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Abstract: Given the high biological impact of classical and emerging toxicants, a sensitive and
comprehensive assessment of the hazards and risks of these substances to organisms is urgently
needed. In this sense, toxicometabolomics emerged as a new and growing field in life sciences,
which use metabolomics to provide new sets of susceptibility, exposure, and/or effects biomarkers;
and to characterize in detail the metabolic responses and altered biological pathways that various
stressful stimuli cause in many organisms. The present review focuses on the analytical platforms
and the typical workflow employed in toxicometabolomic studies, and gives an overview of recent
exploratory research that applied metabolomics in various areas of toxicology.

Keywords: toxicometabolomics; drug toxicity; toxicity pathways; biomarkers; prediction models

1. Introduction

Within the advancement of science and technology in recent years, the application
of omics strategies has allowed a paradigm shift that provides a holistic perspective on
biological studies. Among the available omics sciences, metabolomics has stood out [1],
and is increasingly being used in the study of several toxic agents—a subfield named
toxicometabolomics—in order to better understand their toxicity mechanisms, as well as
to identify new biomarkers and target organs. This review focuses on recent advances in
toxicometabolomics research and discusses some of the challenges and pitfalls encountered
in metabolomics work.

2. What Is the Metabolome?

The term ‘metabolome’ was first used by Steven Oliver in the late 1990s [2], and was
defined as the complete set of low-molecular-weight compounds (<1500 Da) present within
biological systems, and their interactions. Its composition is affected by the upstream influ-
ence of the genome, transcriptome, and proteome, as well as by environmental and lifestyle
factors, drugs, and/or underlying diseases [3,4]. Although the full number of metabolites
present in humans is not yet known, due to the high complexity of the metabolome, the
Human Metabolome Database (HMDB; http://www.hmdb.ca, version 4.0, 2018) contains
over 114,000 metabolite entries (peptides, lipids, amino acids, nuclei acids, carbohydrates,
and organic acids, among others) with a wide dynamic concentration range, from high
abundance (>1 mM) to relatively low abundance (<1 nM) [5].

Some authors restrict the metabolome to the set of endogenous metabolites [6–8], al-
though the exogenous metabolites (e.g., drugs and body microbiota) also play an important
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role in an organism’s physiology or pathophysiology [9]. In fact, the metabolome can be
divided into four categories: (i) the intracellular metabolome (or endometabolome), which
includes all metabolites produced by each cell type, tissue, or organism [10,11]; (ii) the
extracellular metabolome (or exometabolome), which refers to the metabolites secreted
or consumed by the cells [11,12]; (iii) the microbial metabolome produced by the micro-
biota [10,13]; and (iv) the xenometabolome, which includes the metabolites derived from
xenobiotics, pollutants, and diet [10,14].

3. Metabolomics: Concept and Strategies

The study of metabolic profiles of a given organism and the changes in that same
profile was called ‘metabonomics’ by Nicholson et al. [15] and ‘metabolomics’ by other
authors [8]. These two terms are often used interchangeably, although each one has a
specific purpose. The two fields employ similar analytical and data processing, and have
a common goal, metabolome analysis; however, while metabolomics intends to identify
and quantify all metabolites (endogenous and exogenous) present in a specific biological
sample [8], metabonomics studies how the metabolic profile of a complex system changes
in response to specific stimuli, such as a disease or treatment [15]. In this review, for
simplicity, the term ‘metabolomics’ will be used regardless of the purpose under study.

According to the central dogma of molecular biology (Figure 1), deoxyribonucleic acid
(DNA) is transcribed into ribonucleic acid (RNA), which is then translated into proteins,
the activities of which result in the formation of myriad metabolites [3]. Metabolites are the
ultimate product of all regulatory complexity present in the cell, tissue, or organism [3],
and therefore are the most proximal molecules of the biochemical activity that occur
in an organism in response to physiological and pathophysiological stimuli [16]. Thus,
considering the metabolome as most predictive of phenotype [17], metabolomics is the
omics science that provides the most functional information [18].

Figure 1. The central dogma of molecular biology and correspondence with ‘omics’ disciplines
(adapted from [17]).

Besides offering a powerful holistic approach to understand biological processes,
metabolomics also has several other benefits over lower-level approaches (genomics, tran-
scriptomics, and proteomics) (Table 1). First, it is able to provide information about the
specific area of metabolism that is affected [3]. As the downstream product of gene expres-
sion, the metabolome can provide amplified alterations when compared to transcriptome
or proteome, increasing the sensitivity to detect biochemical changes [19]. This approach
is of higher throughput, generally lower in cost, and provides data that is much less
complex and more informative than any other omics technology [3]. It is also important
to note that metabolomics facilitates the translatability of the results from experimental



Metabolites 2021, 11, 692 3 of 31

models to humans, since, regardless of the organism’s complexity, the chemical structures
of the metabolites are universal [19]. Despite all these advantages, a key limitation to
metabolomics is the fact that metabolites do not have a direct link to the genome, as many
genes may determine the synthesis and turnover of a single metabolite, which makes it
difficult to interpret metabolomics data [11,20]. Another drawback compared to transcrip-
tome and proteome is the wide variety of physicochemical properties of the metabolites,
which make them more differentially extractable and determined by one single analytical
platform [20]. Additionally, the identification and quantification of many metabolites at
the same time often makes it difficult to include the data in a physiological context that
matches to the current understanding of metabolism. Still, this can be valuable in the
discovery of hitherto unknown pathways [11].

Table 1. Advantages and limitations of different omics technologies (adapted from [21]).

Omics Technology Strengths Limitations

Genomics

- High-throughput sequencing techniques
allow the cost and time-efficient sequencing
of complete genomes;

- Simultaneous gene expression analysis of
thousands of genes;

- Sensitive endpoint of toxicity, since gene
expression changes often occur at an early
stage;

- Studies on gene polymorphisms clearly
demonstrate the individual susceptibility to
some drugs and different responses among
individuals.

- Due to polymorphism, genome sequencing
alone is not enough;

- Changes in gene expression do not always
lead to adverse effects;

- Difficult to predict the final biological effect
of DNA by only genome analysis due to
post-transcriptional, post-translational, and
epigenetic changes;

- Difficult to translate results to in vivo toxicity
or diseases.

Transcriptomics

- Vast quantity of data is produced;
- Effective combination with single cell

technologies;
- Relatively inexpensive;
- Good reproducibility for interlaboratory

studies.

- RNA isolation and sequencing are
susceptible to handling errors;

- Presence of RNAs does not necessarily
predict the translation into proteins;

- Does not take into account post-transcription
modifications;

- Need for specialized analysts.

Proteomics

- Sensitivity, specificity, and low costs of
protein arrays;

- Simultaneous analysis of thousands of
proteins;

- Analysis of protein–protein interactions;
- Allow quantitative analysis;
- Robust link between an organism proteomic

profile and its phenotype.

- Complexity and instability of the proteome;
- Large number of proteins and possible

post-translational modifications;
- Limited reproducibility;
- Laborious analysis technique;
- Not all proteins in a sample can be identified;
- Expensive equipment is required.

Metabolomics

- Simultaneous analysis of a large set of
metabolites;

- Considered to be closest to the phenotype;
- Availability of a public and commercial

database;
- Chemical structures of the metabolites are

universal, allowing translatability between
species;

- Diverse range of applications across many
fields.

- Metabolome is influenced by several
variability factors;

- Sample collection and preparation
conditions, as well as analytical platforms
chosen, limit the detection of some
metabolites;

- Require expensive analytical techniques;
- Complexity of the data analysis and

interpretation.
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Within metabolomic studies, three analytical strategies can be distinguished: the global
or untargeted approach, the metabolic profiling, and the targeted approach (Figure 2) [8,22].
Untargeted metabolomics is based on studying the largest number of metabolites as
analytically possible, without having a priori knowledge on the nature and identity of the
measured compounds, looking for variations that can be used to discriminate groups of
samples [8]. Consequently, these studies are characterized by the production of large and
complex amounts of data, which are now surpassed by the use of powerful bioinformatics
tools. Given its potential for hypothesis generation and its comprehensive metabolome
coverage, untargeted metabolomics is often the first approach taken by researchers looking
for a metabolic research question [23]. Metabolic profiling focuses on the quantitative
analysis of a set of predefined metabolites that belong to a specific class of compounds
(e.g., sugars, amino acids, lipids, or organic acids) or a particular metabolic pathway [8,24].
On the other hand, targeted metabolomic studies are hypothesis-driven experiments and
seek to measure a specific set of metabolites [8]. In this type of strategy, a selective sample
preparation is usually applied and optimized to quantify the concentrations of metabolites
with high precision and accuracy, usually to validate an untargeted analysis [25].

Figure 2. Classification of different strategies of metabolomic experiments (adapted from [22]).

A hypothesis-generating metabolomics approach covers different strategies to provide
sample classification (i.e., case/control): (i) fingerprinting; and (ii) footprinting analy-
sis. The metabolic fingerprint refers to the global snapshot of the metabolites present
inside the cells (intracellular metabolome or endometabolome), while the metabolic foot-
printing explores the (exo)metabolites excreted or consumed by an organism (extracel-
lular metabolome or exometabolome), providing a cumulative picture of metabolism
over time [11,26,27]. Compared to fingerprinting analysis, footprinting analysis has the
advantage of having a relatively simple sampling that does not require extremely time-
consuming quenching and extraction steps [25,28]. In addition, it allows the monitoring
of the metabolic changes over time in cultures in the same cells [29]. However, the inter-
pretation of extracellular changes may be conditioned by difficulties in establishing direct
relationships between the exometabolome and the cellular metabolic state [29].
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4. Metabolomics Workflow

A good experimental design and the choice of appropriate methods of samples and
data processing are prerequisites for the success of any metabolomics study. For the present
topic, the workflow commonly used in high-throughput untargeted metabolomic studies
(Figure 3) will be described, as well as the main challenges found in each stage.

Figure 3. Schematic representation of a general untargeted metabolomics workflow.

4.1. Biological Question Formulation

The first stage of a metabolomics study consists of the right formulation of the biologi-
cal question to be answered. This process is of utmost importance, since it will determine
the experimental design to be followed, namely the type of approach (untargeted vs.
targeted metabolomics), sample type, sample size, experimental conditions to be tested, fre-
quency and timing for sample collection, sampling conditions, storage conditions, sample
preparation strategies, and the analytical platforms to be used.

4.2. Which Sample to Choose?

The choice of samples for metabolomic studies depends essentially on the research
question. Metabolomic experiments are typically carried out in complex matrices, such as
cell culture samples (cell extracts and culture media), tissues, and biofluids (urine, whole
blood, serum, plasma, feces, seminal fluid, saliva, sweat, breast milk, bile, and cerebrospinal
fluid) [28,30]. Cells and tissues are usually used to investigate the mechanisms of action
associated with pathophysiological processes, whereas biofluids are studied to identify
new biomarkers [28]. For this topic, the advantages and limitations of the type of samples
most used in metabolomics research will be discussed.

4.2.1. Cellular Models

In vitro metabolomic studies provide information on specific cell types under dif-
ferent conditions, which may be important for the development of drugs that target
specific cell phenotypes [31]. These studies are easy to execute and interpret due to the
lack/minimization of confounding factors (e.g., gender, age, and lifestyle factors) [29,31].
On the other hand, in vitro studies can be criticized for being very different from the natu-
ral environment, since most cellular systems are reduced to just one type of cell (without
cell-cell interaction) kept in artificial conditions [32]. In vitro studies also face some issues
of variability derived from growth-medium formulation, number of passages, cell density,
quenching, and extraction processes [29,33]. Some of the above-mentioned issues can be
solved through an appropriate experimental design and the implementation of standard
operating procedures for preanalytical handling of metabolomic samples [34,35].

A broad diversity of cellular models, including tumorigenic and nontumorigenic
immortalized cell lines [36–38], primary cells obtained from different tissues [39,40], and
stem cells [41,42] have been used in in vitro metabolomic studies, access to which is
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facilitated through cell culture biobanks, such as the American Type Culture Centre (ATCC,
www.atcc.org) [36]. Immortalized cell lines offer several advantages over primary and stem
cells, as they are economical and highly available, are easy to handle, can be kept in culture
for longer periods of time, provide an unlimited and pure population of cells with a stable
phenotype that guarantee reproducible results, and circumvent ethical concerns associated
with the use of animal and/or human samples [29,31,43]. However, the authenticity of cell
lines can become a problem, since a relevant percentage of cell lines, even in biobanks, can
be contaminated or erroneously characterized [32].

Primary cells, on the other hand, have the ability to retain the morphological and
functional characteristics of their tissue of origin, and constitute the closest model to the
in vivo situation [29]. Nevertheless, their low availability (particularly those of human
origin), their high phenotypic variability, and the considerable drop in cell viability after
isolation limit their widespread use in metabolomic experiments [29].

Stem cells are undifferentiated cells that have long-term capabilities for multipotent
differentiation and self-renewal. They have the ability to replenish damaged somatic cells
and maintain a self-renewal reservoir of progenitors that is crucial for the homeostasis
in many tissues [44]. These cells can be obtained from many sources, by invasive and
noninvasive methods, and have the potential to differentiate into several specific cell types.
However, they are associated with several limitations in terms of acquisition and isolation,
in addition to the fact that the use of some of these cells (embryonic stem cells) is considered
unethical under the laws of many countries [45].

More recently, several novel cell culture technologies have become available (for
example, co-cultures of different cell types, 3D culture, organ-on-chip, among others).
These new models have enormous physiological relevance, as they are also able to generate
results closer to the in vivo situation, but they also increase the number of parameters that
must be controlled to reduce the variability (e.g., pH, waste and metabolic end-products
accumulated in the medium, availability of oxygen and nutrients, and cell size and shape,
among others), which can be an obstacle in metabolomics [46].

4.2.2. Tissues

The analysis of tissue samples provides localized snapshots of metabolic activity,
making it possible to study the origin of the metabolites, unlike what happens with
biofluids that reflect changes in multiple organs [28,47]. In certain situations (for example,
in cancer studies), tissues allow a better match between disease and nondisease samples,
as it is possible to remove both samples from the same organ, reducing the impact of
confounding factors [48]. However, this biological matrix requires special attention, since
an important aspect to take into account in tissue analysis is its heterogeneity (for example,
due to the presence of different cell types or zones with different oxygenations and enzyme
systems), which may introduce additional biological variations [49]. The preparation of
tissue samples is very laborious, which can represent a disadvantage for metabolomic
studies [50]. Furthermore, tissue samples are usually collected under anesthesia, which can
lead to tissue-specific metabolic changes, a problem not found in other types of samples [51].

4.2.3. Urine and Blood

The application of metabolomics to the analysis of biofluids faces different challenges
compared to that of cells and tissues. Urine and blood are the two most studied biofluids
in metabolomics due to their ease of collection, richness in metabolites, for allowing the
study of temporal changes, and for being ethically acceptable and cost-effective [47,52,53].
However, the metabolic profile of these biofluids is modulated not only by diseases or
pharmacological/toxicological effects, but also by confounding factors, such as age, gender,
body mass index, lifestyle, nutritional status, environmental factors, and gut microbiota,
among others, making it difficult to understand causal processes [53–55]. In addition,
although these samples have the ability to reflect a global metabolic picture, they have a
low level of specificity, as they reflect the function of multiple organ systems [28].

www.atcc.org
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Urine, in particular, offers advantages over other biofluids due to its noninvasive
nature, being suitable for young children and individuals for whom venous access is
problematic [56]. In addition, it provides unlimited volume, simple sample collection
and pretreatment, and lower protein content and sample complexity, including fewer
intermolecular interactions [57]. On the other hand, compared with whole blood and
blood products, urine appears to have a more sensitive metabolic profile, suffering a more
evident diurnal variation, greater inter- and intravariability, being also more susceptible
to changes due to the possibility of bacterial contamination [55,58]. Blood, plasma, and
serum can produce more relevant information, since they are less affected by confounding
factors [56], although out of the three, whole blood offers greater metabolic detail and
higher reproducibility [59,60]. Relatively small metabolic differences were found between
serum and plasma, although serum samples provide greater overall sensitivity due to a
higher concentration of metabolites [61]. On the other hand, due to the lack of the clotting
step, plasma processing is faster, simpler, and more reproducible [62].

4.3. Sample Collection and Preparation

The method of collection and preparation of samples can have a significant impact
on the metabolomics data and conclusions derived from a study, since these preanalytical
steps can be sources of variation [28]. An inadequate procedure can lead to high variability,
interference with instruments, loss of metabolites, or even the formation of degradation
metabolites [60]. Thus, although there is no ideal method, these steps must be optimized
according to the type of sample chosen and based on a compromise between efficient
extraction and minimal loss of metabolites [63].

The first critical factor to consider is selecting an appropriate collection time, because
a large fraction of the metabolism oscillates due to circadian rhythm, physical activity, and
dietary status [64,65]. Twenty-four-hour sampling (in the case of urine) is preferable to
eliminate daytime variability [53], but if sample collection is spread over time, all samples
should be collected within the same time period and under similar conditions (e.g., early
morning, fasting) [66].

To ensure the stability of biofluids, some additives may be added to the collection
tubes, namely sodium fluoride, sodium azide, heparin, citrate, or ethylene diamine tetra
acetic acid (EDTA). Considering that these substances can affect the efficiency of extraction
and derivatization processes and the ionization process during the mass spectrometry (MS)
acquisition, thereby suppressing metabolite ionization and/or introducing artefact signals,
its use should be consistent throughout the study and should be adequate to the analytical
platform [53,61,67]. For example, for plasma preparation, the choice of anticoagulant addi-
tion is critical and should be carefully considered before sample collection, since, although
good quality data have been obtained for all additives, the metabolic profile can be strongly
influenced. Particularly, EDTA is poorly suited to the analysis of polar metabolites, while
the use of citrate compromises the analysis of citric acid and derivatives [61]. Heparin is
recommended to be used in ultra-high-performance liquid chromatography-mass spec-
trometry (UPLC-MS) and nuclear magnetic resonance (NMR) analysis, since it does not
cause interference, but it should be avoided in liquid chromatography-mass spectrometry
(LC-MS) approaches, in which EDTA is preferable [60].

Regarding tissues, considering their heterogeneity, sampling should always be done
in the same organ region [50,60,68]. On the other hand, only specific regions of the organs
may respond to certain stimuli, and therefore the analysis of a small sample of tissue
obtained from an unaffected region can be misleading. Thus, whenever possible, the whole
organ should be analyzed [50,60,68], although this strategy leads to the loss of potentially
important spatial information [50]. Advances in MS-based tissue imaging may lead to the
development of methods in which the metabolite profiles preserve spatial resolution, but
in fact, these methods are still being improved, so they cannot be used in high-throughput
mode [50].
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An additional procedure to consider during tissue sampling should be the cleaning
of samples with saline solutions in order to avoid contamination with blood metabo-
lites [60,69]. The washing step is also critical in cell sampling to remove all the extracellular
media components and provide better signal-to-noise ratios [70].

Another crucial point for reducing variability and improving data quality is the
quenching step. This procedure aims to interrupt cellular metabolism to prevent the
turnover of metabolites such as adenosine triphosphate (ATP) or glucose-6-phosphate,
and to obtain a precise picture of the metabolome at the time of sampling. For that,
during collection, samples should be kept at the lowest temperature possible, and the
metabolism must be stopped immediately after collection in order to avoid possible bias in
analysis, and consequently, misleading results [29]. Snap-freezing in liquid nitrogen is the
most commonly employed protocol for quenching [50,71,72], although many authors also
performed this step using organic solvents adjusted for very cold temperatures and/or
extreme pHs [70,73–75]. This step is mandatory for metabolomic studies in tissue and
cells, but is usually omitted for blood and urine samples due to the fact that the metabolic
integrity of these biofluids is maintained after collection for a few hours at 4 ◦C [61].

Following quenching, the next step is to extract the metabolites. In the case of cell
models, according to the study aim, quenching and extraction can be combined or sequen-
tial [29,73]. The extraction method must be highly efficient and nonselective, and its choice
presents a great challenge due to the heterogeneity of the metabolome. Liquid–liquid
extraction is one of the most applied extraction methods [76–78], although several other
methods can be used (e.g., supercritical fluid extraction [79], solid-phase extraction [80], or
solid-phase microextraction [81]). Depending on the planned analysis, a monophasic (such
as water/methanol, water/acetonitrile, 100% methanol) or biphasic (water and methanol,
often associated with a nonpolar solvent such as chloroform or dichloromethane) solvent
solution, in varied proportions and temperatures, can be used for extraction of a large panel
of metabolites [29,73,77,82,83]. The use of repeated extraction cycles involving similar or
different solvents to those used in the first cycle can improve the extraction efficiency. How-
ever, the extraction yield depends not only on the mixture of solvents used, but also on the
complete rupture of the cells during extraction, so freeze/thaw cycles, ultrasonication, and
homogenization by mechanical means can help increase the effectiveness of the extractive
process [29,78]. Even after a highly efficient extraction, some metabolites may be present
at a low concentration level. Hence, it is prudent to concentrate samples to reach lower
limits of detection during the analytical analysis. Evaporation of the extracted solution
to dryness and lyophilization are the most common procedures used to concentrate and
preserve the samples [29].

Regarding storage, whenever possible, samples should be aliquoted to avoid repeated
freeze–thaw cycles that lead to a progressive change in the metabolic profile and loss of
sample quality [50,61]. The thawing steps should always be performed on ice to increase
gradually the temperature of the samples [61]. In addition, regardless of the sample under
study, a temperature of at least −80 ◦C is recommended for long-term storage before
analysis to prevent metabolite degradation and loss of unstable metabolites [53,60,61].

4.4. Analytical Platforms

Advances in analytical techniques in recent years have facilitated metabolomic studies,
improving our capacity to obtain more data from biological samples. However, the com-
plexity of the metabolome, due to the diversity of metabolites with differences in molecular
weight, polarity, solubility, volatility, and concentrations, challenges the capabilities of
any single analytical platform. Thus, the optimal and simultaneous extraction, detection,
and quantification of all the metabolites is not possible with a single approach, and to
overcome this problem, several analytical platforms can be used to expand metabolite
coverage [16,84]. To date, NMR and MS are the most implemented technical approaches to
generate metabolomics data.
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NMR is a spectroscopic technique that is based on the energy absorption and re-
emission of atomic nuclei due to variations in an external magnetic field [16]. In NMR-
based metabolomic studies, hydrogen is the most commonly targeted nucleus (1H-NMR)
due to its natural abundance in biological samples, although other nuclei (e.g., carbon
(13C), phosphorus (31P), or nitrogen (15N)) can be used to obtain complementary metabolic
information [16]. This technique exhibits a series of favorable characteristics in the study of
the metabolome (Table 2, and therefore has been reported in about one-third of recent pub-
lications in the area. Briefly, NMR has excellent reproducibility and quantitative accuracy;
has the ability to provide structural information; and is fast, nondestructive, cost-efficient,
and suitable for high-throughput analysis. However, its limited sensitivity and resolution
have restricted the number of metabolites detected, representing a great challenge in the
study of complex biological samples [1,16,85,86]. NMR spectroscopy also has the ability
to analyze, with no pretreatment, the metabolic profile of intact tissues, cell extracts, and
living organisms using high-resolution magic angle spinning (HR-MAS) techniques [86]. In
general, one-dimensional (1D) 1H-NMR spectroscopy is the most commonly used method
for high-throughput metabolomic studies due to its short acquisition time and because it
provides a direct measure of metabolite concentration and information on their chemical
structure. However, sometimes it is necessary to resort to longer experiments such as two-
dimensional NMR (2D-NMR), which are useful to assist in the identification of metabolites
and increase their specificity, since this technique allows the separation of overlapping
spectral peaks [85].

Due to the evident superiorities of sensitivity (nM to pM range), selectivity, and a wide
dynamic range over other techniques, MS has become an ideal platform for metabolomic
applications [87]. As recently stated by Wishart et al. [5], MS provides a wider metabolome
coverage than NMR, as it has been reported that the average number of metabolites detected
by this technique is considerably higher (197 by MS vs. 37 by NMR). Mass spectrometry is
used to identify and/or quantify a wide range of analytes using the mass-to-charge (m/z)
ratio of ions generated from a sample. All MS techniques require an initial ionization step,
and then each molecule generates different peak patterns that define the fingerprint of the
original molecule [16].

A wide range of instrumental variants are currently available for MS analysis. Table 2
summarizes the advantages and limitations of some of the most implemented ones in
metabolomics. The simplest form of MS is direct infusion-mass spectrometry (DI-MS),
which is based on the direct injection of samples into the spectrometer without prior
chromatographic or electrophoretic separation. This considerably reduces the analysis
time, avoids sample dilution, and improves the repeatability and accuracy, but also results
in ion suppression/ion enhancement and low ionization efficiency [63,87]. To reduce
ion-suppression problems, MS can be coupled with several separation techniques, such
as capillary electrophoresis (CE), liquid chromatography (LC), or gas chromatography
(GC) [63]. Each of these techniques has a specific selectivity for certain compounds, provid-
ing different information about the composition of samples [63].

The separation of compounds in CE is carried out quickly and in a simple way
based on their different migrating velocities in the electric field [88]. Although relatively
uncommon in metabolomic studies, CE-MS is able to provide useful information about
polar and charged metabolites (e.g., amino acids, amines, inorganic ions, nucleotides, and
small peptides, among others); however, its low capacity in sample loading and reduced
sensitivity limit its application in untargeted metabolomics [88,89].

In contrast, LC and GC are currently the leading separation techniques used in untar-
geted metabolomics [87]. Simplicity in sample preparation is an advantage of LC, since
derivatization is not needed, as occurs with GC [63]. Additionally, LC-MS can handle a
large variety of metabolites due to a wide choice of stationary phases that allow a high
versatility in metabolome coverage [90]. On the other hand, GC-MS is only suitable for the
analysis of volatile compounds or compounds that can be derivatized to volatile forms. In
spite of this limitation, its resolution and reproducibility associated with the commercial
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mass spectral database available can facilitate metabolite identification, one of the main
bottlenecks in metabolomics [63,87,88].

High-resolution mass spectrometry (HRMS) is another variant increasingly used to
produce metabolomics data. Due to its high mass resolution and mass measurement
accuracy, HRMS considerably improves the metabolomic data quality, and is especially
beneficial for metabolite identification in complex biological mixtures.

At present, other exciting and novel MS-based metabolomics technologies, such as
matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging and
desorption electrospray ionization (DESI) mass spectrometry imaging, have been devel-
oped [87,91]. These techniques use imaging methods to provide in situ spatial information
for multiple metabolites simultaneously, while the morphological integrity of the ana-
lyzed tissues or cells is maintained [87,91]. Usually, spatial information is still obtained
through histological or immunohistochemistry analysis. However, histological staining
is non-molecular-specific, and immunohistochemistry requires prior knowledge of the
target analytes and is limited to a small number of analytes [87,91]. Although imaging
mass spectrometry technologies open a new perspective in the metabolomics field, some
analytical challenges still need to be optimized, namely sample preparation and the balance
between spatial resolution and sensitivity of analyte detection [91].

4.5. Bioinformatics and Statistical Tools in Metabolomics

Metabolomics analysis of biological samples results in an enormous amount of data
that can be time-consuming and difficult to process and analyze manually. Therefore, it is
necessary to use fast and accurate bioinformatics and statistical tools to deal with the large and
complex raw data sets, and provide a workable and understandable format in order to extract
meaningful biological information [16,84]. Each of these steps is described in detail below.
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Table 2. A summary of the most relevant characteristics of the analytical techniques commonly used in metabolomics
[1,16,63,85–87,91–93].

Analytical Technique Strengths Weaknesses

Nuclear magnetic resonance (NMR)

- Rapid analysis (a few minutes);
- All types of small molecules can be

measured simultaneously;
- High accuracy and repeatability;
- Liquid and solid matrices;
- Nondestructive;
- Minimal sample preparation;
- Detailed structural information;
- Allows the quantification of all

metabolites using a single internal
standard;

- Enables high-throughput
measurements.

- Low sensitivity (limit of detection ~1
µM)

- Limited resolution;
- Detects fewer metabolites compared

to MS;
- More than one peak per metabolite in

most cases, which means that spectra
are often complex;

- Libraries of limited use due to
complex matrix;

- NMR spectrometers are very
expensive and take up a lot of space;

- Requires skilled technicians.

Direct infusion-mass
spectrometry (DI-MS)

- Fast and highly reproducible;
- Requires a small amount of sample;
- No loss of metabolites in sample

preparation;
- High-throughput detection;
- Data processing is relatively simple.

- Does not allow quantification;
- Ion suppression/ion enhancement;
- Low ionization efficiencies.

Capillary
electrophoresis-mass
spectrometry (CE-MS)

- Small volume of samples;
- Short analysis time;
- Minimal sample preparation;
- Wide variety of molecules can be

analyzed, including thermolabile
compounds.

- Poor reproducibility;
- Low sensitivity;
- Affected by salts in the sample;
- Less stable than LC-MS and GC-MS.

Mass spectrometry
(MS)

Liquid
chromatography-mass
spectrometry (LC-MS)

- Very high sensitivity (< µM);
- Robust;
- Enables analysis of thermolabile

metabolites;
- Simple sample preparation;
- Suitable for the study of lipids, di-

and tripeptides, and other
macromolecules.

- Ion suppression/ion enhancement;
- Destructive;
- Sample analysis can be long (20–60

min/sample);
- More instrumental variables;
- High solvent consumption;
- Novel compounds identification can

be difficult.

Gas
chromatography-mass
spectrometry (GC-MS)

- Very high sensitivity (< µM);
- Large linear range;
- Enables simultaneous analysis of

different classes of metabolites;
- Compound identification is facilitated

by mass spectral libraries.

- Extensive sample preparation;
- Destructive;
- Limited to volatile compounds or that

require prederivatization processes;
- Sample analysis can be slow;
- Novel compounds identification can

be difficult.

High-resolution mass
spectrometry (HRMS)

- Enables the determination of accurate
mass and isotopic distribution;

- High resolution, selectivity, and
specificity;

- Useful in metabolite identification;
- Method development for a

quantification assay can be faster.

- High costs;
- Complex instrument maintenance;
- Data analysis can be complex.

4.5.1. Data Preprocessing

After data acquisition, a two-dimensional matrix of intensities is constructed, in which
each row corresponds to observations/object (sample, time point, etc.), and each column
represents a variable/metabolic feature (e.g., chemical shift, or m/z-retention time (RT)
pair). It is important to note that instrumental (e.g., chromatographic column degrada-
tion) and biological factors (such as pH, ionic strength, and protein content) can affect
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metabolomics data set by inducing fluctuations in chemical shifts/retention times, intensity,
and background noise [94,95]. Therefore, prior to statistical analysis, the matrix needs to be
corrected to improve the signal quality and reduce possible bias [16]. Depending on the an-
alytical technique, different preprocessing methods are used, but generally, peak/spectrum
alignment, baseline correction, deconvolution, peak detection, normalization, and scaling
are considered standard steps [16,84,96,97]. Over time, several commercial and open ac-
cess software packages, such as MetAlign [98], MZmine [99], and XCMS [100] have been
developed to automate these procedures.

Briefly, alignment is one of the main processing steps in metabolomic studies. In
both chromatography and NMR, the peaks/spectra can be shifted due to instrumental
variations or interferents, which means that throughout the experimental acquisition, the
retention time or ppm is not constant for each metabolite [96]. Thus, alignment is required
to ensure correct correspondence of peaks/spectra between all samples [101].

Baseline elevations due to, for example, bleeding of the chromatographic column also
affect metabolomics data, since a true-zero value is shifted upward, so baseline correction
should be used to remove those variations [96].

Peak detection allows researchers to identify all the true features present in the chro-
matogram/spectra and avoid the detection of false positives, and then integrate their areas
to provide a (semi)quantification of the underlying metabolite [97]. However, peaks can
sometimes overlap in certain areas of the chromatogram/spectrum, which presents a chal-
lenge in the analysis and interpretation of data. As a solution, deconvolution techniques
can be implemented to extract the intensity of each individual peak [102].

Subsequently, in order to reduce the unwanted systematic bias, so that only biologi-
cally relevant variations are present in the data and that all samples become comparable in
terms of absolute intensities, a normalization step is usually performed [103]. The selection
of an appropriate normalization method depends on the type of sample to be analyzed
and, over time, several methods have been reported; namely, the use of one or multiple
internal standards, total metabolite signal, total protein content, DNA concentration, os-
molality, urine creatinine, and probabilistic quotient normalization (PQN), among other
algorithms [103–106]. The main strengths and limitations of each normalization method
have been described elsewhere [103,107].

The final preprocessing method is scaling, which considers differences in concentration
levels so that changes in abundant metabolites do not dominate statistical models. Thus,
scaling methods attempt to normalize the contribution of all variables to the model [108].
Among scaling procedures, the most frequently applied are unit variance (UV), pareto, and
logarithmic (log) transformation [96,108].

4.5.2. Multivariate Analysis (MVA)

After the preprocessing steps, multivariate statistical methods are applied to the ma-
trix to reduce the dimensionality of the data due to its ability to deal with several variables
simultaneously in a single analysis [96]. MVA is considered the most efficient way to
analyze the data, allowing an easier visualization of possible discriminative patterns and
thus characterizing the samples based on their metabolic signatures [84]. Multivariate sta-
tistical techniques can be divided into two main categories: unsupervised and supervised.
Unsupervised techniques, such as principal component analysis (PCA) and hierarchical
cluster analysis (HCA), are used to establish intrinsic clusters according to the sample
properties without prior knowledge of sample class. Due to its exploratory character, PCA
is usually the first approach applied, allowing a rapid identification of similarities and
differences between samples and the identification of outliers [109,110]. On the other hand,
supervised techniques (such as partial least squares discriminant analysis (PLS-DA) and
orthogonal PLS-DA (OPLS-DA)) use prior knowledge about sample class to maximize the
separation between two or more sample classes, focusing the analysis on extracting the
variables important for group separations [110].
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PCA, PLS-DA, and OPLS-DA express their variation into principal components (PCs)
or latent variables (LVs), in which each sample is graphically (score plots) expressed as a
point (score). Each PC or LV accounts for decreasing proportions of the total variance, and
although the number of PCs/LVs can be quite large, generally the first two are sufficient to
describe the observed trends [110]. In turn, the contribution of each variable to the variation
is shown in the loading plots. A central characteristic between scores and loadings plots is
that the direction (positive or negative) on the score plot corresponds to the same direction
in the loading plot [111].

When supervised techniques are used for data analysis, the conclusions must be
carefully validated due to the risk of data overfitting; while the models (training models)
can successfully discriminate groups, they may not be able to classify future samples [112].
Thus, to reduce the overfitting and false discoveries in metabolomic studies, the validation
of MVA results is of paramount importance. One of the most common validation methods
used in MVA is n-fold cross-validation. Cross-validation consists of randomly dividing the
dataset into n blocks of equal size and then training the model n times, while each time
keeping out one of the folds as an internal validation set [110,113]. The cross-validation
quality parameters R2 and Q2 are used to provide information about the goodness of the
fit (i.e., how well the model explains the dataset) and the predictive capacity (i.e., how
well the model is expected to fit additional cohorts), respectively. Thus, an R2 around 1
indicates a perfect description of the data by the model, while a Q2 around 1 indicates
perfect predictability. Generally, a Q2 > 0.4 is considered good, and in an ideal model, R2

and Q2 should be similar [110,113].
Another way to validate the MVA results is by using an independent set of samples

(validation set). If the same predictability appears in an independent study, the MVA
models can be considered as reliable. In fact, this is the best way to assess the robustness
and predictive ability of any model, but this approach is not always possible due to the low
number of samples [114]. As alternative, to determine the statistical significance of a model,
permutation tests are another great tool [84]. The permutation tests evaluate whether the
specific classification of the individuals in the two designed groups is significantly better
than any other random classification in two arbitrary groups. In this method, the two class
labels are subjected to multiple random rearrangements of the labels on the observed data
points. The permutation test is repeated many times, and the permuted and true models
are then compared to this distribution of all possible models [115].

4.5.3. Univariate Statistical Analyses

Data analysis methods in metabolomics are mostly based on multivariate analysis,
though univariate methods are also used to extract the statistical meaning of the variations
observed according to a critical threshold [116]. Although this statistical analysis is easy to
use and interpret, it does not take into account the presence of interactions between the dif-
ferent metabolic features, nor the effect of potential confounding variables (e.g., diet), which
can increase the likelihood of obtain false positive and/or false negative results [16]. Thus,
the combined use of multivariate and univariate data analysis is strongly recommended to
maximize the extraction of relevant information from metabolomic datasets [116].

Univariate statistical methods analyze metabolic features independently, based on
hypothesis testing, in which a null hypothesis (H0) postulates a null difference between the
mean (or median) of the areas or concentrations of the metabolites detected in the popula-
tions under study (e.g., controls and dosed animals). The probability of null hypothesis
rejection is calculated (p-value), and if it is below the threshold of probability (∝, usually set
at 5%), the null hypothesis is rejected [116]. Several univariate statistical tests to compare
populations are available. Depending on the statistical data distribution, there are two
main families of tests: parametric tests, which are based on the assumption that data are
sampled from a Gaussian or normal distribution (e.g., Student’s t-test and ANOVA); and
nonparametric tests, which do not make assumptions about the population distribution
(e.g., Kruskal–Wallis and Mann–Whitney tests) [116].
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4.5.4. The Multiple Testing Problem

In untargeted metabolomic studies, the number of parallel univariate tests depends
on the number of m/z-RT features detected. Because the number of hypotheses tested is
high, as is the probability of incorrectly rejecting a null hypothesis due to random chance,
a significant number of false positives (type I errors) may occur, which is particularly
undesirable in a metabolomics study [116]. To avoid this problem, which is frequently
overlooked by researchers and can jeopardize the results, p-values must be corrected.
Two possible ways used in metabolomics to deal with multiple testing problems are the
Bonferroni and false discovery rate (FDR) corrections. Bonferroni’s correction is extremely
conservative, and its use increases type II errors (false negatives), which can result in the
loss of many features of interest [116]. In return, FDR tries to maintain a balance, which
may be more useful in untargeted metabolomic studies [117].

4.6. Metabolites Identification

Translating variables into metabolite identities is one of the main bottlenecks in the un-
targeted metabolomics approach. Nevertheless, this is an essential prerequisite to integrate
data from multiple studies (metabolomic studies or in conjunction with other omics data)
and perform an adequate biological interpretation [118]. In most studies, identification is
performed using reference spectrum libraries, through appropriate matching criteria. The
quality and number of spectrum of metabolites available in these databases are critical to
the performance of identification; currently, HMDB [5] is the largest public metabolomics
database available. However, this kind of correspondence is only a probable identity assign-
ment, and must be unequivocally confirmed by comparing the retention time/chemical
shifts with a pure compound. Mass analyzers with tandem configurations can also assist
in the identification of metabolites, since the MS/MS spectra are highly resolved and accu-
rate [116]. In the case of metabolites for which standards are not commercially available,
this identification strategy is quite limiting.

Taking into account that the identification process is very time-consuming, it is often
carried out only after data analysis for the compounds that have undergone significant
changes [118].

4.7. Biological Interpretation

After the discriminating metabolites are identified, the potentially affected metabolic
pathways should be studied. Several databases are available for this purpose: Kyoto
Encyclopedia of Genes and Genomes (KEGG) [119], MetaboAnalyst [120], MetaCyc [121],
the small molecule pathways database (SMPDB) [122], and MetaboLights [123], among
others. When the metabolite–metabolic pathway association is achieved, a rationale can be
elaborated in an attempt to answer the biological question initially formulated.

5. Metabolomics: A New Route in Toxicological Research

In the past few years, metabolomics has become a highly versatile tool, creating a
new era of opportunities for toxicological research. It has been considered an important
area of research that can help to unveil several questions left unanswered by other omics
and/or traditional approaches. This topic will focus on the most recent applications of
metabolomics in toxicological research.

With increasing demands to reduce drug development time and costs, one of the
most important research and development goals in the pharmaceutical industry is the
selection of robust new drug candidates with few adverse effects. If a new drug can be
screened for adverse toxicity before reaching clinical trials, companies can reduce costs that
these trials entail [3]. Through metabolomics, drugs that are likely to fail in late clinical
development due to toxicity can be more easily identified in the preclinical development
stages, so that the time for the development of new drugs is shortened [124]. Currently,
there are several conventional clinical biomarkers of toxicity, including total bilirubin,
alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase
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(ALP), and creatinine, among others. These biomarkers have limited specificity and sensi-
tivity, since they often only show significantly altered levels after the organs have suffered
extensive damage. This sometimes renders preclinical animal studies unable to identify
potential toxicity triggered by a new chemical entity, and consequently, they may fail
to predict occurrence of toxic effects on the population and subsequent withdrawal of
drugs from the market [125]. Therefore, there is currently a great interest in finding novel
approaches for the identification of new toxicity biomarkers that are specific indicators of
damage in a particular organ. Currently, it has been recognized that metabolomics has
enormous potential to detect early toxicity events (e. g. at earlier time points and at lower
doses when compared to conventional biomarkers) and identify new toxicity biomarkers,
with the majority of studies focusing mainly on renal and hepatic toxicity [125,126]. At
the same time, these studies can provide new insights into drug toxicity mechanisms,
which is one of the most important aspects of toxicological research [127]. In this regard,
Garcia-Canaveras et al. [37] developed an MS-based metabolomics approach to classify and
study the different mechanisms of drug-induced hepatotoxicity. For this, they assessed the
metabolic profile of human-derived hepatic cells (HepG2) exposed to different hepatotoxic
drugs that act by distinct mechanisms, namely steatosis (doxycycline, tetracycline, and val-
proate), phospholipidosis (amiodarone, clozapine, fluoxetine, tilorone, and tamoxifen), and
oxidative stress (cumene hydroperoxide and tert-butyl hydroperoxide). Several metabo-
lites have been identified and linked to each toxicity mechanism. Metabolites associated
with glutathione and γ-glutamyl cycle were suggested as biomarkers of oxidative stress,
and were found altered after exposure to all compounds. In turn, phospholipidosis was
characterized by a possible inhibition of phospholipid degradation, while steatosis was
related to the increase in triacylglyceride synthesis. Unique metabolomics fingerprints
associated with the different mechanisms were used to develop a predictive model with a
satisfactory predictive power (area under curve (AUC) of 0.97) for tracking and classifying
hepatotoxicity based on the modes of action of the compounds.

In addition to deciphering discriminant mechanism-specific metabolic signatures, it is
also possible to identify biomarkers for drug-induced organ toxicity, with several matrices
being useful in these kind of metabolomics studies. For example, Shi et al. [128] used
NMR to investigate the hepatotoxicity induced by Bay41-4109, an anti-hepatitis B virus
compound in rats. After exposure to 10, 50, or 400 mg Bay41-4109/kg for 5 days, urine,
serum, and liver tissue were analyzed. In another metabolomics study, Huo et al. [129]
used UPLC-MS and NMR as analytical platforms to analyze serum samples of epileptic
patients after sodium valproate treatment (0.5 g twice daily for two months) in order to
identify diagnostic biomarkers of liver toxicity induced by the mentioned drug. They
found differences in the serum metabolic profile of patients with normal liver function
and those with elevated liver enzymes, with several metabolites being identified as po-
tential biomarkers, namely glucose, lactate, acetoacetate, acetate, creatinine, very-low-
density lipoproteins/low-density lipoproteins (VLDL/LDL), lysophosphatidylcholines
(LPCs), phosphatidylcholines, choline, glutamate, alanine, leucine, phenylalanine, N-
acetylglycoprotein, pyruvate, and uric acid.

Several studies have also been performed in attempts to identify biomarkers of drug-
induced nephrotoxicity. Hanna et al. [130] studied changes in the urinary metabolome of
newborn rats by GC-MS and LC-MS after administration of gentamicin, an aminoglycoside
antibiotic capable of causing acute kidney damage. Three-day-old rats were given a single
daily injection of vehicle or gentamicin at doses of 10 or 20 mg/kg/d for 7 days, and urine
was collected after the day 3 and day 7 injections. Tryptophan, quinurenic acid, xanthenic
acid, and hippuric acid were identified as potential biomarkers for the early detection of
acute kidney damage since they were significantly altered 3 days after gentamicin dosage,
whereas conventional toxicological biomarkers (serum creatinine and blood urea nitrogen)
only revealed significant changes after 7 days. Boudonck et al. [131] provided another
example, in which they used an untargeted metabolomics experiment based on GC-MS and
LC-MS to study the metabolic changes caused by three proximal tubule nephrotoxic drugs
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(gentamicin, cisplatin, or tobramycin), and thus established a nephrotoxicity prediction
model. For this, urine samples from Sprague Dawley Crl:CD (SD) rats were collected after
1, 5, and 28 days of administration. Increases in polyamines and amino acids were observed
in the urine after a single dose of the three compounds, even before histological kidney
injury and conventional clinical signs of nephrotoxicity were observed. Upon prolonged
administration, nephrotoxic compounds induced a progressive loss of urinary amino acids
(leucine, isoleucine, and valine), which allowed the development of a predictive model
of nephrotoxicity with high accuracy (70%, 93%, and 100% accuracy at day 1, 5, and 28,
respectively) to distinguish nephrotoxic-treated samples from vehicle-control samples.

To a lesser extent, metabolomics has been used to study drug-induced cardiotoxicity
and neurotoxicity. One of the first metabolomics experiment in the field of cardiotoxicity
was carried out by Andreadou et al. [132] to study the acute toxicity induced by doxorubicin
in rats. Three days after doxorubicin administration, aqueous myocardial extracts were
analyzed by 1H-NMR, revealing that acetate and succinate could be useful as cardiotoxicity
biomarkers. Additionally, the authors also showed that oleuropein, a phenolic antioxidant
present in the olive trees with documented cardioprotective effects, restored the changes of
metabolites to the normal levels. More recently, Li et al. [133] investigated new biomarkers
for the evaluation and prediction of cardiotoxicity. Plasma samples of rat cardiotoxicity
models in which toxicity was caused by doxorubicin (20 mg/kg), isoproterenol (5 mg/kg),
and 5-fluorouracil (125 mg/kg) were analyzed by UPLC-Q-TOF-MS. Metabolomics data
revealed 39 biomarkers capable of predicting cardiotoxicity earlier than biochemical and
histopathological analysis. However, since drugs with different target organs may cause
similar metabolic changes, the identified metabolites were examined in hepatotoxicity and
nephrotoxicity models, allowing the researchers to obtain a panel of 10 highly specific
biomarkers of cardiotoxicity with a prediction rate of 90%. Among them, L-carnitine,
19-hydroxydioxycortic acid, LPC 14:0, and LPC 20:2 exhibited the strongest specificities for
the early prediction of cardiotoxicity.

Studies on drug-induced neurotoxicity are still very limited, although in vitro/in vivo
experiments have already demonstrated the benefits and utility of metabolomics to com-
prehensively detect and characterize neurotoxicity and discover new biomarkers [134–136].
For example, in a study conducted by van Vliet et al. [134], rat primary reaggregating
brain cell cultures were treated for 48 h with the neurotoxicant methyl mercury chloride
(0.1–100 µM) or with the brain stimulant caffeine (1–100 µM), and subsequently, the cellular
metabolic profiles were analyzed by LC-MS. The compounds with different modes of
action were distinguished by an unsupervised method (PCA), since a treatment-dependent
cluster formation was observed, and this effect was concentration-dependent for methyl
mercury chloride. Gamma-aminobutyric acid, choline, glutamine, creatine, and spermine
have been identified as putative biomarkers for methyl mercury chloride neurotoxicity.
In addition, the authors also assessed the metabolic alterations induced by subcytotoxic
concentrations (1 µM) of eight compounds (trimethyltin chloride, methyl mercury chloride,
colchicine, paraquat, cycloheximide, dimethylformamide, dichlorophenoxy acetic acid, and
acetaminophen) with specific target organ toxicity for the brain, liver, and kidneys through
different mechanisms of toxicity. The PCA revealed cluster formations that were largely
dependent on target organ toxicity, indicating the possibility of developing a neurotoxicity
prediction model.

Toxicometabolomics has grown far beyond its initial preclinical and clinical appli-
cations. A rising number of studies showed that metabolomics is a powerful tool for
elucidating biochemical modes of action and toxicological effects of a wide range of toxic
compounds in a variety of toxicology domains, including food safety [137,138], environ-
mental toxicology [139,140], and forensic toxicology [141,142]. Metabolomics has also
recently gained attention as a novel tool in regulatory toxicology [143]. Table 3 summarizes
some other recent examples of toxicometabolomic studies, grouped by the following spe-
cific research objectives: (a) elucidation of toxicity mechanisms; (b) construction of toxicity
prediction models; and (c) identification of toxicity biomarkers.
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Table 3. Representative examples of recent studies using metabolomics in toxicological research.

Toxicant Classification/
Name

Study Model/
Matrix Study Design Analytical

Platform Study Outcomes Ref.

A. ELUCIDATION OF TOXICITY PATHWAYS

Antidepressant drug:
Venlafaxine (VEN)

In vitro model:
Primary rat astrocytes

Astrocytes were treated with 10
µM VEN (n = 30), or with DMSO
as a vehicle control (n = 30) for 72 h.
The intracellular metabolites were
profiled.

1H NMR

Metabolic pathways significantly disturbed:

• Amino acid metabolism
• Glycolysis
• Cholesterol metabolism

[144]

Antineoplastic drug:
Doxorubicin (DOX)

Animal model:
Plasma of male Wistar
rats

Rats were randomly divided into a
treatment group injected i.p. with 3
mg DOX/kg once a week, for 6
weeks (n = 9), and a control group
injected i.p. with saline (n = 8)

UPLC-Q-TOF-
MS

Metabolic pathways significantly disturbed:

• Phenylalanine, tyrosine, and tryptophan biosynthesis
• D-glutamine and D-glutamate metabolism
• Phenylalanine metabolism
• Biosynthesis of unsaturated fatty acids

[145]

Opioid analgesic:
Tramadol

Animal model:
Cerebrum of Kunming
mice

Mice were treated with 0, 20, or 50
mg tramadol/kg/day, via oral
gavage for 5 weeks (n = 6/group)

GC-TOF-MS

Metabolic pathways significantly disturbed:

• By low dose of tramadol:

- Valine, leucine, and isoleucine degradation
- Galactose metabolism

• By high dose of tramadol:

- Sphingolipid, fructose, and mannose metabolism

[146]

Drug of abuse:
MDMA

In vitro model:
Primary mouse
hepatocytes

Hepatocytes were exposed to
subtoxic (LC01: 203 µM and LC10:
472 µM) and toxic concentrations
(LC30: 757 µM) for 24 h (n =
10/group). The intracellular
metabolites were profiled.

GC-MS

Metabolic pathways significantly disturbed:

• Amino acid metabolism
• Aminoacyl tRNA biosynthesis
• Glutathione metabolism
• TCA cycle
• Pyruvate metabolism

[147]
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Table 3. Cont.

Toxicant Classification/
Name

Study Model/
Matrix Study Design Analytical

Platform Study Outcomes Ref.

Drug of abuse:
MDPV

Animal model:
Organs (liver, kidney,
heart, and brain) and
urine of male CD-1 mice

Mice were exposed to
human-relevant doses (3 × 2.5
mg/kg and 3 × 5 mg/kg, i.p.) and
sacrificed 24 h after the first
administration (n = 10/group)

GC-MS

Metabolic pathways significantly disturbed in:

• Liver:

- Cysteine and methionine metabolism
- Biosynthesis of valine, leucine, isoleucine, and

unsaturated fatty acids
- Nitrogen and glutathione metabolism
- Aminoacyl-tRNA and pantothenate biosynthesis

• Kidney:

- Nitrogen and glutathione metabolism
- Aminoacyl-tRNA and pantothenate biosynthesis
- Cyanoamino acid metabolism
- Phenylalanine, tyrosine, and tryptophan

biosynthesis
- Methane, glycine, serine, threonine, beta-alanine,

alanine, aspartate, and glutamate metabolism

• Heart:

- Fatty acid biosynthesis

• Brain:

- Butanoate metabolism
- Synthesis and degradation of ketone bodies
- Amino acids and nitrogen metabolism
- Aminoacyl t-RNA biosynthesis

• Urine:

- Starch and glucose metabolism
- Glutathione metabolism

[126]
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Table 3. Cont.

Toxicant Classification/
Name

Study Model/
Matrix Study Design Analytical

Platform Study Outcomes Ref.

Heavy metal (environmental
pollutant):
Cadmium (Cd)

Human model:
Urine

144 volunteers (n = 99 females and
n = 45 males) living in three nearby
villages with different levels of Cd:
control area (<0.05 mg/kg),
low-polluted area (0.2–0.4 mg/kg),
and high-polluted area (>0.4
mg/kg) (according to the Cd
content found in rice and
vegetables growing in the area)

UHPLC-Q-
Exactive
Orbitrap MS

Metabolic pathways significantly disturbed:

• Creatinine pathway
• Tryptophan metabolism
• Aminoacyl-tRNA biosynthesis
• Purine metabolism

[148]

Heavy metal (environmental
pollutant):
Cd

Animal model:
Urine of wild-type
129/Sv female mice

Mice were fed with 300 ppm
Cd-containing chow (n = 5) for 67
weeks and compared to the control
group (n = 4)

UPLC-QTOF-
MS

Metabolic pathways significantly disturbed:

• Arginine and proline metabolism
• Alanine, aspartate, and glutamate metabolism
• Aminoacyl-tRNA biosynthesis
• Purine metabolism

[149]

B. IDENTIFICATION OF TOXICITY BIOMARKERS

Hepatotoxic agent:
Hydrazine

Animal model:
Serum and urine of male
Wistar rats

Rats were randomly divided into
four groups: two control groups (n
= 12/group) and two
hydrazine-treated groups (n =
18/group). One control group and
one hydrazine-treated group were
allocated for sampling at 24 h
postdosing, while the remaining
two groups were for sampling at
48 h postdosing. The
hydrazine-treated groups were
orally administrated with a single
dose of hydrazine (150 mg/kg), at
which hydrazine could induce an
obvious histopathological effect
and hepatocellular lipid
accumulation.

RRLC-MS

• A biomarker group was proposed, including 6
upregulated (creatine, tryptophan, N-acetylhistidine,
l-carnitine, pyroglutamic acid, and indole acrylic acid)
and 10 downregulated (proline betaine,
l-acetylcarnitine, pipecolic acid, xanthurenic acid,
trigonelline, kynurenic acid, indole-3-carboxylic acid,
phosphorylcholine, 4-pyridoxic acid, and thymine)
metabolites with AUC > 0.85

• The biomarker panel provided an AUC of 1 and a
specificity and sensitivity of 100%

[150]
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Table 3. Cont.

Toxicant Classification/
Name

Study Model/
Matrix Study Design Analytical

Platform Study Outcomes Ref.

Neurotoxic agent:
Sevoflurane (SEVO)

Animal model:
Serum samples of
offspring rats born from
maternal Sprague Dawley
rats

Rats within 18–19 days of gestation
were randomly divided into
control (CTR) or sevoflurane
(SEVO) groups (n = 4/group). In
the SEVO group, animals were
treated with 2% sevoflurane
carried by 100% oxygen for 6 h. For
the control group, animals were
placed in an identical condition
without sevoflurane. Then, 26
postnatal-7-day rats were
randomly selected from offspring
generation groups (n = 13/group)
and decapitated, and samples were
collected for metabolomic analysis.

UPLC-TOF-MS

• S-Adenosylmethioninamine, DG(14:0/0:0/22:4n6),
DG(20:3(8Z,11Z,14Z)/16:0/0:0), allantoin,
DG(16:0/0:0/20:3n9), methylsuccinic acid, cholic acid,
cervonoyl ethanolamide, DG(20:0/0:0/18:3n6),
(R)−1,2-dimethyl-5,6
dihydroxytetrahydroisoquinoline, 11b-PGF2a,
5-aminopentanoic acid, porphobilinogen, proline,
methionyl-proline, oleanolic acid, docosapentaenoic
acid, 3-hydroxykynurenine, 2-methoxybenzoic acid,
leucyl-lysine, hydroxyprolyl-proline, leukotriene E4,
calcitroic acid, 8,11,14-eicosatrienoic acid, 5b-cyprinol
sulfate, lysoPC(22:5(4Z,7Z,10Z,13Z,16Z)),
sulfolithocholylglycine, TG(22:0/22:6), and
12-ketodeoxycholic acid were identified as potential
neurotoxicity-related biomarkers

• Correlation of serum metabolomic data with
hippocampus enzyme-linked immunosorbent assay
suggested that S-adenosylmethioninamine was the
most important biomarker of prenatal exposure to
sevoflurane

[151]

Cardiotoxic agent:
Cyclophosphamide (CY)

Animal model:
Plasma of male Wistar
rats

Rats were randomly divided into
four groups: control (n = 15),
CY-1d, CY-3d, and CY-5d groups (n
= 10/group). CY was administered
i.p. to the rats on the first day, and
the dosage was set at 200 mg/kg.
The control group was
administered i.p. with 1 mL saline
on the first day. Rat plasma
samples were collected one, three,
and five days after CY
administration.

UPLC-QTOF-
MS

• 16 metabolites were found significantly altered in CY
groups (L-carnitine, proline,
19-hydroxydeoxycorticosterone, phytosphingosine,
cholic acid, LPC (14:0), LPC (18:3), LPC (16:1), LPE
(18:2), LPC (22:5), LPC (22:6), linoleic acid, LPC (22:4),
LPC (20:2), LPE (18:0), and LPC (20:3)

• A relationship between plasma metabolomic data and
heart biochemistry and histopathologic changes
suggested that the selected metabolites could act as
sensitive biomarkers for CY-induced cardiotoxicity

[152]
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Table 3. Cont.

Toxicant Classification/
Name

Study Model/
Matrix Study Design Analytical

Platform Study Outcomes Ref.

Nephrotoxic agent:
Cisplatin

Animal model:
Plasma and kidney tissue
of male Crl:CD (SD) rats

Rats were randomly divided into
three groups: the high-dose group
(10 mg cisplatin/kg i.p., n = 13),
low-dose group (5 mg/kg of
cisplatin i.p., n = 10), and untreated
group (n = 10). Blood samples were
collected from the tail vein at 24, 48,
and 96 h after the injection of
cisplatin. Rats were sacrificed at 96
h, and kidney samples were also
harvested for the metabolome
analysis

GC-MS and
LC-MS

• Cysteine-cystine and 3-hydroxy-butyrate (based on
GC/MS analysis) and AC 14:0, AC 18:1, AC 18:2, and
PE 18:2–18:2 (based on LC/MS analysis) were found
both in plasma and kidney tissue, and were identified
as candidate biomarkers to detect cisplatin-induced
nephrotoxicity early

[153]

Nephrotoxic agent:
Gentamicin (GM)

Animal model:
Serum and urine of male
Sprague Dawley rats

Rats were given 0, 30, or 300 mg
GM/kg/day i.p. for 3 consecutive
days (n = 4–5/group) and were
sacrificed 2 days (D2) or 8 days
(D8) after last administration.

1H NMR

• Five serum metabolites (3-hydroxybutyrate, citrate,
creatine, glucose, and glycine) were selected, based on
D2 and D8 results, as biomarker for nephrotoxicity

• Nine urinary metabolites (2-oxoglutarate, acetate,
citrate, glucose, glycine, hippurate, lactate, succinate,
and taurine) were also selected, based on D2 and D8
results, as biomarkers for nephrotoxicity

• Correlation of serum and urinary 1H NMR OPLS-DA
with serum biochemistry and renal histopathologic
changes suggested that the selected biomarkers may
be used to reliably predict or screen for GM-induced
nephrotoxicity

[154]

Herbicides:
Metribuzin, glyphosate and
their mixtures

Aquatic plant model:
Lemna minor L.

Plants were exposed for 72 h to
concentrations of metribuzin or
glyphosate equal to their
corresponding EC50 values, or their
mixtures (25–75, 50–50, or 75–25%
of their corresponding EC50 values)
(n = 6/group).

GC/EI/MS

• Identification of GABA, salicylate, caffeate,
α,α-trehalose, and squalene as a set of biomarkers
useful in the evaluation of Lemna stress levels caused
by herbicides

• Salicylate was identified as a specific biomarker of the
toxicity caused by metribuzin/glyphosate mixtures

[155]
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Table 3. Cont.

Toxicant Classification/
Name

Study Model/
Matrix Study Design Analytical

Platform Study Outcomes Ref.

Heavy metal:
Arsenite

Animal model:
Zebrafish (ZF) embryos

ZF embryos were exposed to
sodium arsenite under different
concentrations (0.5, 1.0, 2.0, and 5.0
mg/L) 24, 48, and 72 h
postfertilization. ZF embryonic
homogenate was used for
metabolomic analysis.

UPLC-QTOF-
MS

• A group of 10 metabolites was able to discriminate the
arsenite and control groups with 99% accuracy, being
identified as potential biomarkers for arsenic
exposure in early development life stages

• These 10 metabolites were 9-hydroxy-10-O-D
glucuronoside-12Z-octadecenoate, vinaginsenoside
R3, PG(18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), methyl
(3x,4E,10R)-3,10-dihydroxy-4,11-dodecadiene-6,8-
diynoate 10-glucoside, hexaethylene glycol,
N1-(2-methoxy-4-methylbenzyl)-n2-(2-(5-
methylpyridin-2-yl)ethyl) oxalamide, butyl
(S)-3-hydroxybutyrate glucoside, ganglioside GM2
(d18:0/22:1(13Z)), indanone, and estrange.

[156]

C. CONSTRUCTION OF TOXICITY PREDICTION MODELS

Drugs from several different
therapeutic classes with
cardiotoxic potential

In vitro model:
Pluripotent stem
cell-derived
cardiomyocytes
(hiPSC-CM)

Phase 1: 66 drugs tested at a single,
noncytotoxic concentration were
used to identify predictive
metabolites that could discriminate
cardiotoxicants from
noncardiotoxicants independent of
changes.
Phase 2: the discriminatory
metabolites identified in phase 1
were used to create an
exposure-based, targeted assay for
identifying a drug’s cardiotoxicity
potential. The predictivity was
evaluated with 81 drugs (52
cardiotoxic and 29 noncardiotoxic).

UPLC-HRMS

• Four metabolites that represent different metabolic
pathways (arachidonic acid, lactic acid,
2′-deoxycytidine, and thymidine) were identified as
indicators of cardiotoxicity

• A cardiotoxicity predictive model with 85% balanced
accuracy, 90% sensitivity, 79% specificity, 89% PPV,
82% NPV, and an AUC of 0.887 was developed based
on the four discriminatory metabolites

[157]
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Table 3. Cont.

Toxicant Classification/
Name

Study Model/
Matrix Study Design Analytical

Platform Study Outcomes Ref.

Cardiotoxic drugs:
DOX, isoproterenol (ISO) and
5-fluorouracil (5-FU)

Animal model:
Plasma of male Wistar
rats

Phase 1: 100 rats were randomly
divided into 10 groups (n =
10/group) to screen the potential
biomarkers for the early prediction
of cardiotoxicity. For each drug,
different doses and sampling times
were tested.
Phase 2: 70 rats were randomly
divided into seven groups, which
included control, two
cardiotoxicity groups (ISO and
5-FU), two hepatotoxicity groups
(Radix Bupleuri and carbon
tetrachloride), and two
nephrotoxicity groups (gentamicin
and etimicin), to examine the
specificity of the selected
biomarkers.
Phase 3: the discriminatory
metabolites selected in phase 2
were used to create a predictive
model of drug-induced
cardiotoxicity in its early stages.

UPLC-Q-TOF-
MS

• The predictive model that combined L-carnitine,
19-hydroxydeoxycorticosterone, LPC (14:0), and LPC
(20:2) exhibited the strongest specificities. The
prediction rate was 90%

[133]
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Toxicant Classification/
Name

Study Model/
Matrix Study Design Analytical

Platform Study Outcomes Ref.

Two overt hepatotoxicants
(acetaminophen (APAP) and
carbon tetrachloride (CCl4)),
two idiosyncratic
hepatotoxicants (felbamate
(FEL) and dantrolene(DAN)),
and three nonhepatotoxicants
(meloxicam (MEL), penicillin
(PEN) and metformin (MET))

Animal model:
Blood of male Sprague
Dawley rats

Rats were orally gavaged with a
single dose of vehicle (n = 4 for
APAP study and n = 5 for other
compound studies), low dose or
high dose of the compounds (100
or 1250 mg APAP/kg, 50 or 2000
mg CCl4/kg, 300 or 1920 mg
FEL/kg, 100 or 1000 mg DAN/kg,
100 or 1500 mg MET/kg, 0.4 or 12
mg MEL/kg, and 100 or 2400 mg
PEN/kg (n = 7/APAP groups and
n = 5/for all other groups)). At 6
and 24 h postdosing, blood was
collected for metabolomics
analysis.

LC-QTOF-MS

• From the studies with APAP and CCl4, 41 metabolites
were selected to build models to predict
hepatotoxicity. PLS modeling results showed 89%
accuracy in the modeling set

• This model was further used to predict the response
of rats treated with non- or idiosyncratic
hepatotoxicants at 6 and 24 h

• A model with an accuracy of at least 97.4% for the
hold-out test set and 100% for training sets was
developed

[158]

Abbreviations: AC, acylcarnitine; AUC, area under curve; DG, diglyceride; GABA, gamma aminobutyric acid; GC-TOF-MS, gas chromatography time-of-flight mass spectrometry; GM2, disialotetrahexosylgan-
glioside; i.p., intraperitoneal; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; NPV, negative predictive value; PE, phosphotidylethanolamine; PG, phosphatidylglycerol; PPV, positive
predictive value; RRLC, rapid resolution liquid chromatography; UPLC-HRMS, ultra-high-performance liquid chromatography–high-resolution mass spectrometry; UPLC-Q-TOF-MS, ultra-high-performance
liquid chromatography-quadrupole time-of-flight mass spectrometry.
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6. Current Challenges and Future Perspectives

Toxicological research has made significant advances since the advent of metabolomics.
Over the last few years, a large amount of data has been generated using metabolomic
approaches, resulting in the identification of several potential biomarkers associated with
susceptibility, exposure, and/or effects of toxicants, and a better understanding of the
metabolic responses of many biological systems has been achieved.

Given the lack of standardized metabolomic protocols, some toxicometabolomic stud-
ies using similar toxic agents, species, and biological specimens resulted in disparate
conclusions. To further increase the reproducibility and translatability of metabolomic
studies, it is urgent to standardize the different steps of the metabolomic workflow, includ-
ing the experimental design and statistical analysis, as these steps can considerably affect
the obtained results. It should also be noted that the use of different models, which are
frequently simplistic, as is the case of in vitro models, as well as the use of small cohorts,
are potential sources of bias. Furthermore, despite the high potential of metabolomic
approaches in hypothesis generation and biomarker discovery, the translation of these find-
ings to the real world remains low. Preliminary metabolomic results must be validated, and
for that, putative biomarkers identified through metabolomics studies must be accurately
and precisely measured in larger groups of individuals. Special consideration should also
be given to data stored in databases and biobanks, which must be significantly expanded
and improved.

The use of metabolite ratios to successfully compare datasets from different studies
is another important recommendation to take into account in future studies, as the ratios
between related metabolite pairs reduce overall noise and biological variability in the
dataset. More importantly, metabolite ratios show the flux through a metabolic pathway
when a metabolite pair is coupled by that pathway. However, measuring metabolic flux
with stable isotope tracers is equally important, and has already been used successfully
in metabolomics research. Tracers based on stable isotopes can reveal which parts of a
metabolic network are in use.

In conclusion, while there are still some bottlenecks in metabolomics, it is expected
that with continuous optimization and improvement of research methods, the use of
metabolomics to uncover previously unknown information will become more accurate and
efficient, creating a powerful tool for improving human health and environmental safety.
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