occurrences within the dataset, and in Fig. 3,
we present the outcome. To avoid overfitting in the learning

stage, we consider only the VSTs that have occurrence be-
tween 20 and 75% (i.e., the green bars in Fig. 3). Given this
restriction, in this study, we created annotation models for 21
valid VSTs.

Feature Extraction Block

As seen in Fig. 1, we extracted a set of quantitative features
that includes state-of-the-art quantitative features from the pri-
mary lesion and its neighboring healthy tissue and a new fea-
ture that represents the number of similar appearing lesions
within the liver. Finally, we concatenate them to create a single
feature matrix.

Fig. 1 Workflow for predicting
clinical imaging findings
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State-of-the-art Quantitative Features In Table 1, we list
quantitative features that we computed. In total, we incorpo-
rated features from five distinct categories and the overall
dimension of our feature matrix is 495. We compute the fea-
tures in their standard configuration, and afterwards, we nor-
malized the feature vector to have 0 mean and 1 standard
deviation.

A New Feature: BNumber of Similar Lesions^ We
established a VST, the Blesion load^ that represents the count
of similar appearing lesions within the liver, since this is one

of the frequently appearing imaging observations for lesions
in the liver. To create this VST, we constructed a pipeline that
automatically recognizes and counts the lesions that have an
appearance similar to the primary lesion. First, we apply a
within class variance and intensity-based thresholding method
[17] to recognize the potential candidate pixels for the lesion
within a cropped version of the original CT image that repre-
sent the region inside the liver and its surrounding region. The
thresholding criterion is defined in Eq. (1).

J λ; Tð Þ ¼ 1−λð Þσw Tð Þ−λjml Tð Þ−mb Tð Þj ð1Þ

Table 1 Quantitative features used in this study (literature citation and acronym are mentioned where necessary)

Type Name and citation Dimension Represents

Intensity-based features Intensity median inside lesion—IntensityM 1 Quantify 1st order intensity distribution
within the lesionEntropy inside lesion—Entropy 1

Proportion of pixels with intensity larger than pre-defined
threshold—ProportionThres

1

Intensity different between lesion and its neighboring tissue
(3 scale analysis)—IntensityDiff

3

Texture features Haralick features—GLCM ([6] 12 Capture occurrence of gray level pattern
within the lesion.Gabor features—Gabor [7] 32

Daubechies features—Daube [8] 324

Haar wavelets—Haar 1

Run Length Matrix—RLE [9] 7

Shape features Compactness [10] 1 Describe the morphology of the lesion
Eccentricity 1

Roughness [11] 1

Local area integral invariant—LocalIntegral [12] 15

Radial distance signatures—RadialSig [13] 2

Histogram-based feature Local binary pattern—LBP [14] 12 Compute marginal distribution of gray
values with in lesionNo. of pixels in different hist. bins—Histogram-bin 20

Edge-based features Edge sharpness 60 Quantify edge sharpness along the lesion
contourHistogram on edge—EdgeHist 1

Fig. 2 Samples from liver lesion dataset. a Cyst. b Metastasis. c Hemangioma. The boundaries of the lesions are highlighted in red, and a subset of
annotated VSTs are written in black
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where ml(T) and mb(T) are, respectively, the mean intensity of
primary lesion and the background, and σw is the square root
of within class variance, defined as:

σw
2 ¼ Pl Tð Þσ2

l þ Pb Tð Þσ2
b ð2Þ

where Pl(T) σl and Pb(T) σb are, respectively, the probabilities
and corresponding variances of the lesion and the background.
In Eq. (1), λ is a weight which determines the balance between
intensity profile and within class variance and the value is
ranged between 0 and 1. The value of λ has been chosen as
0.75, giving more weights to the lesion intensity profile for
homogeneous lesion primary lesion where 68% pixel of the
primary lesion area falls within the range of ±σl (normal distri-
bution) (Fig. 4a, b). For highly heterogeneous primary lesion
where the distributionof pixel value does not follow thenormal
distribution (Fig. 4c, d), the value ofλ has been chosen as 0.15,
giving more weights to the within class variance. Afterwards,
the optimum threshold T∗ is selected by optimizing Eq. (3).

J λ; T*� � ¼ min
T

J λ; Tð Þð Þ ð3Þ

The pixels identified by the thresholding process are not con-
tiguous (see Fig. 5 thresholding output). Hence, we apply the
flood-fill algorithm to identify the connected components from
thebinaryimagegeneratedbythresholdingandlabel themaccord-
ingly.Weanalyze the labeled imagewhere thecandidatepixelsare

grouped in separated clusters and evaluate two intrinsic properties
of each cluster: (1) 1st order statistical property (α)—difference in
meanandstandarddeviationof thepixels exist insideand tworing
neighbors outside cluster and (2) shape property (β): the shape of
cluster represented by a ratio of major andminor axis lengths. To
measure the similarity, we compute the Euclidean distance be-
tween the primary lesion (p) and the new candidate cluster (ci) in
a space built by considering theα and β as in Eq. (4).

d p; cið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αp −αci

� �2 þ βp −βci

� �2q
ð4Þ

If the distance between primary lesion and candidate clus-
ter (d(p, ci)) is less than or equal to an empirically defined
threshold value, we label the cluster as Bidentical lesion^ or
otherwise discard the cluster.

In Fig. 5, we show the complete pipeline as well as step-by-
step results achieved from a single sample image. We utilize
the final output to quantify the number of similar lesions
which we then incorporate as a single scalar value feature in
the feature matrix: Bnumber of similar lesion.^

VST2ImageFeature Training: an Iterative Learning
Based on PmEI

The VST2ImageFeature training block (see Fig. 1) establishes
an association between the quantitative image features (i.e.,

Fig. 3 VST occurrence statistics in the liver lesion CT dataset
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automatically computed from the images) and the VSTs (i.e.,
the annotations done by radiologist) and finally utilizes the

selected features to predict the VSTs. We formulated an itera-
tive approach for learning a mapping between low-level

Fig. 4 Primary liver lesions identified by the radiologists: a homogeneous lesion (a) where the pixel values within the lesion follow normal distribution
(b) and a heterogeneous lesion (c) where the pixel values within the lesion do not follow normal distribution (d)

Fig. 5 Automatic similar lesion identification pipeline in CT liver image
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image features and VSTs that maximizes the feature relevancy
for each targeted VST (ak). We named it partial max-
dependency algorithm since the algorithm considers only the
max-relevancy criteria of the max-dependency algorithm [18]
and ignores the min-redundancy part of it. We provide equal
chance to all the features to be included in VST learning, even
if the low-level features have correlation among themselves.
The intuition behind this method is if the correlated features
exhibit nearly equal relevancy with the targeted annotation,
they should be incorporated in the learning phase with equal
importance. But often, inclusion of highly correlated features
does not change the class-discriminative power. Thus, we aim
to increase the accuracy of the model for predicting the VSTs
by recursively evaluating the classification error for each in-
cremental feature selection step (see Fig. 1).

Step 1: In our liver lesion dataset, VSTs are not mutually
exclusive, thus multi-class classification cannot be formu-
lateddirectly.Weformulatedabinaryclassificationproblem
by representing each VSTk as targeted annotation variable:
ak ∈ {1, −1},whereak = 1 if theVSTk is presentorelseak =
− 1. For the liver lesion dataset, we consider total 21 VSTs,
and therefore, we have the annotation set a as: a = {a1 , a2 ,
… . ., am } , wherem = 21.
Step 2: The algorithm follows a partial max-dependency
approach [18] where the features QFeatures = {f1, f2,
… . ., fn } are first ordered according to their relevancy
(R) to the targeted annotation (ak). The relevancy is char-
acterized by themutual information [19] between the indi-
vidual feature (fj) and the targeted annotation (ak). Mutual
information (mutualInfo(fj, ak)) measures how much
knowing the feature variable (fj) reduces uncertainty about
the annotation (ak). Formally,mutual informationbetween
feature fj and annotation ak can be computed as:

mutualInfo f j; ak
� �

¼ H f j; ak
� �

−H f jjak
� �

−H ak j f j

� �
ð5Þ

where H(fj, ak ) is joint entropy and H(fj| ak) ,H(ak| fj) are con-
ditional entropy [20]. Accordingly, the max feature relevancy
for an annotation ak is defined as:

Rmax akð Þ ¼ maxnj¼1R f j; ak
� �

; and R f j; ak
� �

¼ mutualInfo f j; ak
� �

ð6Þ

where n = no. of quantitative features. Afterwards, we create a
sorted the feature matrix F = {fj, fj + 1,… . .}n, where R(fj, ak)-
≥ R(f

j + 1
, ak).

Step 3: Tominimize the classification errorwithanoptimal
set of candidate feature set, we follow an iterative learning
approach where incremental selection of the features from
the sorted featurematrixF isperformed if andonly if includ-
ing the current feature leads to better a classification accura-
cy. We start by initializing a selected feature list (SF) by
considering the first feature from the sorted feature matrix
F, such that SF = {f1 }, where R(f1, ak) ≥ R(f, ak) , ∀ f ∈ F.
Now, on the SF feature space, we train a non-linear support
vectormachine (SVM) [21]modelwithGaussiankernel for
classifying the particular VST (ak).

To reduce the overfitting in the training, we use fivefold
cross-validation SVM: we first divide the training set (79
samples) into five subsets of equal size using random sam-
pling and one subset is tested using the classifier trained on
the remaining (5–1) subsets. The cross-validation accuracy
metrics is defined as the portion of data which are correctly

classified: τ ¼ true positiveþtrue negative
Total no: of sample . For the first iteration,

we represent the cross-validation prediction accuracy as τ1.
Step 4: Afterwards, in each step (i), we apply a forward-
search strategy which iteratively considers the next fea-
ture (fi) from the remaining feature list (F(n − i)) that has
the maximum relevancy value with the targeted annota-
tion (ak), and we form a temporary feature list as: =SF∪ fi.
We execute fivefold cross-validated SVM considering the
space formulated by temporary feature list (TempF). If
the cross-validation prediction accuracy of the current
learning (τi) is greater than the previous accuracy (τ(i −
1)), we include the new feature in the selected list (i.e.,
SF = TempF) or else discard the feature, and iterate step 3
with next feature from the remaining feature list (F(n − (i +

1))). We execute steps 2–4 for each annotation presents in
the annotation set a. Note that the number of selected
features for each annotation ak are chosen dynamically
by accuracy evaluation.
Step 5: After iterating over the steps 2–4 for each VST
(i.e., we iterated for 21 times for the current dataset), the
algorithm derives an optimal mapping between subsets of
quantitative imaging features and the VSTs. The mapping
T is defined as: T : SubQFeatures → ak where
SubQFeatures ⊆QFeatures and ak ∈ a (Fig. 6a). For giv-
ing an example, in Fig. 6b, we present the derived map-
ping for two types of rim patterns—Babsent rim or
capsule^ and Bthin rim.^

Prototype Development and Evaluation

We implemented the various components of the proposed
workflow (Fig. 1) and developed a MATLAB application
that allows user to load the CT image and the user-defined
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ROI, compute quantitative features, derive the mapping of
quantitative features to VSTs, and create a new trained
model. Afterwards, with a single mouse click, the trained
model can be exploited to perform completely automatic
VST identification for unseen CT liver lesions. In Fig. 7,
we present a snapshot of our application that shows the
automatic annotation result for a CT sample image, where
the Btrue annotation^ and the Bpredicted annotation^ col-
umns show the annotations done by the radiologist and
the annotations predicted by our system.

We evaluated our MATLAB prototype on the liver le-
sion CT dataset of 79 images. A primary lesion in each
image/sample was identified and annotated by an experi-
enced radiologist using a controlled vocabulary of 76
VSTs (Fig. 3) [16]. As mentioned earlier (BMethods^ sec-
tion), different classes of liver lesions are included in our
dataset and they demonstrate a variety of visual appear-
ance in CT images. Therefore, the VST occurrence also
varied widely among the samples (see Fig. 3). In total, we
created a model to predict the presence or absence of 21
unique VSTs by considering 496 different quantitative
features. The core functionalities of our system were eval-
uated in two ways. First, we compared the fivefold cross-
validation VST prediction accuracy with the ground truth
created by the radiologist (recorded VSTs). Second, we
performed a 2-stage evaluation where expert radiologists
analyzed the feature-to-concept mapping outcome, con-
sidering the expert expectation of correlation (individual
belief). In the following section, we summarize the results
of the evaluations.

Results

VST Prediction Accuracy

In Fig. 7, we present an automatic annotation result for an
unseen liver lesion sample. For most VSTs in this example,
the predicted annotations match with the manually defined
ground truth. Only the Bovoid^ was predicted wrongly as
Bround.^ For this lesion, this error is very likely since both
ovoid and round can be applicable for describing the lesion
shape as the shape is neither perfectly round nor absolutely
ovoid/egg-shaped yet possesses both characteristics. Figure 8
presents the statistics of fivefold cross-validation prediction
accuracy for all 21 VSTs where the original dataset is random-
ly partitioned into five subgroups, one subgroup is left out in
each iteration of training, and finally, the unseen subgroup is
used to test the model’s performance. The highest accuracy
achieved is 90.54% for the VST Bsolitary lesion,^ the lowest is
74.63% for the VST Bround or spherical,^ and the average
accuracy for 21 VSTs is 83.2%. For some VSTs, a possible
reason behind getting relatively low accuracy is that either the
terms do not have any clear independence from another VST,
e.g., ovoid vs round or spherical, or the statistic of occurrence
of the VST is not properly balanced, e.g., absent rim.

Mapping Between Quantitative Imaging Feature
and Visual Semantic Terms

From the large quantitative featurematrix of dimension 496, our
iterative learning algorithm (PmEf) automatically creates the

Figure 6 Mapping between
quantitative features and visual
semantic terms: a conceptual
representation and b derived
mapping for lesion rim pattern
VSTs.
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mapping between the VSTs and the discriminative features by
considering two primary constrains: (i) significant dependency
with the targetedVSTand (ii) improved cross-validation predic-
tion accuracy when it is being incorporated within the learning
model. Figures 9, 10, 11, and 12 present the feature mapping
results for the set of VSTs considered in our current studywhere
the colored bars represent VSTs, the vertical axis represents the
ranking value, and the horizontal axis represents the quantitative
image features.Werepresent the rankingvalue in the scaleof0–5
where 5 represents themost informative feature and0means that
thefeature isnotmappedwith theVST.Avalidationof thefeature
to conceptmapping from a clinical perspective can be very chal-
lenging since the low-levelquantitative features lacks the seman-
tics and therefore cannot be directly interpreted by the humans.

We performed a 2-stage evaluation. We first analyzed the
mapping from a computer vision perspective and, afterwards,
conducted individual sessions with two expert radiologists
specialized in abdominal imaging where we compared
computer-derived mapping with the expectation in an abstract
level. We observed that inter-radiologist agreement was very
high which makes comparison task straightforward. In the
remaining section, we present a condensed version of what
we derived from the 2-stage evaluation.

On average, our method mapped a single VST to only 4
quantitative features among 496 feature vectors compared
with a prior method [4] that mapped each VST with 12.6

features for the liver lesion CT images. After analyzing the
derived mapping from a computer vision perspective, we
found that in most cases the automatically mapped quantita-
tive features by our algorithm resemble the human expectation
of the correlation. For instance, the VSTs related to lesion
multiplicity (see Fig. 9) are mappedwith the number of similar
lesions (see BMethods^ section), which quantifies similar
appearing lesion(s) within the liver and the second order sta-
tistical features (GLCM, Gabor) and that represent spatial rep-
etition of gray value arrangement within the liver. In contrast,
the solitary lesion is mapped with the lesion shape and bound-
ary features.

The VSTs that define the primary lesion shape (Fig. 10) are
mapped mostly with the quantitative features that represent
the 2D shape of the contour, identified by the radiologist.
For instance, Beccentricity^ and BRadialSig^ features are the
dominant for representing round or spherical lesion shape and
Bcompactness^ feature which represents the degree to which a
shape is compact is derived as the most dominant for
representing ovoid lesion shape. Further, the VSTs related to
the rim pattern (Fig. 10) are associated with the imaging fea-
tures that mainly describe the boundary characteristics of the
2D contour, e.g., BLocalIntegral^ and Bedge sharpness,^
which is again highly analogous to the expectation.

Furthermore, local area integral invariant which computes
integrals on the boundary and represents the local

Fig. 7 MATLAB GUI snapshot showing automatic semantic annotation results for a sample data
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characteristics of the lesion boundary is derived as the most
informative feature for both smooth and circumscribed lesion
margin (Fig. 11). In contrast, the histogram and texture fea-
tures are ranked higher for predicting the Birregular margin^
(Fig. 11) which is reasonable since the margin irregularity is
not trivial to be described by the lesion boundary
characterization.

GLCM correlation and intensity-based features mapped
consistently with both Bheterogeneity^ and Bhomogeneity^
uniformity descriptors (Fig. 12). Proportion of pixels with
intensity larger than pre-defined threshold value is the most
dominant predictor for Bwater density,^ and Broughness^ is
most dominant for Bsoft tissue density.^ Interestingly, the tex-
ture features, such as BGabor^ and Bhistogram^, are mapped
with soft tissue density whereas intensity-based features, such

as intensity mean inside lesion and intensity difference with
the neighborhood, are mapped with water density (Fig. 12).

Discussion

Computerized radiological image interpretation is being wide-
ly studied. In prior work, creation of links between semantic
terms and quantitative image features was mainly explored in
two parallel ways: (i) bag of visual words approach (BoVW)
and (ii) direct modeling of VSTs. Following the BoVW ap-
proach, André et al. [22] applied Fisher-based method for
transforming visual word histograms learned from scale-
invariant feature transform (SIFT) into eight visual semantic
terms, but the transparency of the algorithm in terms of
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understanding is limited. Liu et al. [23] developed a bag of
semantic word model that used a supervised sparse
autoencoder to derive disease class patterns from neuro-
imaging datasets. However, the learned patterns were not as-
sociated with any formalized semantic terms, and, therefore,
the interpretation of the patterns is limited. Often, the core
limitation of the BoVW-based approaches is that the visual
words are not semantically meaningful, and there is a need
to find the appropriate quantization granularity to find the
mapping with semantic terms. This limits the effectiveness
and compactness of the representation.

Moving towards the direction of direct VST modeling,
Barb et al. [24] developed a computational mechanism for
associating intensity-based image features and VSTs which
also considers the perspective of individual users. Raicu
et al. [25] developed a probabilistic model to predict lung
nodule semantics using a set of quantitative image features
(shape, size, gray-level intensity, and texture). Gimenez et al.
[4] computed a relatively large set of quantitative features
from liver CT images and fed the whole feature matrix in
LASSO regularization model to predict the presence of
VSTs. Depeursinge et al. [5] adopted a different modeling

approach and created a SVM model using only the rotation-
covariant Riesz wavelet features to learn the signature of each
VST from liver CT images. To the best of our knowledge, up
to now, no study was performed to build a quantitative model
that can derive a human-interpretable mapping between the
low-level image features and the high-level VSTs.

Our proposed framework not only predicts radiological
VSTs but also derives explicit mapping between low-level
imaging features and high-level VSTs based on statistical cor-
relation. Therefore, the proposed systemwould be expected to
be more intuitive and, perhaps, trustworthy, to human experts
as they provide feedback on the prediction outcome. We have
experimented with a large group of popular state-of-the-art
quantitative features and also proposed a novel feature that
can represent lesion multiplicity. We adopted an iterative-
learning approach for the mapping which maximizes the fea-
ture relevancy for each targeted VST while giving a fair
chance to all the features to participate in the learning. First,
we extract a wide range of features from the CT liver lesion
dataset and order the features as per their relevancy to the
targeted VST. Second, the features are added iteratively using
a subset evaluation strategy which ensures good performance
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for VST prediction. Our results (see BVST Prediction
Accuracy^ section) appear better than the average accuracy
reported in a prior method [4] applied to a similar dataset.

The main limitation of our algorithm is that it follows an
incremental greedy strategy for feature mapping: Once a fea-
ture has been selected, it cannot be deselected at a later stage.
We plan to overcome this limitation by incorporating a hybrid
search mechanism and evaluate the model on a large and
balanced dataset. Also, a large part of evaluation adopted in
this study is qualitative and validated by two radiologist ex-
perts in abdominal imaging (see BMapping Between
Quantitative Imaging Feature and Visual Semantic Terms^
section) since it is not feasible to quantitatively measure legit-
imacy of the mapping between low-level quantitative and
high-level semantic features. We plan to involve more experts
from different domains and do a more intensive evaluation.

Conclusion

We propose a system that automatically learns the mapping
between low-level image features and high-level semantic
concepts given a valid training dataset, and detect lesion char-
acteristics from liver CT images by only given the lesion out-
line. The current framework has been experimented on a CT
image dataset which contains three different types of liver
lesion: cyst, metastasis, and hemangioma, but it can be easily
adapted to a different annotation task. For instance, the system
might also be able to predict the radiological observations
from suspected a lesion area (non-human analyzable)—pro-
vided there are sufficient discriminating underlying machine-
observable features—which may help in early-stage treatment
planning. The automatically derived feature-concept mapping
can improve the expressive power of computer-assisted radio-
logical image annotation and can be leveraged to build a pow-
erful tool for extracting Bhuman interpretable explanation^
from computer-aided diagnosis systems. Further, the mapping
can be exploited to reduce the Bsemantic gap^ between the
user’s conceptualization of a textual query for retrieving

radiological images and the low-level query that actually spec-
ify the image characteristics. This direction has the potential to
enhance the efficiency of radiological image retrieval and
browsing systems.
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