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Abstract

Background

The Johns Hopkins ACG System is widely used to predict patient healthcare service use and

costs. Most applications have focused on adult populations. In this study, we evaluated the

use of the ACG software to predict pediatric unplanned hospital admission in a given month,

based on the past year’s clinical information captured by electronic health records (EHRs).

Methods and findings

EHR data from a multi-state pediatric integrated delivery system were obtained for 920,051

patients with at least one physician visit during January 2009 to December 2016. Over this

interval an average of 0.36% of patients each month had an unplanned hospitalization. In a

70% training sample, we used the generalized linear mixed model (GLMM) to generate

regression coefficients for demographic, clinical predictors derived from the ACG system,

and prior year hospitalizations. Applying these coefficients to a 30% test sample to generate

risk scores, we found that the area under the receiver operator characteristic curve (AUC)

was 0.82. Omitting prior hospitalizations decreased the AUC from 0.82 to 0.80, and

increased under-estimation of hospitalizations at the greater risk levels. Patients in the top

5% of risk scores accounted for 43% and the top 1% of risk scores accounted for 20% of all

unplanned hospitalizations.

Conclusions

A predictive model based on 12-months of demographic and clinical data using the ACG

system has excellent predictive performance for 30-day pediatric unplanned hospitalization.

This model may be useful in population health and care management applications targeting

patients likely to be hospitalized. External validation at other institutions should be done to

confirm our results.
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Introduction

About one-third of pediatric healthcare costs result from hospital admissions [1]. In 2012 the

average costs for a pediatric hospitalization in the United States was $6,415 at a rate of 7,928

stays per 100,000 population aged 0–17 years, but this increased to $11,143, and decreased to

2,505 stays per 100,000 population, when neonatal stays were excluded [2]. Health systems

that seek to reduce costs or admissions, either to improve efficiency or patient flow, often tar-

get patients at high risk of hospitalization. To develop and aim appropriate programs, risk

assessment tools are needed that can accurately identify an at-risk population. Unfortunately,

there are few pediatric-specific risk assessment tools that can be used to segment a population

by its need for care management or other preventive services [3].

Certain types of hospitalizations are predictable because they are scheduled admissions for

such indications as chemotherapy, surgery, and diagnostic tests. The majority, however, are

unplanned and thus have some degree of associated preventability. Although there have been

several studies on risk factors for pediatric readmission [4–10], there has been less attention

given to developing predictive models for unplanned hospitalizations in populations of chil-

dren and adolescents.

Our aim in this study was to develop a parsimonious risk model that used patient demo-

graphic, clinical data, and service use data over a one-year period to predict unplanned hospi-

talization (i.e., excluding admissions scheduled in advance of the admission date) in the next

30 days. Rather than developing a completely novel model, we built on the established Johns

Hopkins ACG System’s clinical markers as the core of our modeling approach [11]. Prior stud-

ies have demonstrated that the ACG system is useful to classify pediatric populations but by

levels of healthcare service use [12–14], but none has used this risk adjustment system to pre-

dict pediatric unplanned hospitalizations.

Methods

Data source and study sample

This study was done using Electronic Health Record (EHR) data for patients seen in the Chil-

dren’s Hospital of Philadelphia (CHOP) health system. CHOP includes a large primary and

specialty care outpatient network and a major inpatient facility that services a primary health-

care market in the states of Pennsylvania, New Jersey, and Delaware. Data were extracted from

the CHOP EHR System (Epic) for visits in outpatient, emergency department, and inpatient

settings for patients with at least one physician visit in any of these settings from January 2009

to December 2016. During the study period, 920,226 patients met these selection criteria.

Applying a criterion that the children not already be hospitalized at the start of the reference

month (see following) reduced the population to 920,051. The CHOP Institutional Review

Board designated this study as not human subjects research.

Unplanned hospitalization

Because a portion of pediatric hospitalizations are scheduled for such activities as inpatient

chemotherapy administration, neurological testing, and surgery and thus are not preventable,

we focused on those that were unplanned. These hospitalizations have been confirmed as real

events, and not administrative artifacts, by ensuring that the site of care was an inpatient place

of service in the CHOP hospital. Unplanned hospitalizations were those that were not flagged

as elective hospitalizations in an Admission/Discharge/Transfer table in our database. Among

all confirmed hospital admissions during the study period, 87% were unplanned.

Short-term prediction of pediatric hospitalizations
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Predictors

Clinical variables were derived from the ACG system and included its DxPM score (a diagno-

sis-based probability estimate for patient risk of future healthcare use [3]), number of chronic

conditions (0, 1, 2, 3+), and number of hospital dominant conditions (0, 1, 2+), the latter

defined as a diagnosis associated with at least a 50% probability of hospitalization among

patients of all ages within the coming year [15]. DxPM was categorized based on the percentile

value for the cohort in the preceding year: 0–50% was the default, and other categories were

51–75%, 76–85%, 86–95%, 96–98%, and 99%. Demographic predictors were patient age, gen-

der, race/ethnicity, and insurance type. Age was treated as a categorical variable, with the age

of the patient’s first visit during the prior year divided into three-month blocks up to three

years and one-year blocks afterward up to age 18. We used finer age stratifications in the first

year of life because infancy holds the highest risk of hospitalization (excluding inpatient stays

for birth). The insurance types were binary variables, defined as whether prior coverage of the

patient was public insurance, private or self-pay. The number of unplanned hospitalizations in

the past year was categorized as 0, 1, or 2+; because prior hospitalizations turned out to be a

strong predictor and we were concerned about potential bias using hospitalizations to predict

hospitalizations, we tested an alternative model omitting this predictor.

Statistical analyses

We generated 84 epochs (12 months x 7 years) on a sliding window of 12 months of patient

data across 2009–2016. Each successive window began and ended a month later than the pre-

ceding. For instance, the period January 2009 through December 2009 was used to predict a

hospitalization occurring in January 2010, and so on. We split the study population into a 70%

training sub-sample to develop the models and a 30% test sample to test model performance

on a different set of patients.

Logistic regression was used to model the risk of a patient being hospitalized in the current

month, excluding patients who were already in hospital, prior to the current month and

extending into or past the current month. For this exclusion, we did not limit to planned or

unplanned hospitalizations, or apply the other checks used to confirm unplanned

hospitalizations.

As the outcome is a binary variable representing whether the patient had any admissions in

a given month, this will necessarily drop hospitalizations that are readmissions that follow an

admission earlier in that month. Similarly, our exclusion rule drops admissions that are read-

missions for patients who are excluded due to an ongoing hospitalization as described above.

A generalized linear mixed model (GLMM) for prediction of risk of hospitalization in the

current month was created using the demographic, clinical and prior hospitalizations as pre-

dictors and accounting for multiple measurements from the same patient using a patient-level

random effect which described how the patients’ individual risk might vary from the overall

population controlling for the predictors. To account for time-varying trends, we also included

month of epoch (12 values, January through December) and its position in the sequence (a

real-valued number scaling from 1 to 84). The GLMM was implemented in the statistical com-

puter language R [16] using the lme4 package [17].

The GLMM was used to derive risk scores computed as the beta coefficients from the

model derived from the training sample and applied to the covariates for patients in the testing

sample. The scores were based only on the demographic, clinical and prior use coefficients,

not on patient-based random effects or the time-based predictors added to the GLMM.

Patient-based effects had to be dropped as the random effects would not be applicable to the

test set or any new group of patients. Time-based predictors would not be relevant within a

Short-term prediction of pediatric hospitalizations
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given epoch. This approach allowed us to classify patients by risk of future hospitalization

within a given epoch using a consistent approach across all epochs.

Area under the curve (AUC), which estimates the probability that a hospitalized patient will

outscore a non-hospitalized patient, was used to describe how well the model can discriminate

among patients at different risk for hospitalization. As a model can behave better on a training

set than on a new set of data, model optimism was defined as the difference between the AUC

for the training set and the AUC for the test set [18]; some decline in AUC is expected, as the

model can fit noise as well as real effects in the data, but a large decline would indicate that the

model results may not be generalizable.

Results

Table 1 shows the distribution of clinical, demographic and hospitalization variables among

patients. Because age, prior hospitalizations in past year, and clinical variables can all be

expected to change across time windows, the table shows the number and percentage of

patients with at least one record in a given value. The table also shows the distribution of time

windows (epochs) that includes a particular patient, and the distribution of patient parameters

across these epochs. 53,091 or 5.72% of patients were represented in all 84 epochs, and the

median number of epochs per patient was 24. Finally, the total number of unplanned hospitali-

zations (barring exclusions for patients already in hospital, as described above) for each epoch

were tallied and used to estimate the overall rate of hospitalization in a given month across all

epochs and within specific categories.

The 84 epochs contained an average of 369,980 patients (SD 21,759), of whom an average

of 1,322 (SD 132) or 0.36% (SD 0.04%) were hospitalized in the next month. There was some

seasonal effect: the rates in December and January averaged 0.40%, while those in July aver-

aged 0.31% (S1 Fig). There was also evidence of a long-term decline over time with monthly

hospitalization rates declining from about 0.37% in 2009 to 0.33% in 2016 (S2 Fig). The declin-

ing rate was due to fairly constant hospitalization counts with an increasing size of the at-risk

population. Because of these trends, the GLMM model across all epochs included a linear term

for decline of hospitalization rate and a month-based factor for the seasonal variation.

The GLMM model coefficients with standard errors are shown in in Table 2, positive values

reflecting increased risk of hospitalization. We found that prior hospitalizations had a large

predictive value for new hospitalizations, so for comparison, we also show the GLMM coeffi-

cients for the alternative model fit without prior hospitalizations as a predictor. A striking fac-

tor is the ‘U-shaped’ estimate of the effect of age, decreasing with age for the first several years

of life, and then increasing again at age 13. Also note the seasonal variation, where risk is

higher in the winter and lower in the summer. Although the alternative model without prior

hospitalizations does not perform as well as the main model (see following), there is little dif-

ference in parameters between model fits.

Omitted from Table 2 for clarity are two parameters which are not included in the GLMM-

derived score, although they are included in the calculation of predicted hospitalization risk

for patients in a given epoch. One parameter is the intercept (baseline value), which for the

main model is -7.381 (SE 0.027), corresponding to a baseline risk of hospitalization of 0.06%

per month. The other is the per-epoch adjustment, which has a coefficient of -0.048 (SE 0.002)

per year.

The fixed effects, without the time-dependent predictors per month or per epoch, were

used to generate a score to identify hospitalization risk for patients within each epoch. The

results were compared for the training and test patient populations. The AUC for all epochs

was 0.826 in the training set and 0.821 in the test set, suggesting negligible overfitting. When

Short-term prediction of pediatric hospitalizations
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Table 1. Distribution of patients and demographic/clinical variables. Left column is by individual patient and whether they had at least one epoch (time window) with

a given factor. Middle column is total number of epochs, treating the same patient in different epochs as different records. Monthly hospitalization rate, the rightmost col-

umn, is calculated from the total number of hospitalizations and the total number of epochs in a given category.

Total Patients Total Epochs Monthly Hospitalizations

Number unique patients 920,051 31,078,325 111,027 (0.36%)

Epochs/patient, median (IQR) 24 (12–53)

Female 441,194 (48.0%) 14,989,311 (48.2%) 51,400 (0.34%)

Race/Ethnicity

White, not Hispanic 496,757 (54.0%) 17,055,391 (54.9%) 43,082 (0.25%)

Asian, not Hispanic 34,217 (3.7%) 1,049,866 (3.4%) 3,632 (0.35%)

Black, not Hispanic 213,426 (23.2%) 7,855,904 (25.3%) 47,772 (0.61%)

Hispanic 60,663 (6.6%) 1,923,758 (6.2%) 10,063 (0.52%)

Other or Missing 114,988 (12.5%) 3,193,406 (10.3%) 6,478 (0.20%)

Age—at least one measurement in category

0–2 months 154,918 (16.8%) 1,805,098 (5.8%) 16,712 (0.93%)

3–5 months 129,613 (14.1%) 535,292 (1.7%) 4,201 (0.78%)

6–8 months 129,865 (14.1%) 539,222 (1.7%) 3,477 (0.64%)

9–11 months 124,634 (13.5%) 524,519 (1.7%) 3,068 (0.58%)

12–14 months 127,756 (13.9%) 556,312 (1.8%) 3,047 (0.55%)

15–17 months 119,852 (13.0%) 516,396 (1.7%) 2,758 (0.53%)

18–20 months 117,867 (12.8%) 520,659 (1.7%) 2,592 (0.50%)

21–23 months 88,023 (9.6%) 419,244 (1.3%) 2,395 (0.57%)

24–26 months 112,650 (12.2%) 564,230 (1.8%) 2,473 (0.44%)

27–29 months 83,135 (9.0%) 410,769 (1.3%) 2,143 (0.52%)

30–32 months 84,284 (9.2%) 444,058 (1.4%) 1,972 (0.44%)

33–35 months 75,961 (8.3%) 414,903 (1.3%) 1,869 (0.45%)

3 years 172,417 (18.7%) 1,801,224 (5.8%) 6,772 (0.38%)

4 years 168,869 (18.4%) 1,781,483 (5.7%) 5,220 (0.29%)

5 years 164,842 (17.9%) 1,739,647 (5.6%) 4,727 (0.27%)

6 years 157,851 (17.2%) 1,662,944 (5.4%) 3,915 (0.24%)

7 years 152,822 (16.6%) 1,618,320 (5.2%) 3,591 (0.22%)

8 years 147,975 (16.1%) 1,563,507 (5.0%) 3,236 (0.21%)

9 years 143,943 (15.6%) 1,522,192 (4.9%) 3,384 (0.22%)

10 years 140,552 (15.3%) 1,492,691 (4.8%) 3,264 (0.22%)

11 years 142,530 (15.5%) 1,528,433 (4.9%) 3,382 (0.22%)

12 years 137,116 (14.9%) 1,456,056 (4.7%) 3,559 (0.24%)

13 years 133,433 (14.5%) 1,422,585 (4.6%) 3,677 (0.26%)

14 years 130,579 (14.2%) 1,389,163 (4.5%) 3,989 (0.29%)

15 years 125,169 (13.6%) 1,338,371 (4.3%) 4,210 (0.31%)

16 years 117,957 (12.8%) 1,239,062 (4.0%) 4,121 (0.33%)

17 years 101,792 (11.1%) 1,070,513 (3.4%) 3,291 (0.31%)

18+ years 73,401 (8.0%) 1,201,432 (3.9%) 3,982 (0.33%)

Chronic Conditions—at least one measurement in category

None 785,790 (85.4%) 18,688,252 (60.1%) 28,789 (0.15%)

1 435,297 (47.3%) 7,966,175 (25.6%) 31,001 (0.39%)

2 185,205 (20.1%) 2,595,284 (8.4%) 17,790 (0.69%)

3+ 91,944 (10.0%) 1,828,614 (5.9%) 33,447 (1.83%)

Hospital Dominant Conditions—at least one measurement in category

None 916,059 (99.6%) 30,604,006 (98.5%) 93,619 (0.31%)

1 27,612 (3.0%) 434,191 (1.4%) 14,335 (3.30%)

(Continued)
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we omitted prior hospitalizations, AUC fell to 0.808 for training and 0.802 for test. There were

no visible trends in AUC over time.

Table 3 shows how the decile of calculated score compares to both the observed hospitaliza-

tion rates and the predicted rates from the GLMM including time-varying fixed effects but not

patient-level random effects. These random effects were left out of the prediction calculation

because they are not available for the test set and will not be available for patient populations

outside our own. The intra-class correlation coefficient for the GLMM is 0.215, indicating that

21.5% of the variability in results can be attributed to patient-specific factors that would be

accounted for in the omitted patient-level random effect. Deciles were calculated within epoch

so that it would be possible to get an idea of variability.

Note that at the highest decile, the model prediction underestimates the true unplanned

hospitalizations. Plotting the ratio of observed/predicted rates against decile (Fig 1), we see

that the main model tends to under-estimate lower risks of hospitalization, and that the

observed/predicted ratios have parallel increases with decile. Comparing the main model to

the model without prior hospitalizations, we can see that the reduced model further under-

estimates the percentage at higher rates. The higher AUC for the main model may be attribut-

able to better discrimination between low- and high-risk patients, even if the actual assessment

of risk is biased.

To examine the feasibility of targeting patients at greater risks of hospitalization, we looked

at hospitalizations captured in groups defined by increasing cut-offs of score based on percen-

tile within an epoch using data from the test sample. Using a 10% cut-off, an average of 56% of

all observed unplanned hospitalizations were captured in the group of records above the cut-

off, the top 5% accounted for 43% and the top 1% accounted for 20% of hospitalizations.

To address whether the model bias at higher rates could be attributed to specific diagnoses,

we calculated the ratio of average hospitalizations and average predicted rate for each patient

in the test set and linked the resulting table to the condition records to determine which Major

Expanded Diagnosis Clusters (MEDC) from the ACG system were associated with higher

ratios of observed hospitalization to predicted rates. We limited the analysis to those condi-

tions associated with direct visits (inpatient, outpatient, ER or observation). The MEDC codes

Table 1. (Continued)

Total Patients Total Epochs Monthly Hospitalizations

2+ 5,199 (0.6%) 40,128 (0.1%) 3,073 (7.66%)

DxPM bracket—at least one measurement in category

0–50% 723,396 (78.6%) 15,547,535 (50.0%) 28,544 (0.18%)

51–75% 512,104 (55.7%) 7,773,999 (25.0%) 19,570 (0.25%)

76–85% 209,909 (22.8%) 3,107,732 (10.0%) 14,711 (0.47%)

86–95% 169,522 (18.4%) 3,105,043 (10.0%) 20,401 (0.66%)

96–99% 63,262 (6.9%) 1,236,683 (4.0%) 19,065 (1.54%)

Top 1% 14,327 (1.6%) 307,333 (1.0%) 8,736 (2.84%)

Insurance—at least one visit paying by

Public Pay 330,832 (36.0%) 11,151,012 (35.9%) 71,707 (0.64%)

Self Pay 51,345 (5.6%) 1,765,225 (5.7%) 6,050 (0.34%)

Private Pay 676,163 (73.5%) 23,260,666 (74.8%) 62,798 (0.27%)

Unplanned hospitalizations in the prior year—at least one record with

None 902,595 (98.1%) 29,528,532 (95.0%) 64,114 (0.22%)

1 110,715 (12.0%) 1,278,318 (4.1%) 22,570 (1.77%)

2+ 22,858 (2.5%) 271,475 (0.9%) 24,343 (8.97%)

https://doi.org/10.1371/journal.pone.0221233.t001
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Table 2. Model summary. GLMM coefficients (log odds ratios) from the model are used to generate a score for iden-

tifying patients at higher risk for hospitalizations. Standard errors from the model are included for context and GLMM

coefficients from the alternative model (excluding prior hospitalization) presented for comparison.

GLMM coefficients Std. Error GLMM coefficient without prior

hospitalization

Female 0.045 0.009 0.041

Race

White, not Hispanic 0 (reference)

Asian, not Hispanic 0.168 0.025 0.171

Black, not Hispanic 0.451 0.011 0.483

Hispanic 0.258 0.018 0.288

Other or Missing -0.261 0.019 -0.263

Age

0–2 months 1.622 0.025 1.806

3–5 months 1.281 0.030 1.431

6–8 months 1.076 0.031 1.205

9–11 months 0.961 0.032 1.078

12–14 months 0.925 0.032 1.034

15–17 months 0.857 0.033 0.954

18–20 months 0.800 0.033 0.885

21–23 months 0.824 0.034 0.906

24–26 months 0.706 0.034 0.781

27–29 months 0.721 0.035 0.789

30–32 months 0.632 0.036 0.696

33–35 months 0.635 0.036 0.686

3 years 0.517 0.027 0.556

4 years 0.280 0.028 0.298

5 years 0.208 0.028 0.215

6 years 0.043 0.030 0.041

7 years -0.007 0.030 -0.013

8 years -0.047 0.031 -0.054

9 years 0.015 0.030 0.011

10 years 0 (reference)

11 years 0.024 0.030 0.028

12 years 0.081 0.030 0.084

13 years 0.126 0.030 0.137

14 years 0.229 0.030 0.243

15 years 0.287 0.029 0.308

16 years 0.320 0.030 0.347

17 years 0.176 0.032 0.200

18+ years 0.089 0.032 -0.141

Chronic Conditions

None 0 (reference)

1 0.647 0.012 0.675

2 0.941 0.015 1.004

3+ 1.250 0.016 1.346

Hospital Dominant Conditions

None 0 (reference)

1 0.452 0.015 0.564

2+ 0.683 0.029 0.890

(Continued)
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Table 2. (Continued)

GLMM coefficients Std. Error GLMM coefficient without prior

hospitalization

DxPM bracket

0–50% 0 (reference)

51–75% 0.171 0.012 0.161

76–85% 0.191 0.015 0.183

86–95% 0.243 0.015 0.283

96–99% 0.472 0.018 0.507

Top 1% 0.730 0.023 0.760

Insurance

Public Pay 0.440 0.010 0.447

Self Pay -0.232 0.019 -0.270

Unplanned Hospitalizations in the Prior Year

None 0 (reference)

1 0.670 0.011 Omitted

2+ 1.079 0.014

Monthly effect

Jan 0 (reference) 0.018

Feb -0.106 0.017 -0.106

Mar 0.029 0.018 0.030

Apr -0.077 0.018 -0.075

May -0.091 0.018 -0.089

Jun -0.242 0.018 -0.239

Jul -0.264 0.018 -0.262

Aug -0.203 0.018 -0.201

Sep -0.141 0.018 -0.138

Oct -0.069 0.017 -0.066

Nov -0.064 0.017 -0.061

Dec -0.012 0.018 -0.009

https://doi.org/10.1371/journal.pone.0221233.t002

Table 3. Observed rates, predicted rates and observed/predicted ratios within deciles of scores. 30% test sample

(separate from 70% training sample used to create GLMM) used. Deciles are calculated within each epoch so it is possi-

ble to get an idea of variability by calculating SD across epochs.

Decile Observed %Hosp, Mean (SD) Predicted %Hosp, Mean (SD) Obs/Pred, Mean (SD)

1 0.05% (0.02%) 0.06% (0.01%) 0.86 (0.42)

2 0.06% (0.02%) 0.07% (0.01%) 0.94 (0.37)

3 0.08% (0.03%) 0.09% (0.01%) 0.98 (0.31)

4 0.10% (0.03%) 0.11% (0.01%) 0.93 (0.25)

5 0.12% (0.04%) 0.14% (0.02%) 0.86 (0.27)

6 0.15% (0.04%) 0.17% (0.02%) 0.92 (0.21)

7 0.21% (0.05%) 0.22% (0.02%) 0.97 (0.23)

8 0.31% (0.06%) 0.29% (0.03%) 1.05 (0.17)

9 0.49% (0.09%) 0.41% (0.05%) 1.18 (0.17)

10 1.97% (0.29%) 1.11% (0.14%) 1.78 (0.16)

https://doi.org/10.1371/journal.pone.0221233.t003
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overlap with the ACG aggregate fields (hospital dominant conditions, chronic conditions,

DxPM) [11] so this analysis would indicate which clinical findings may require additional

weight in a predictive model.

Discussion

This study sought to determine whether the Johns Hopkins ACG risk adjustment system is

useful for the specific question of hospitalization risk within the limited population of pediatric

patients. The results are encouraging. The AUC, describing discrimination power of the

Fig 1. Ratio of observed/predicted for the main model (with prior hospitalization as a predictor) and the alternative (without prior

hospitalization) plotted against decile for each score. 30% test sample (separate from 70% training sample used to create GLMM) used. Deciles

and observed/predicted rates are calculated within each epoch to show potential variability.

https://doi.org/10.1371/journal.pone.0221233.g001
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scoring model, is 0.821. The closest analogue in the literature to the current model may be pre-

dictive models for 30-day readmissions, and prior studies did not see an AUC above 0.83 and

only a minority of studies had AUC above 0.70 [8, 19]. There are two benefits of this. One is

that we have a new assessment of what risk factors hold for pediatric patients. Although some

of our findings, such as the effect of race, may be more specific to our patient cohort, the sea-

sonality and age-based coefficients may be of more general applicability. The other is that we

have shown that an existing validated clinical software package can be used to distill a patient’s

potentially complex history into a parsimonious set of predictors for outcome modeling.

For our model, we must consider whether further refinements could improve performance,

particularly among the highest risk patients. One avenue for expanding the current model is in

considering hospitalization risk beyond the current month. However, a model which predicts

multiple hospitalizations over a period of a few months may require added sophistication to

account for correlations between longitudinal measurements for the same patient. Tools for

such models are currently available [20] but still relatively experimental.

An assumption of our model is that all prior admissions are equal, but we do not distin-

guish between admission and readmission or whether there are readmissions that would lead

to more than one hospitalization in given month. The question of whether all admissions are

the same may also impact the outcome being modeled. For example, Leyenaar et al considered

whether the time-sensitive nature of some conditions made direct admission or admission

through ER more appropriate for some patients [21].

It is reasonable to assume that patients at greater risk for short-term readmission may also

be at increased risk for hospitalization over a longer time frame [22]. The type and extent of

surgery is known to affect readmission rate [5, 7], as is length of stay during a hospitalization

[14, 23]. Auger and Davis found that patients admitted on a weekend were more likely to be

readmitted within 30 days [10]. All of these factors should be available in a database.

Cecil et al followed a birth cohort specifically to examine factors affecting unplanned admis-

sions [24]. They found that higher usage of outpatient visits, indicating a sicker child, is a

potential indicator of greater risk of unplanned admissions; among 5–9 year-old children, an

additional sick outpatient visit per year increased the risk of unplanned admissions by 23%.

The other finding of note from this study was that incomplete vaccinations increased the risk

among 1–4 year-olds children by 89%. Outpatient visits are one indicator of children who are

sicker or otherwise more prone to hospitalization. Another is emergency visits, which have

been seen as a factor in hospitalization [25] and readmission [5] rates. These are examples of

additional predictors that could be added to our model.

Our predictive model for unplanned hospitalization does not consider environmental fac-

tors such as climate, pollution, or family situation. These data are now readily available by link-

ing EHR data to area-level data-sets using the patient’s residence and converting it to census

block or tract [26]. The current effort was deliberately limited to information that would be

available solely in EHRs.

Supporting information

S1 Fig. Seasonal dependence of hospitalization rate. Across the 84 epochs, the rate of hospi-

talization per epoch is plotted against month and a loess smoother used to estimate an average.

Shaded region is 95% confidence interval. This curve agrees with expectation that cold weather

carries greater health risks.

(TIFF)

S2 Fig. Monthly hospitalization rate by consecutive epoch (time window). There is a clear

decline with time of the hospitalization rates. This reflects a relatively constant number of
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hospitalizations while the number of patients in the population increases.

(TIFF)

Acknowledgments

The authors would like to thank Shweta Chavan and Hanieh Razzaghi for vital and extensive

work implementing the clinical database and the ACG scoring that this study drew upon.

Author Contributions

Conceptualization: Yong Chen, Christopher B. Forrest.

Formal analysis: Mitchell G. Maltenfort.

Methodology: Yong Chen, Christopher B. Forrest.

Resources: Christopher B. Forrest.

Supervision: Yong Chen, Christopher B. Forrest.

Validation: Mitchell G. Maltenfort.

Visualization: Mitchell G. Maltenfort.

Writing – original draft: Mitchell G. Maltenfort, Yong Chen.

Writing – review & editing: Mitchell G. Maltenfort, Yong Chen, Christopher B. Forrest.

References
1. Bui AL, Dieleman JL, Hamavid H, Birger M, Chapin A, Duber HC, et al. Spending on Children’s Personal

Health Care in the United States, 1996–2013. JAMA Pediatr. 2017; 171(2):181–9. Epub 2016/12/28.

https://doi.org/10.1001/jamapediatrics.2016.4086 PMID: 28027344.

2. Witt WP, Weiss AJ, Elixhauser A. Overview of Hospital Stays for Children in the United States, 2012:

Statistical Brief #187. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Rockville (MD)

2006.

3. Forrest CB, Lemke KW, Bodycombe DP, Weiner JP. Medication, diagnostic, and cost information as

predictors of high-risk patients in need of care management. Am J Manag Care. 2009; 15(1):41–8.

Epub 2009/01/17. PMID: 19146363.

4. Toomey SL, Peltz A, Loren S, Tracy M, Williams K, Pengeroth L, et al. Potentially Preventable 30-Day

Hospital Readmissions at a Children’s Hospital. Pediatrics. 2016; 138(2). Epub 2016/07/28. https://doi.

org/10.1542/peds.2015-4182 PMID: 27449421.

5. Sinha CK, Decker E, Rex D, Mukhtar Z, Murphy F, Nicholls E, et al. Thirty-days readmissions in pediat-

ric surgery: The first U.K. experience. J Pediatr Surg. 2016; 51(11):1877–80. Epub 2016/07/20. https://

doi.org/10.1016/j.jpedsurg.2016.06.015 PMID: 27430864.

6. Shermont H, Pignataro S, Humphrey K, Bukoye B. Reducing Pediatric Readmissions: Using a Dis-

charge Bundle Combined With Teach-back Methodology. J Nurs Care Qual. 2016; 31(3):224–32. Epub

2016/02/05. https://doi.org/10.1097/NCQ.0000000000000176 PMID: 26845419.

7. Jain A, Puvanesarajah V, Menga EN, Sponseller PD. Unplanned Hospital Readmissions and Reopera-

tions After Pediatric Spinal Fusion Surgery. Spine (Phila Pa 1976). 2015; 40(11):856–62. Epub 2015/

06/20. https://doi.org/10.1097/BRS.0000000000000857 PMID: 26091156.

8. Zhou H, Della PR, Roberts P, Goh L, Dhaliwal SS. Utility of models to predict 28-day or 30-day

unplanned hospital readmissions: an updated systematic review. BMJ Open. 2016; 6(6):e011060.

Epub 2016/06/30. https://doi.org/10.1136/bmjopen-2016-011060 PMID: 27354072.

9. Christensen EW, Payne NR. Pediatric Inpatient Readmissions in an Accountable Care Organization. J

Pediatr. 2016; 170:113–9. Epub 2015/12/20. https://doi.org/10.1016/j.jpeds.2015.11.022 PMID:

26685071.

10. Auger KA, Davis MM. Pediatric weekend admission and increased unplanned readmission rates. J

Hosp Med. 2015; 10(11):743–5. Epub 2015/09/19. https://doi.org/10.1002/jhm.2426 PMID: 26381150.

Short-term prediction of pediatric hospitalizations

PLOS ONE | https://doi.org/10.1371/journal.pone.0221233 August 15, 2019 11 / 12

https://doi.org/10.1001/jamapediatrics.2016.4086
http://www.ncbi.nlm.nih.gov/pubmed/28027344
http://www.ncbi.nlm.nih.gov/pubmed/19146363
https://doi.org/10.1542/peds.2015-4182
https://doi.org/10.1542/peds.2015-4182
http://www.ncbi.nlm.nih.gov/pubmed/27449421
https://doi.org/10.1016/j.jpedsurg.2016.06.015
https://doi.org/10.1016/j.jpedsurg.2016.06.015
http://www.ncbi.nlm.nih.gov/pubmed/27430864
https://doi.org/10.1097/NCQ.0000000000000176
http://www.ncbi.nlm.nih.gov/pubmed/26845419
https://doi.org/10.1097/BRS.0000000000000857
http://www.ncbi.nlm.nih.gov/pubmed/26091156
https://doi.org/10.1136/bmjopen-2016-011060
http://www.ncbi.nlm.nih.gov/pubmed/27354072
https://doi.org/10.1016/j.jpeds.2015.11.022
http://www.ncbi.nlm.nih.gov/pubmed/26685071
https://doi.org/10.1002/jhm.2426
http://www.ncbi.nlm.nih.gov/pubmed/26381150
https://doi.org/10.1371/journal.pone.0221233


11. The Johns Hopkins ACG System Version 11.1 Technical Reference Guide: Johns Hopkins Bloomberg

School of Public Health; 2016.

12. Arim RG, Guèvremont A, Kohen DE, Brehaut JC, Garner RE, Miller AR, et al. Exploring the Johns Hop-

kins Aggregated Diagnosis Groups in administrative data as a measure of child health. Int J of Child

Health and Human Development. 2017; 10(1):19–29.

13. Christensen EW, Payne NR. Effect of Attribution Length on the Use and Cost of Health Care for a Pedi-

atric Medicaid Accountable Care Organization. JAMA Pediatr. 2016; 170(2):148–54. Epub 2015/12/15.

https://doi.org/10.1001/jamapediatrics.2015.3446 PMID: 26661275.

14. Knighton AJ, Payne NR, Speedie S. Do Pediatric Patients Who Receive Care Across Multiple Health

Systems Have Higher Levels of Repeat Testing? Popul Health Manag. 2016; 19(2):102–8. Epub 2015/

06/19. https://doi.org/10.1089/pop.2015.0029 PMID: 26086359.

15. The Johns Hopkins ACG System: State of the Art Technology and a Tradition of Excellencein One Inte-

grated Solution December, 2012. Report No.

16. R Development Core Team. R: A language and environment for statistical computing. R Foundation for

Statistical Computing. Vienna, Austria2018.

17. Bates D, Maechler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. Journal of

Statistical Software. 2015; 67(1):1–48.

18. Harrell FE Jr. Regression Modeling Strategies with Applications to Linear Models, Logistic and Ordinal

Regression and Survival Analysis. Switzerland: Springer International Publishing; 2015.

19. Kansagara D, Englander H, Salanitro A, Kagen D, Theobald C, Freeman M, et al. Risk prediction mod-

els for hospital readmission: a systematic review. JAMA. 2011; 306(15):1688–98. Epub 2011/10/20.

https://doi.org/10.1001/jama.2011.1515 PMID: 22009101.

20. Brooks ME, Kristensen K, van Benthem KJ, M A., Berg CW, Nielsen A, et al. glmmTMB Balances

Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. The R

Journal. 2017; 9(2):378–400.

21. Leyenaar JK, O’Brien ER, Malkani N, Lagu T, Lindenauer PK. Direct Admission to Hospital: A Mixed

Methods Survey of Pediatric Practices, Benefits, and Challenges. Acad Pediatr. 2016; 16(2):175–82.

Epub 2015/08/22. https://doi.org/10.1016/j.acap.2015.07.002 PMID: 26293551.

22. Coller RJ, Nelson BB, Sklansky DJ, Saenz AA, Klitzner TS, Lerner CF, et al. Preventing hospitalizations

in children with medical complexity: a systematic review. Pediatrics. 2014; 134(6):e1628–47. Epub

2014/11/12. https://doi.org/10.1542/peds.2014-1956 PMID: 25384492.

23. Ehwerhemuepha L, Finn S, Rothman M, Rakovski C, Feaster W. A Novel Model for Enhanced Predic-

tion and Understanding of Unplanned 30-Day Pediatric Readmission. Hosp Pediatr. 2018; 8(9):578–87.

Epub 2018/08/11. https://doi.org/10.1542/hpeds.2017-0220 PMID: 30093373.

24. Cecil E, Bottle A, Ma R, Hargreaves DS, Wolfe I, Mainous AG 3rd, et al. Impact of preventive primary

care on children’s unplanned hospital admissions: a population-based birth cohort study of UK children

2000–2013. BMC Med. 2018; 16(1):151. Epub 2018/09/18. https://doi.org/10.1186/s12916-018-1142-3

PMID: 30220255.

25. Lu S, Kuo DZ. Hospital charges of potentially preventable pediatric hospitalizations. Acad Pediatr.

2012; 12(5):436–44. Epub 2012/08/28. https://doi.org/10.1016/j.acap.2012.06.006 PMID: 22922047.

26. Schinasi LH, Auchincloss AH, Forrest CB, Diez Roux AV. Using electronic health record data for envi-

ronmental and place based population health research: a systematic review. Ann Epidemiol. 2018;

28(7):493–502. Epub 2018/04/10. https://doi.org/10.1016/j.annepidem.2018.03.008 PMID: 29628285.

Short-term prediction of pediatric hospitalizations

PLOS ONE | https://doi.org/10.1371/journal.pone.0221233 August 15, 2019 12 / 12

https://doi.org/10.1001/jamapediatrics.2015.3446
http://www.ncbi.nlm.nih.gov/pubmed/26661275
https://doi.org/10.1089/pop.2015.0029
http://www.ncbi.nlm.nih.gov/pubmed/26086359
https://doi.org/10.1001/jama.2011.1515
http://www.ncbi.nlm.nih.gov/pubmed/22009101
https://doi.org/10.1016/j.acap.2015.07.002
http://www.ncbi.nlm.nih.gov/pubmed/26293551
https://doi.org/10.1542/peds.2014-1956
http://www.ncbi.nlm.nih.gov/pubmed/25384492
https://doi.org/10.1542/hpeds.2017-0220
http://www.ncbi.nlm.nih.gov/pubmed/30093373
https://doi.org/10.1186/s12916-018-1142-3
http://www.ncbi.nlm.nih.gov/pubmed/30220255
https://doi.org/10.1016/j.acap.2012.06.006
http://www.ncbi.nlm.nih.gov/pubmed/22922047
https://doi.org/10.1016/j.annepidem.2018.03.008
http://www.ncbi.nlm.nih.gov/pubmed/29628285
https://doi.org/10.1371/journal.pone.0221233

