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Abstract: Recently, inflammasomes such as NLRP3 as cytosolic pattern-recognition receptors have
been implicated in the development of inflammation; however, limited investigations report the
circulating levels of this protein. The objective, thus, was to investigative circulating NLRP3 lev-
els in Saudi patients with a low-grade inflammatory disorder called metabolic syndrome (MetS).
Two hundred Saudi adults aged 30–65, with or without MetS diagnosed on the basis of National
Cholesterol Education Programme Adult Treatment Panel III (NCEP ATP III) criteria, were randomly
recruited. Five MetS components were established according to the diagnostic criteria in the study
subjects. Circulating levels of NLRP3 and known inflammation markers, such as tumor necrosis
factor α (TNF-α), C-reactive protein (CRP) and interleukins (IL-1β and IL-18), were measured in the
blood samples taken from the study subjects. Gender-based analysis showed a significant elevated
circulating levels of NLRP3 in non-MetS men compared to non-MetS females (p < 0.001). Moreover, an
increase in circulating levels of NLRP3 with a number of MetS components (p = 0.038) was observed
only in females. A significant positive correlation of NLRP3 levels with age (r = 0.20, p = 0.04), BMI
(r = 0.32, p < 0.01) and waist (r = 0.24, p = 0.02) and a significant negative correlation between NLRP3
and HDL-cholesterol (r= −0.21, p = 0.03) were also observed in females. Logistic regression analysis
also yielded a sex-specific positive association of NLRP3 with MetS in females, with this association
influenced mostly by central obesity and dyslipidemia components of MetS. In conclusion, this study
suggests a sexual disparity in the circulating levels of NLRP3, with a trend of increasing circulating
NLRP3 levels with increasing MetS components observed only in females, influenced mostly by
adiposity and dyslipidemia components of MetS. Longitudinal studies with a larger sample size and
investigating sex-specific hormones with NLRP3 would be needed to establish a causal relationship
of NLRP3 with MetS.
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1. Introduction

The innate immune response is well-known for its contribution to the inflammatory
responses in diseases such as infections, stroke, cardiovascular disease, diabetes and so
on [1–3]. The identification of germline-encoded pattern recognition receptors (PRR), which
recognizes pathogen- and danger-associated molecular patterns (PAMPs and DAMPs), trig-
gers inflammation by stimulating downstream signaling cascades and immune responses
initiated in immune cells such as macrophage and dendritic cells [4] PAMPs, such as
bacterial endotoxin, are derived from microorganisms, while DAMPs are derived from host
cells, including tumor cells, dead cells and compounds produced in response to signals [5].
When these PRRs are present in the cytoplasm, they have been attributed to the detection
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of endogenous danger signals, which leads to the development of inflammation [6]. One of
the best known among these cytoplasmic PRRs is the nucleotide-binding oligomerization
domain-like receptor protein 3 (NLRP3), which consists of big multiprotein clusters that
get activated by a variety of causes, leading to infection resolution while also having a
part in the pathology of cancer [7], inflammatory disorders [8] and autoimmune disor-
ders [9]. Inflammasomes, such as NLRP3, form an arm of the innate immune system by
mediating the activation of caspase-1 and pro-inflammatory cytokines (IL-1β and IL-18),
leading to a cascade of inflammatory processes which, if unchecked, may result in systemic
inflammation, a root-cause of metabolic disorders, such as insulin resistance, diabetes,
atherosclerosis, etc. [10,11].

Metabolic syndrome (MetS), also known as insulin-resistance syndrome, is a chronic
disease of low-grade inflammation that elevates the risk of cardiovascular disease (CVD)
and type 2 diabetes mellitus (T2DM) [12]. The prevalence of MetS has escalated globally
during the past two decades, especially with Saudi Arabia as one with a high prevalence
of 35.7% in adults reported as an average of two diagnostic criteria given by the National
Cholesterol Education Programme Adult Treatment Panel III (NCEP ATP III) and Interna-
tional Diabetes Federation (IDF) [13]. MetS patients are more susceptible to develop fatty
liver, polycystic ovary syndrome, cholesterol gallstones, hypertension, sleep disorders and
cancer, in addition to CVD and T2DM [14]. The individual components of MetS that cluster
to form this inflammatory state are insulin resistance (IR), hypertension, central obesity
and atherogenic dyslipidemia [15,16]. The pathway linking the pathogenesis of MetS
components such as obesity with IR has shown a close association between nutrient excess
and immune system activation in most organs related to energy homeostasis since changes
in homeostatic parameters induce cells to secrete danger signals involved in inflammation
cascade [17,18]. Furthermore, oxidative stress plays a role in the development of MetS,
leading to pro-inflammatory and pro-fibrotic pathways [19].

Chronic low-grade inflammation, induced by an imbalance in metabolic and immune
homeostasis as discussed above, has been implicated as a hallmark for the development of
MetS and its associated pathophysiological consequences [16]. Inflammasomes, such as
NLRP3, as pattern-recognition receptors, have been implicated in recognizing endogenous
danger signals leading to the development of inflammation [20]. There is a growing interest
among scientists worldwide in investigating the role of NLRP3 inflammasome activation
in the pathogenesis of metabolic disorders, and many reports, including our recent re-
view [21], have helped in understanding NLRP3-mediated adipose tissue inflammation
and impairment of insulin signaling pathway leading to IR and MetS. However, most of
the literature in this field deals with cytosolic NLRP3 inflammasomes, and limited reports
deals with the levels of circulating NLRP3 proteins in humans. Moreover, its association
with MetS and its individual components have not been studied. The objective of the
current study was to investigate the circulating levels of NLRP3 in Saudi adults with MetS
and its association with individual components of MetS. Furthermore, since MetS being a
low-grade inflammatory state, it is also interesting to study correlation of circulating levels
of NLRP3 with other established circulating pro-inflammatory markers, such as tumor
necrosis factor α (TNF-α), C-reactive protein (CRP) and interleukins (IL-1β and IL-18) in
the same cohort.

2. Methodology
2.1. Subjects and the Study Groups

Two hundred Saudi adults aged 30–65 years were randomly selected from the MetS
cohort database of the Chair of Biomarkers of Chronic Disease (CBCD) of the Biochemistry
department, College of Science, King Saud University in Riyadh, Saudi Arabia. Subjects
who were on anti-hyperglycemic treatment; pregnant or lactating women; and those
with known chronic medical conditions, such as renal, hepatic, pulmonary and cardiac
diseases, were excluded from the study. A written informed consent form was obtained
from all subjects before their inclusion in this study (project # E-20-5369). Ethical approval
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was obtained from the Ethics Committee of the College of Science Research Center, King
Saud University, Riyadh, Saudi Arabia (Ref # 20/0856/IRB). All participants completed a
questionnaire on demographic information, general health status and past medical history.
Subject with MetS were known cases diagnosed by NCEP ATP III criteria, which classify a
person with MetS if three of the following five risk factors or components are present [22].

Central obesity (component 1): waist circumference >101.6 cm in males and >88.9 cm
in females.

Hypertension (component 2): systolic blood pressure of >130 mmHg and/or diastolic
blood pressure of >85 mmHg or current use of antihypertensive medications.

Hyperglycemia (component 3): fasting glucose level > 5.6 mmol/L.
Low HDL-cholesterol (component 4): HDL-cholesterol <1.03 mmol/L in males and

<1.30 mmol/L in females.
Hypertriglyceridemia (component 5): triglyceride level > 1.7 mmol/L.
The subjects were divided into three groups. Group 1 (N = 101) included those with

≤2 MetS components representing the control group (without MetS as per NCEP ATP III
criteria); group 2 (N = 49) included the subjects with 3 MetS components and the group 3
(N = 50) included subjects with more than 3 MetS components. Groups 2 and 3 represent
the subjects with MetS according to the NCEP ATP III criteria.

2.2. Sample Collection and Anthropometrics

Overnight-fasting blood samples were collected by trained technicians and centrifuged
to get the serum samples at the recruiting centers; then the samples were transported under
suitable temperature to the CBCD laboratory, where they were immediately aliquoted into
smaller proportions and stored in freezers until analysis. The anthropometrics included
height, weight, and waist and hip circumferences were conducted with routine methods
by trained nurses. Mean systolic and diastolic blood pressures (millimeters of Hg) were
calculated after being measured twice, using a mercury sphygmomanometer. Body mass
index (BMI) and waist–hip ratio (WHR) were calculated by using the following formula:
weight in kilograms divided by the square of height in meters for BMI; and quotient
between waist and hip circumferences for WHR.

2.3. Biochemical Estimations

Aliquots of serum samples for the recruiting subjects were used to estimate circulating
levels of lipid profile; glycemic indices, such as fasting glucose and insulin; 25 (OH)
vitamin D; and circulating levels of inflammatory markers such as IL-18, IL-1β, TNF-α,
CRP and NLRP3. Glucose, total cholesterol, HDL-cholesterol and triglyceride levels were
quantified by using commercially available kits (catalogue nos. 981379, 981812, 981823 and
981301, respectively) in an automated biochemical analyzer (Konelab 20 Thermo-Fischer,
Espoo, Finland). The inter-assay CVs for these estimations were ≤5%, ≤3.5%, ≤4% and
≤4.5% for glucose, total cholesterol, HDL-cholesterol and triglyceride assays, respectively.
Fasting insulin was measured by Luminex Multiplex (Luminexcorp, Austin, TX, USA), a
fluorescent microbead technology, using commercially available kits (catalogue no. HINS-
MAG, inter-assay CV ≤ 4.5% between the kits). The glycemic indices HOMA-IR and
Quicki were calculated based on the established calculations, using fasting glucose and
insulin [23–25]. Serum 25(OH) vitamin D was analyzed, using COBAS e-411 autoanalayzer
(Roche Diagnostics, Mannheim, Germany) with commercially produced immunoassay kits
(IDS Ltd., Boldon Colliery, UK, Reference # 05894913190).

Circulating levels of IL-1β and TNF-α were quantified by using Flex MAP 3D System
(Luminex Corporation, Austin, TX, USA), which utilizes human cytokines Magnetics Bead
Panel 1 and 2 (Milliplex Map kit, catalogue nos. HADK1MAG-61K and HADK2MAG-
61K). The intra-assay and inter-assay % CV for TNF-α and IL-1β was <10 and <20, and
<10 and <15, respectively, according to the manufacturer. Commercially available ELISA
assays were used to measure the circulating levels of IL-18 (Quantikine Quickit, QK318,
R&D systems, MN, USA) and CRP (K9710s, Immunodiagnostic, AG, Germany). The
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intra-assay and inter-assay % CV for both of these assays was less than 10% according to
the manufacturer.

Circulating levels of NLRP3 was estimated by commercially available ELISA assay
(Cat. #CSB-E15885h, Cusabio, Houston, TX, USA). The minimum detectable dose for this
assay was less than 0.039 ng/mL of human NLRP3 according to the manufacturer protocol
and the assay had high sensitivity and specificity with CV% of <8% and <10% for intra-
and inter-assay precision. The standards and controls used in all the biochemical assays
were periodically reviewed by the Quality Assurance team of KSU for reproducible results.

2.4. Statistical Analysis

Data were analyzed by using SPSS version 23.0, IBM (SPSS, Chicago, IL, USA). The nor-
mal distribution of all the variables in the data was assessed by Kolmogorov–Smirnov test.
Central distribution was represented by mean ± standard deviation and median (quartile
1, quartile 3) for continuous normal and non-normal variables respectively; and frequency
(%) for categorical variables. To test the differences between the central distributions in the
three study groups, ANOVA and Kruskal–Wallis H-test were employed for normal and
non-normal variables, respectively. For further analysis, log-transformation was performed
to normalize the non-normal continuous variables. The bivariate-associations between cir-
culating NLRP3 levels and other continuous variables were performed by Pearson test and
represented by Pearson’s correlation coefficient (r) and associated p-value. Furthermore,
after looking at the gender-wise differences in circulating NLRP3 levels, the data in the
two genders were divided into tertiles based on circulating NLRP3 levels, and a logistic
regression analysis was run to assess the odds-ratio of components of MetS (present versus
absent) in higher tertiles compared to the lowest tertile. A Univariate model was followed
with adjustment with age and BMI in other models. A p-value of <0.05 was considered
statistically significant. Microsoft excel 2010 was used to plot the figures (Figures 1 and 2),
while Figure 3 was plotted by using the help of MedCalc statistical software.
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signifies the median.
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Figure 2. Scatter-plots representing the bi-variate correlation of NLRP3 with age (a), BMI (b), WHR (c) and HDL-cholesterol
(d) in females. The non-normal continuous variables were normalized by log-transformation before doing the Pearson
correlation analysis. The trend-line of the analysis is represented by the black dotted line.

J. Clin. Med. 2021, 10, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 3. ROC plots for females, using circulating NLRP3 levels as test variable and MetS and its individual components 
as state variable. AUC is “area under the curve”, 95% CI is 95% confidence interval of AUC, p < 0.05 is considered signifi-
cant. The five components of MetS- central obesity, hypertension, hyperglycemia, low HDL-C, and hypertriglyceridemia; 
and the full MetS has been plotted in subfigures (a–f) respectively.  

3. Results 
3.1. General Characteristics of the Study Subjects 

The study subjects and their baseline characteristics, divided into the three study 
groups, are summarized in Table 1. The group with MetS components ≤2 is a non-MetS 
group (N = 101), while the other two groups (Groups 2 and 3) in the table fall into MetS 
group (N = 99). There was no difference in distribution of genders between the three 
groups (p = 0.53). As expected though, Groups 2 and 3 were significantly older compared 
to Group 1 (p < 0.01). Similarly, BMI, WHR, systolic and diastolic pressures showed an 
increasing trend with respect to the number of MetS components in the three study groups 
(all p < 0.01). The same trend was followed in glycemic indices (FBG, insulin and HOMA-
IR) with a significant constant increase in the number of MetS components in the three 
study groups, as expected. HDL-cholesterol and the insulin sensitivity index Quicki de-
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Figure 3. ROC plots for females, using circulating NLRP3 levels as test variable and MetS and its individual components as
state variable. AUC is “area under the curve”, 95% CI is 95% confidence interval of AUC, p < 0.05 is considered significant.
The five components of MetS- central obesity, hypertension, hyperglycemia, low HDL-C, and hypertriglyceridemia; and the
full MetS has been plotted in subfigures (a–f) respectively.
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3. Results
3.1. General Characteristics of the Study Subjects

The study subjects and their baseline characteristics, divided into the three study
groups, are summarized in Table 1. The group with MetS components ≤2 is a non-MetS
group (N = 101), while the other two groups (Groups 2 and 3) in the table fall into MetS
group (N = 99). There was no difference in distribution of genders between the three
groups (p = 0.53). As expected though, Groups 2 and 3 were significantly older compared
to Group 1 (p < 0.01). Similarly, BMI, WHR, systolic and diastolic pressures showed
an increasing trend with respect to the number of MetS components in the three study
groups (all p < 0.01). The same trend was followed in glycemic indices (FBG, insulin and
HOMA-IR) with a significant constant increase in the number of MetS components in the
three study groups, as expected. HDL-cholesterol and the insulin sensitivity index Quicki
decreased as the number of MetS components increased in the three groups (p < 0.01 for
both). The circulating levels of inflammatory markers (TNF-α, CRP and IL-1β) showed an
expected trend of elevated levels in groups with higher MetS components (p < 0.01 in all);
however, for circulating NLRP3 levels, this trend was missing when all subjects were taken
into consideration in Table 1 (p = 0.44).

Table 1. Anthropometric and biochemical characteristics of the study subjects.

Parameters
Group 1

MetS Components
(≤2)

Group 2
MetS Components

(=3)

Group 3
MetS Components

(>3)
p

N (F/M) 101 (50/51) 49 (29/20) 50 (27/23) 0.53
Age (years) 35.49 ± 8 41.57 ± 6.7 42.3 ± 7.9 <0.01

Anthropometrics

BMI (kg/m2) 28.3 ± 6.6 32.12 ± 5.1 31.64 ± 5.2 <0.01
Waist (cm) 87.43 ± 14.7 103.04 ± 17.5 108.3 ± 12.9 <0.01

WHR 0.84 ± 0.1 0.94 ± 0.1 1.04 ± 0.2 <0.01
Systolic (mmHg) 116.63 ± 12 125.2 ± 14.8 135.88 ± 17.7 <0.01

Diastolic
(mmHg) 71.01 ± 9.4 75.55 ± 10.3 82.36 ± 11.2 <0.01

Circulating biochemical profile

Cholesterol
(mmol/L) 5.22 ± 0.9 5.41 ± 1.5 5.51 ± 1.7 0.40

FBG (mmol/L) 5.23 ± 0.9 6.58 ± 3 7.79 ± 3.5 <0.01
HDL-

Cholesterol
(mmol/L)

1.24 ± 0.3 1.12 ± 0.3 0.92 ± 0.2 <0.01

Triglyceride
(mmol/L) 1.19 (0.9, 1.5) 2.22 (1.5, 2.6) 2.4 (2, 3.4) <0.01

Vitamin D
(nmol/L) 42.39 (28.5, 59.8) 47.21 (31.1, 71.9) 35.51 (24.3, 58.9) 0.23

Insulin (µU/mL) 8.06 (4.2, 14.4) 15.26 (4.8, 36.8) 19.05 (10, 45.6) <0.01
HOMA-IR 1.75 (1, 3.8) 4.61 (1.5, 9.6) 8.38 (2.8, 11.8) <0.01

Quicki 0.63 (0.5, 0.7) 0.50 (0.4, 0.7) 0.44 (0.4, 0.6) <0.01
IL-18(pg/mL) 64.09 (36.6, 88.6) 49.29 (33.3, 82.3) 48.25 (37.7, 71.6) 0.33

TNF-α (pg/mL) 0.46 (0.2, 1.2) 1.46 (0.8, 1.8) 1.36 (0.9, 1.8) <0.01
IL-1β (pg/mL) 0.5 (0.4,0.9) 1.37 (1,2.9) 1.31 (1, 2.5) <0.01
CRP (µg/mL) 2.01 (0.59,4.2) 3.96 (1.5,6.2) 5.28 (1.9, 6.2) <0.01

NLRP3 (ng/dl) 8.65 (3.9,11.2) 5.8 (3.8,11.1) 6.5 (4.4, 12.8) 0.44
Note: Data are presented as frequency, mean ± standard deviation and median (Q1, Q3) for categorical, normal
continuous and non-normal continuous variables, respectively. The statistical differences in each variable between
the three groups, calculated by appropriate statistical tests, are presented as p-value. Statistically significant
p-values (<0.05) has been indicated by bold font. BMI, WHR, FBG, HDL, HOMA-IR represent body mass index,
weight by height ratio, fasting blood glucose, high-density lipoprotein and Homeostatic Model Assessment of
Insulin Resistance respectively.
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3.2. Characteristics of the Study Subjects According to Gender

Anthropometric and the biochemical data in the three study groups were further
looked at according to the gender, and the results are presented in Table 2. Subjects in
groups with higher MetS components were significantly older, and there was no difference
in this trend between the genders (p < 0.01 in both genders). The anthropometrics, glycemic
and lipid indices in both genders almost followed the same trend in the three study groups
as seen in the Table 1, and there was no noticeable difference in the trend between the
genders. Similarly, the circulating levels of inflammatory markers such as TNF-α, IL-
1β and CRP showed an increasing trend with respect to number of MetS components
irrespective of the gender. However, when the data were divided between the genders
and the circulating levels of NLRP3 checked in the study groups, we found an interesting
observation. In males, the circulating levels of NLRP3 seemed to decrease with increase
in MetS components but the trend was not statistically significant (p = 0.06); however, in
females, there was a significant increase in circulating levels of NLRP3 with number of
MetS components (p = 0.038).

The data were also analyzed between the study groups, MetS (≥3 components)
and non-MetS (<3 components); however, this analysis did not change the findings pre-
sented in this study. The analysis was presented in the form of Supplementary Materials
Tables S1 and S2.

3.3. Circulating NLRP3 Levels According to MetS Components

The circulating levels of NLRP3 were checked for individuals with lowest to highest
number of MetS components, and the results are presented as Table 3. The circulating levels
of NLRP3 followed an increasing trend in individuals with a higher number of MetS com-
ponents, thus reasserting the sexual disparity seen in the last table. The individuals with all
five MetS components were excluded from this analysis, as the group was disproportionate
compared to other groups, comprising only 5.5% (N = 11) of the total subjects.

The trend of increasing circulating levels of inflammatory markers (TNF-α, CRP and
IL-1β) and NLRP3 levels with respect to increasing MetS components in the three study
groups in females is depicted in Figure 1.

3.4. Gender-Wise Association of Circulating NLRP3 Levels with Anthropometric and
Biochemical Characteristics

The non-normal variables, such as NLRP3, were log-transformed, and a bi-variate cor-
relation analysis was performed, showing an association of NLRP3 with all other variables
in different genders; the results are presented in Table 4. In males, there was no statistical
significant correlation between NLRP3 and any measured parameter. However, in females,
there was a significant positive correlation of NLRP3 levels with age (r = 0.20, p = 0.04), BMI
(r = 0.32, p < 0.01), waist (r = 0.24, p = 0.02) and systolic blood pressure (r = 0.22, p = 0.02);
and a significant negative correlation between NLRP3 and HDL-cholesterol (r= −0.21,
p = 0.03) was observed in females.

The bi-variate correlation between NLRP3 and parameters such as age, BMI, WHR
and HDL-cholesterol in females is presented as scatter graphs in Figure 2.
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Table 2. Anthropometric and biochemical characteristics of the study groups on gender basis.

Parameters MetS Components
(≤2) (N = 51)

MetS Components
(=3) (N = 20)

MetS Components
(>3) (N = 23) p MetS Components

(≤2) (N = 50)
MetS Components

(=3) (N = 29)
MetS Components

(>3) (N = 27) p

Males (94) Females (106)

Age (years) 35.27 ± 7.8 41.45 ± 5.8 41.87 ± 8.3 <0.01 35.7 ± 8.2 41.66 ± 7.3 42.67 ± 7.6 <0.01
BMI (kg/m2) 26.61 ± 5.6 31.74 ± 5.3 29.86 ± 3.2 <0.01 30.03 ± 7 32.38 ± 5 33.14 ± 6.2 0.08

Waist (cm) 92.04 ± 16.9 109.19 ± 16.1 111.43 ± 14.3 <0.01 82.72 ± 10.2 98.81 ± 17.4 105.87 ± 11.4 <0.01
WHR 0.91 ± 0.1 0.98 ± 0.1 1.02 ± 0.1 <0.01 0.76 ± 0.1 0.92 ± 0.2 1.05 ± 0.2 <0.01

Sys (mmHg) 119.8 ± 12.3 126.5 ± 11.1 133.96 ± 11.5 <0.01 113.4 ± 10.9 124.31 ± 17 137.52 ± 21.7 <0.01
Dias (mmHg) 69.69 ± 9.4 74 ± 10.6 78.83 ± 9.6 0.001 72.36 ± 9.4 76.62 ± 10.1 85.37 ± 11.7 <0.01

Cholesterol (mmol/L) 5.24 ± 0.9 5.37 ± 1.4 5.46 ± 1.7 0.77 5.2 ± 1 5.44 ± 1.7 5.56 ± 1.7 0.52
FBG (mmol/L) 5.22 ± 0.5 6.52 ± 2.2 8.84 ± 4.3 <0.01 5.23 ± 1.2 6.62 ± 3.5 6.9 ± 2.4 <0.01

HDL-C (mmol/L) 1.13 ± 0.2 0.96 ± 0.2 0.8 ± 0.2 <0.01 1.34 ± 0.3 1.23 ± 0.4 1.01 ± 0.3 <0.01
Triglyceride (mmol/L) 1.33 (0.9, 1.7) 2.46 (1.8, 2.9) 2.42 (2, 3.5) <0.01 1.07 (0.8, 1.5) 1.97 (1.4, 2.5) 2.38 (2, 2.8) <0.01

Vitamin D (nmol/L) 44.97 (31.6, 61.5) 40.71 (27.1, 56.7) 36.01 (23.5, 55.3) 0.12 33.28 (23, 56.2) 55.07 (35.5, 89.1) 35.51 (24.3, 67.3) 0.03
Insulin (µU/mL) 11.2 (6.1, 17.7) 13.23 (4.8, 52.6) 24.3 (7.1, 51.5) 0.19 5.72 (3.4, 10.8) 17.28 (6.8, 32.3) 18.11 (10.2, 42.5) <0.01

HOMA-IR 2.77 (1.6, 4.2) 3.48 (1.5, 11.3) 9.04 (2, 16.3) 0.02 1.33 (0.7, 2.4) 4.62 (1.5, 7.9) 6.22 (2.8, 11.6) <0.01
Quicki 0.56 (0.5, 0.6) 0.53 (0.4, 0.7) 0.43 (0.4, 0.6) 0.02 0.68 (0.6, 0.8) 0.5 (0.4, 0.7) 0.47 (0.4, 0.6) <0.01

IL-18 (pg/mL) 40.07 (26, 63.5) 54.05 (37, 91.3) 56.84 (40.3, 72.5) 0.03 77.59 (61.9, 100.8) 40.79 (31.4, 66.9) 42.95 (34.5, 65.6) <0.01
TNF-α (pg/mL) 0.21 (0.1, 0.3) 1.50 (0.8, 1.6) 1.14 (0.9, 1.7) <0.01 0.86 (0.4, 1.5) 1.44 (0.6, 1.8) 1.54 (1, 1.9) 0.02
IL-1β (pg/mL) 0.43 (0.2, 0.6) 1.53 (1.2, 2.4) 1.31 (1.1, 4.7) <0.01 0.78 (0.4, 1.6) 1.37 (1, 2.9) 1.34 (1, 2) 0.01
CRP (µg/mL) 1.81 (0.74, 4.09) 4.13 (1.8, 6.4) 5.1 (2.0, 6.1) <0.01 2.37 (0.5, 4.5) 3.96 (1.4, 6.2) 5.64 (1.1, 6.9) 0.003

NLRP3 (ng/dl) 10.4 (8.3, 11.4) 5.4 (4, 12) 5.7 (4.4, 11.3) 0.06 4.6 (3.3, 9) 6.4 (3.6, 10.5) 8.4 (4.4, 16) 0.038

Note: Data are presented as frequency, mean ± standard deviation and median (Q1, Q3) for categorical, normal continuous and non-normal continuous variables, respectively. The statistical differences in each
variable between the three groups, calculated by appropriate statistical tests, are presented as p-value. Statistically significant p-values (<0.05) has been indicated by bold font. BMI, WHR, FBG, HDL, HOMA-IR
represent body mass index, weight by height ratio, fasting blood glucose, high-density lipoprotein and Homeostatic Model Assessment of Insulin Resistance respectively.



J. Clin. Med. 2021, 10, 3288 9 of 15

Table 3. NLRP3 levels according to MetS components.

MetS Components 0 1 2 3 4

All subjects (N = 200)

NLRP3 (ng/dL) 7.9 (3.4, 9.9) 7.1 (3.7,
10.1)

10.65 (5.3,
12.6)

5.8 (3.8,
11.1)

6.5 (4.4,
12.7)

Males (N = 94)

NLRP3 (ng/dL) 9.4 (5, 11.2) 10 (6.9,
10.8)

11.2 (10.4,
12.3) 5.4 (4,12) 5.8 (5, 9.9)

Females (N = 106)

NLRP3 (ng/dL) 5.1 (2.5, 8.4) 3.9 (3.3, 7.9) 6.2 (2.5, 9.9) 6.4 (3.6,
10.5)

8.1 (4.4,
15.4)

Note: Data are presented as median (Q1, Q3).

Table 4. Bi-variate correlation between NLRP3 and other variables according to gender.

Parameters Males (94) Females (106)

r p r p
Age −0.11 0.29 0.20 0.04
BMI −0.18 0.08 0.32 <0.001

Waist −0.12 0.26 0.24 0.02
WHR 0.04 0.72 0.33 <0.001

Systolic −0.08 0.44 0.22 0.02
Diastolic −0.15 0.14 0.18 0.06

Cholesterol −0.13 0.21 −0.13 0.19
FBG −0.15 0.15 0.06 0.57

HDL-Cholesterol −0.10 0.36 −0.21 0.03
Triglyceride −0.01 0.97 0.12 0.23
Vitamin D −0.04 0.74 0.09 0.36

Insulin 0.22 0.08 0.21 0.07
HOMA-IR 0.14 0.27 0.22 0.06

Quicki −0.15 0.23 −0.22 0.06
IL-18 −0.07 0.54 −0.06 0.58

TNF-α −0.14 0.33 0.04 0.73
IL-1β −0.08 0.49 −0.05 0.64
CRP −0.17 0.1 −0.17 0.09

Note: The data represent the Pearson correlation analysis of circulating NLRP3 levels with other measured
parameters according to genders. The non-normal continuous variables were normalized by log-transformation
before conducting the analysis. A p < 0.05 was considered statistically significant. Statistically significant p-values
have been indicated by bold font. BMI, FBG, HDL, HOMA-IR represent body mass index, fasting blood glucose,
high-density lipoprotein and Homeostatic Model Assessment of Insulin Resistance respectively.

3.5. Gender-Wise Association of Circulating NLRP3 Levels with Different Components of MetS

Circulating NLRP3 levels in both genders were divided into tertiles, with tertile
one and tertile three having the lowest and highest NLRP3 levels, respectively, and a
logistic regression analysis was run checking the odds of having different components
of MetS in higher tertiles of NLRP3 compared to the lowest tertile. The results of the
logistic regression analysis are presented in Table 5. The models used were univariate
(Model a), age adjusted (Model b) and age + BMI adjusted (Model c). A gender-specific
association of NLRP3 levels with full MetS and its individual components, especially
“central obesity” and “low HDL-cholesterol”, was observed only in females in this logistic
regression analysis. The logistic regression analysis showed that, in females, higher tertiles
of NLRP3 levels were associated with higher odds of getting “central obesity”, as well as
“low HDL-cholesterol” component of MetS (p-trend 0.02 and 0.04, respectively), and this
statistically significant trend persisted even after adjustment with age and BMI. The other
components of MetS except hyperglycemia also showed this trend in females, at least for
the univariate model, which suggested increasing hypertriglyceridemia and hypertension
with higher tertiles of NLRP3 levels. As for full MetS in females, the univariate analysis
suggested that higher tertiles of NLRP3 levels are associated with higher odds of having
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full MetS (p-value for trend = 0.01); however, the statistical significance of the analysis was
lost after adjustment with age and BMI. In males, no such significant association of NLRP3
levels with components of MetS or with full MetS was observed.

Table 5. Logistic regression analysis showing association of components of MetS with circulating NLRP3 levels divided
into tertiles.

Males (94)

Tertile 1
3.90 (3.0,4.6)

Tertile 2
9.30 (7.2,10.1)

Tertile 3
12.30 (11.4,14.2) pt

Central Obesity
Model a 1 0.52 (0.2, 1.4), 0.21 0.42 (0.1, 1.2), 0.09 0.21
Model b 1 0.55 (0.2, 1.6), 0.27 0.54 (0.2, 1.6), 0.28 0.44
Model c 1 0.71 (0.2, 2.5), 0.60 0.59 (0.2, 2.2), 0.42 0.72

Hypertension
Model a 1 0.25 (0.1, 0.8), 0.02 0.67 (0.2, 1.8), 0.44 0.04
Model b 1 0.25 (0.1, 0.8), 0.02 0.79 (0.3, 2.6), 0.67 0.04
Model c 1 0.28 (0.1, 0.9), 0.03 0.88 (0.3, 2.6), 0.81 0.06

Hyperglycemia
Model a 1 0.43 (0.2, 1.2), 0.10 0.59 (0.2, 1.6), 0.31 0.25
Model b 1 0.45 (0.2, 1.3), 0.45 0.71 (0.3, 2.0), 0.71 0.32
Model c 1 0.49 (0.2, 1.4), 0.19 0.76 (0.3, 2.2), 0.61 0.42

Low HDL-C
Model a 1 0.94 (0.4, 2.6), 0.91 1.29 (0.5, 3.5), 0.61 0.81
Model b 1 1.00 (0.4, 2.7), 0.99 1.49 (0.5, 4.2), 0.45 0.68
Model c 1 0.99 (0.4, 2.7), 0.99 1.46 (0.5, 4.1), 0.48 0.69

Hypertriglyceridemia
Model a 1 0.43 (0.2, 1.2), 0.10 0.87 (0.3, 2.4), 0.79 0.21
Model b 1 0.45 (0.2, 1.3), 0.15 1.35 (0.4, 4.2), 0.60 0.12
Model c 1 0.51 (0.2, 1.6), 0.26 1.58 (0.5, 5.2), 0.45 0.16

Full MetS
Model a 1 0.30 (0.1, 0.9), 0.03 0.68 (0.2, 2.0), 0.49 0.06
Model b 1 0.34 (0.1, 1.1), 0.07 0.51 (0.2, 1.7), 0.26 0.19
Model c 1 0.34 (0.1, 1.2), 0.08 0.63 (0.2, 2.2), 0.47 0.21

Females (106)

Tertile 1
3.10 (1.9,3.4)

Tertile 2
6.35 (4.6,7.8)

Tertile 3
13.80 (11.5,19.4) pt

Central Obesity
Model a 1 1.29 (0.5, 3.2), 0.58 3.61 (1.3, 10.2), 0.01 0.02
Model b 1 1.17 (0.5, 2.9), 0.74 2.98 (1.1, 8.7), 0.04 0.04
Model c 1 1.12 (0.5, 2.8), 0.78 2.37 (1.1, 7.2), 0.04 0.04

Hypertension
Model a 1 1.51 (0.5, 4.2), 0.43 2.52 (0.9, 6.9), 0.07 0.19
Model b 1 1.13 (0.4, 3.3), 0.82 1.70 (0.6, 5.0), 0.33 0.57
Model c 1 1.06 (0.4, 3.2), 0.91 1.51 (0.5, 5.6), 0.46 0.71

Hyperglycemia
Model a 1 0.77 (0.3, 2.0), 0.59 1.44 (0.6, 3.7), 0.49 0.43
Model b 1 0.46 (0.2, 1.3), 0.14 0.70 (0.2, 2.1), 0.53 0.32
Model c 1 0.44 (0.1, 1.3), 0.13 0.64 (0.2, 2.0), 0.45 0.31

Low HDL-C
Model a 1 0.98 (0.4, 2.4), 0.96 3.33 (1.1, 9.8), 0.03 0.04
Model b 1 1.03 (0.4, 2.6), 0.94 3.73 (1.2, 11.4), 0.02 0.03
Model c 1 1.04 (0.4, 2.6), 0.93 3.96 (1.2, 12.6), 0.02 0.03

Hypertriglyceridemia
Model a 1 1.96 (0.7, 5.1), 0.17 3.35 (1.2, 9.1), 0.02 0.05
Model b 1 1.42 (0.5, 4.1), 0.52 2.11 (0.7, 6.3), 0.18 0.39
Model c 1 1.38 (0.5, 4.0), 0.55 2.04 (0.7, 6.2), 0.21 0.45

Full MetS
Model a 1 1.20 (0.5, 3.1), 0.71 4.05 (1.4, 11.5), 0.009 0.01
Model b 1 0.80 (0.3, 2.2), 0.62 2.43 (0.8, 7.7), 0.13 0.09
Model c 1 0.70 (0.2, 2.1), 0.53 2.06 (0.6, 6.9), 0.24 0.15

Note: Data of the logistic regression analysis were presented as odds ratio, 95% confidence interval, associated p-value. Odds ratio for
higher NLRP3 tertiles (2 and 3) was calculated by taking tertile 1 as reference (represented by value 1). pt represents the p-value for the
trend. Models a, b and c are univariate, + adjusted with age and + adjusted with BMI, respectively. A p < 0.05 was taken as significant.
Statistically significant p-values have been indicated by bold font.
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Receiver operating curves (ROCs) were prepared by using circulating NLRP3 as a test
variable to predict the full MetS and its individual five components in females, and the
plots are presented in Figure 3.

4. Discussion

In this study, we evaluated the circulating levels of NLRP3 in Saudi adults with MetS
diagnosed on NCEP ATP III criteria. To the best of the investigators’ knowledge, this
was the first report, at least in this population, in terms of determining the association
between serum NLRP3 levels and MetS. One of the major findings observed in this study
was the sexual disparity in the relationship of MetS with circulating levels of NLRP3.
The univariate logistic regression analysis suggested that the odds of having full MetS
increased significantly with increasing circulating NLRP3 levels only in case of females.
This gender-dimorphic relationship in females was influenced mostly by central adiposity
and low HDL-cholesterol components of MetS, possibly confirming the gender-dimorphism
theory in the immune response. Moreover, elevated circulating NLRP3 levels, along-with
increased IL-1β, CRP and TNF-α levels in subjects with higher MetS components, at least
in females, suggests its pro-inflammatory activity.

MetS, a multifactorial pathophysiological disorder with widespread health conse-
quences, is not only characterized by metabolic imbalance but also by an immunologic
process in the infiltration of macrophages, T and B cells, etc., in tissues such as adipose,
liver and pancreatic islets, resulting in a low-grade inflammation state [26]. When activated,
the NLRP3 inflammasome, a cytosolic multiprotein complex, causes caspase-1 to cleave
pro-IL-1β and pro-IL-18, resulting in their active forms of pro-inflammatory cytokines
involved in the inflammation cascade [27–29]. NLRP3 inflammasomes have thus been
considered as a link between immune and metabolic processes related to disorders in
glucose hemostasis, lipid metabolism and blood pressure [6,30]. NLRP3 inflammasome
activation is regulated at both the transcriptional and post-translational level through a
two-step classical model of priming and activation, triggered by various DAMPs as a result
of metabolic dysfunction [31]. Saturated fatty acids, pro-inflammatory adipokines, excess
ATP, reactive oxygen species (ROS), hyperglycemia and other metabolic insults serve as
major inducers of a cycle of NLRP3 inflammasome activation and cytokine production [32].

Our data suggest that circulating levels of NLRP3 are positively associated, at least in
females, with components of MetS especially central obesity and low-HDL component. Ear-
lier reports show that obese people have increased NLRP3 and IL-1β expression in visceral
and subcutaneous deposits, and this has also been confirmed by genetic studies [33,34].
Furthermore, calorie restriction, exercise and weight loss through bariatric surgery have
been associated with lower gene expression of NLRP3 and IL-1β, thus suggesting that
obesity-induced MetS and NLRP3 inflammasome activity are interrelated [35,36]. More-
over, a significant negative correlation of circulating levels of NLRP3 protein with HDL-
cholesterol confirms an anti-inflammatory effect of HDL, which has been attributed to its
role in reducing the loss of lysosomal membrane integrity upon phagocytosis of cholesterol
crystals [37]. The results from the mentioned studies support the results of our study
that suggest that higher circulating NLRP3 levels are associated with MetS components.
Some findings, however, report that obesity-mediated inflammation and the production
of proinflammatory cytokines in adipose tissue and NLRP3 inflammasome activation
are not interdependent [38]; hence, the findings should further be elucidated in future
such studies.

The relationship of NLRP3 inflammasomes with metabolism is gaining increasing
attention from last few years, and a number of reports have been published [39,40]. Most of
these studies, however, deal with the cytosolic inflammasomes and their role in inflamma-
tion. Our data here are important, as limited reports on the circulating levels of NLRP3 are
currently in the literature, and our data are probably the first that investigate the association
between circulating levels of NLRP3 levels with MetS. Yongfeng Zhang et al., in their study
showed that NLRP3 expression in the synovial fluid was positively correlated with arthritis,
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suggesting its role in the pathogenesis of inflammatory disorders, such as rheumatoid
arthritis [41]. Nadine Kerr and colleagues in their recent study demonstrated the potential
use of serum inflammasome proteins as biomarkers of stroke [42]. Similarly, a study on
the serum levels of NLRP3, published in 2019 by Kuanxue Sun and Hongwei Xia, showed
elevated expression in severe blunt abdominal trauma patients and was also correlated
with 6-month mortality in these patients [43]. Two more recent studies showed elevated
serum NLRP3 levels associated with severity of diseases such as ulcerative colitis [44] and
polyradiculoneuropathy [45]. The data from all of these studies are in line with our study,
suggesting a potential role of circulating NLRP3 proteins in inflammatory disorders such
as MetS.

The sex-specific differences in circulating levels of NLRP3 observed in this study, with
higher levels in males compared to females (median levels of 10.4 and 4.6 ng/dl, respec-
tively, p < 0.001 in non-Mets subjects) support the hypothesis that sex differences influence
immune responses [46] and that women experience lower rates of chronic inflammatory
diseases [47]. An earlier study [48] showed higher mRNA levels of NLRP3 in the peripheral
blood mononuclear cells (PBMC) of males compared to females (OR 2.04, 95% CI 1.24–3.35,
p = 0.03), which corresponds to the higher circulating NLRP3 levels in men observed in this
study. Moreover, a sexual disparity was also observed in circulating levels of NLRP3 in
subjects with MetS, with significantly higher levels observed with higher MetS components
only in females. It would be interesting to study the mRNA levels of NLRP3 in PBMC’s of
MetS subjects and investigate whether it follows the same trend as the circulating NLRP3
levels found in this study. This sex-specific differential expression in circulating NLRP3
levels may be attributed in part to the effect of sex hormones, which impact the repertoire
of immune response differently in men and women. Studies have shown that decline
in estrogen level, particularly after menopause, leads to elevated NLRP3 activation and,
hence, higher risk of inflammatory disorders [49]. Most of the female subjects in this study
(79.2%) were pre-menopausal, which may explain the low NLRP3 levels compared to men.
Further analysis of circulating NLRP3 levels between pre- and post-menopausal women in
this study was not possible due to low sample size in post-menopausal group; hence, future
large studies on this subject would reveal this distinction in a better manner. Progesterone
and androgens such as testosterone, on the other hand, have been linked with NLRP3
inflammasome activation [50]; however, this role of the male sex hormone needs further
elucidation, as there are reports which conflict with the assisting role of testosterone for
NLRP3 inflammasome activation [51]. Nonetheless, the sex-specific signature observed
here in the circulating levels of NLRP3 proteins suggests its active role in the pathogenesis
of MetS.

In this study, a novel sex-specific association between circulating levels of NLRP3 and
the status of MetS in Saudi adults was presented. Even though the findings in this study
may help in the understanding of the sexual dimorphism in inflammatory response to
metabolic disorders, some limitations need to be pointed out. Firstly, the present study, due
to nature of its design, was unable to establish a causal relationship of NLRP3 with MetS.
Secondly, although the low sample size was enough to give an overview of the association
of circulating levels of NLRP3 with MetS, a larger sample size would have provided better
results, especially in the elucidation of these findings between pre-menopausal and post-
menopausal women. Thirdly, the results may be valid in a specific population, as the
homogeneity of the samples used might have influenced the relationship. Additional
related studies involving other populations might provide different results, which would
be useful, especially considering the scarcity of the literature on the circulating levels of
this protein. Lastly, the circulating levels of NLRP3 protein were investigated here without
looking at the levels of NLRP3 in PBMC’s, as it may suggest differential regulation of
inflammasome activity in PBMC compared to serum.
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5. Conclusions

In conclusion, this study suggests a sexual disparity in the circulating levels of NLRP3
in Saudi men and women, with a trend of increasing circulating NLRP3 levels with increas-
ing MetS components observed only in females. Moreover, significantly higher NLRP3
levels were observed in non-MetS males compared to females, supporting the gender-
dimorphism hypothesis in immune responses. The logistic regression analysis revealed
that this differential effect was influenced mostly by adiposity and dyslipidemia compo-
nents of MetS. Longitudinal studies with a larger sample size would be needed to establish
a causal relationship of NLRP3 with MetS. Furthermore, there is a need for future investi-
gations on the association of estrogens and testosterone with the NLRP3 inflammasome
and cytokine signaling in MetS, as it may relate to the biologic mechanisms underlying the
sexual dimorphism found in this study.
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