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Abstract

This review covers recent findings on the main categories of thyroid hormone-disrupting

Key Words

chemicals and their effects on brain development. We draw mostly on epidemiological » thyroid

and experimental data published in the last decade. For each chemical class considered, » endocrine disruptors
we deal with not only the thyroid hormone-disrupting effects but also briefly mention » neuroendocrinology
the main mechanisms by which the same chemicals could modify estrogen and/or

androgen signalling, thereby exacerbating adverse effects on endocrine-dependent

developmental programmes. Further, we emphasize recent data showing how maternal

thyroid hormone signalling during early pregnancy affects not only offspring 1Q,

but also neurodevelopmental disease risk. These recent findings add to established

knowledge on the crucial importance of iodine and thyroid hormone for optimal brain

development. We propose that prenatal exposure to mixtures of thyroid hormone-

disrupting chemicals provides a plausible biological mechanism contributing to current
increases in the incidence of neurodevelopmental disease and IQ loss.

Introduction

Thyroid hormone (TH) is essential for normal brain
development where it influences, during specific temporal
windows, neurogenesis, neuronal migration, neuronal and
glial cell differentiation, myelination and synaptogenesis.
These TH-dependent processes are crucial during early
gestation and postnatal development, and then continue,
albeit at reduced rates, throughout adulthood. During the
first 10-12 weeks of gestation, the foetus relies entirely
on maternal TH. Hence, severe maternal TH deficiency
adversely affects offspring neurodevelopment (1, 2).
Recent epidemiological evidence suggests that even more
moderate forms of maternal thyroid dysfunction may
affect child cognitive development and increase the risk of
neurodevelopmental disorders (3, 4, 5, 6). Therefore, it is
important to gain a better understanding of early thyroid
dysfunction on offspring neurodevelopment (1, 7).
Another major cause of thyroid dysfunction can be
the presence of thyroid hormone-disrupting chemicals in
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the maternal and fetal environment. Endocrine-disrupting
compounds (EDCs) are xenobiotics that modulate
hormonal homeostasis thereby inducing adverse
effects (8). Numerous EDCs identified to date contain a
halogen group substitution with chlorine and bromine.
Interestingly, THs are the only complex halogenated
(iodine) molecules produced by and necessary for
vertebrate homeostasis, making TH physiology highly
vulnerable to EDCs. Halogen-substituted phenolic
moieties can mimic natural THs and thereby interact
with multiple aspects of hormone production, feedback,
distribution, entry into cells, intracellular metabolism
(deiodination, conjugation) of THs, as well as at the level
of receptors, as antagonists or analogues.

The aim of this review is to provide an update on
how different chemicals in the environment can disrupt
thyroid signalling and thereby affect brain development.
A number of previous reviews have addressed certain
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aspects of this question. Notably, in 1998, Brucker-
Davis and colleagues (9) reviewed the different classes of
chemicals that could affect thyroid signalling and Zoeller
and Crofton (10) underlined how endocrine disruption
affected early brain development. A decade later the
situation was updated by Crofton (11) and by Boas and
colleagues (12).

No new major classes of TH-disrupting chemicals
have been characterised since the last review appeared.
However, within classes certain novel compounds have
attracted attention. Most often these new compounds
have been introduced to replace a similar chemical for
which adverse effects were reported. This has led to many
examples of ‘regrettable substitutions’ within classes, cases
of which are described below. Thus, our focus remains
on perchlorate, phenols, pesticides, polychlorinated
biphenyls (PCBs), poly brominated flame retardants,
perfluorinated compounds (PFCs) and phthalates (Fig. 1).
Many of these substances are classed as persistent
organic pollutants (POPs) and were banned decades ago
yet they remain environmentally relevant due to their
previous high production volumes and exceptionally
long half-lives.
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Perchlorate

Perchlorate is a well-characterised inhibitor of the sodium-
iodide symporter (NIS) that is expressed in the basal
membrane of thyroid follicular cells and is critical for
iodide uptake (13). Two other NIS inhibitor classes, nitrates
and thiocyanates, are found at significant levels in human
fluids, but in molar terms, they are respectively 240 and
15 times less active than perchlorate (14). However, their
environmental levels are such that their combined effects
should be more often taken into account (15, 16).

Given first, its wide-ranging uses as an oxidant in
products ranging from in rocket fuel to airbags and second,
its high stability, perchlorate contamination is widespread.
Epidemiological data show that despite its short half-life
(<8h in humans), continual exposure means that the
chemical is virtually ubiquitous in the US population (17).
Epidemiological evidence showed that perchlorate levels
were associated with TSH in women, and this association
was stronger in women with <100ug/L urinary iodine
(18). The relationship was even greater in women who
smoke, related to the fact that cigarette smoke is a source
of thiocyanate.

Functional impact

Learning and cognitive deficits, IQ loss, sensory defects
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Endocrine-disrupting chemicals (EDCs) act at multiple levels of the hypothalamus-pituitary-thyroid (HPT) axis. Environmental chemicals have the
potential to disrupt the HPT axis, alone or in combination. Given the crucial role for thyroid hormone in brain development, such disruption can have a
long-lasting functional impact, such as IQ loss and increased risk of neurodevelopmental disease (note: targets not drawn to scale).
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Furthermore, recent epidemiological data analysed
pregnant women for their thyroid status and perchlorate
levels (19). Offspring born to those women that were
both borderline hypothyroid and hypothyroxinemic
and had higher perchlorate levels had a higher risk of
being in the lowest 10% for IQ scores. The adverse effect
of perchlorate was not modified by thyroxine therapy
(150pg/day) during pregnancy. However, it is possible
that the timing of replacement (after 12 weeks pregnancy)
was too late to exert corrective effects. Other recent data
also link maternal perchlorate exposure to modified
thyroid function during pregnancy (20). Iodine has long
been known to be required for TH synthesis and both
iodine deficiency and maternal hypothyroidism are risk
factors for decreased IQ and neurodevelopmental disease
(21, 22). It is worth noting that in the study cited (20),
a large proportion of the women (74%) had urinary
iodine levels below the recommended median level
(1501g/L) for pregnancy, raising the question of whether
iodine deficiency exacerbates the effects of perchlorate
(and potentially other TH-disrupting chemicals). This
question deserves far more research and needs to be taken
into account in both epidemiological and experimental
studies. Similarly, the presence of TH-disrupting chemicals
has been identified as a confounder for epidemiological
studies assessing effects of iodine supplementation during
pregnancy (23).

Phenols

Two principal phenols are well-characterised TH
disruptors, bisphenol A (BPA) and triclosan (TCS). Both
have high production volumes and been so extensively
used that they are now virtually ubiquitous contaminants
of human fluids (24) and the environment (25).

Bisphenol A (BPA, 4,4’ isopropylidenediphenol)

BPA is an organic synthetic compound, first identified as
a synthetic estrogen in 1930s (26). Current common uses
of BPA are in plastic products such as water bottles and
food containers, CDs, DVDs, safety equipment, thermal
paper and medical devices. In the United States, France
and Denmark, BPA is restricted for certain uses, such as
baby bottles. More recently, since 2015, France banned
the use of BPA in plastic food containers. The same year
(2015), EFSA maintained their opinion delivered in
2013 that BPA poses no health risks, but the committee
lowered the tolerable daily intake from 50 ng/kgbw/day to
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4ug/kgbw/day (27). Despite these recent restrictions, there
is still widespread exposure to BPA in human populations
(28). It is retained in humans and has been found in
pregnant women’s serum, placenta and breast milk
(29, 30, 31, 32, 33, 34). As restrictions were increasingly
placed on BPA use, a number of structural BPA analogues
such as bisphenol S (BPS), bisphenol F (BPF) and bisphenol
B (BPB) were marketed. These analogues are found now
in considerable quantities in human urine (35, 36, 37,
38). These replacement chemicals are often described as
‘regrettable substitutions’ as their EDC-related effects are
apparently no less than those of BPA, including effects
on TH signalling (39, 40) and estrogen receptor (ER)
signalling (41).

As BPA is primarily thought of as an estrogen disruptor
but is also a TH modulator. EDC action across endocrine
systems is to be expected as crosstalk exists at multiple
levels: from different nuclear receptors (42) to individual
target genes and networks to physiological systems. As
BPA can interact with multiple nuclear hormone receptors
including ER (43), estrogen-related receptors (ERR)
(44), AR (45, 46) and thyroid hormone receptors (TR)
(39, 47, 48), potential crosstalk needs to be considered at
multiple levels.

BPA and ER interaction has been reviewed extensively
elsewhere, for both classical and non-classical estrogen
receptors (8, 49). As to TRs, some experimental studies
show that BPA does not bind to TR based on a competitive
TR-binding test (50, 51, 52), others show T;-TR-mediated
agonistic and antagonistic effects of BPA (48, 53, 54).
More recently, binding affinities of BPA and its analogues
BPF and BPS, with TR were calculated in silico and found
to be roughly similar (55). When tested by a spectrum of
in vitro and in vivo methods, all three analogues activated
TH signalling in the absence of T; (39). The in vitro
approaches included competitive binding assays,
molecular docking and coactivator-binding assays,
whereas the in vivo methodology exploited TH-response
gene responses in Pelophylax nigromaculatus tadpoles.

In human epidemiology, studies have reported
changes in TH parameters as a function of BPA exposure
in adults (56, 57, 58, 59), including in pregnant women
(60, 61, 62). In pregnant women, maternal BPA levels
were inversely (62) or positively (60) associated with T,
levels while two studies reported no association (61, 63).
In humans, inverse associations of BPA with TSH have
also been reported in both sexes (60) and in other cases,
only in women (61). Yet another study reported a positive
association (64). Such inconsistencies need to be examined
notably for methodological differences between studies.
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We now focus specifically on BPA and TH and
neurodevelopment. Increased prenatal BPA exposure
is implicated in several sex-specific changes in child
behaviour (65, 66, 67, 68, 69, 70). Prenatal BPA exposure
is linked to increased internalizing behaviours in boys
(66, 67, 70) and increased risk of ADHD-related behaviour
(65). In girls, prenatal BPA exposure has been associated
with both internalising and externalising behaviours
(66, 69), aswell as poor executive function (68). Itis possible
that differences in the results are due to varying timing of
sample collection, exposure and assessment among the
studies. Studies on postnatal childhood BPA exposure and
effects on neurodevelopment are even more inconsistent.
Some studies report a positive association of BPA levels
with ADHD-linked behaviours in both girls and boys (71),
and anxious, depressive or aggressive behaviours in girls
(66, 67, 72). Others report null association with childhood
BPA exposure and neurodevelopmental outcomes
(68, 73). Pubertal BPA exposure has also been associated
with poorer cognitive performance in adolescence (74)
and adulthood (75).

The lack of full endocrine profiles in these
epidemiological studies makes it hard to pinpoint the
exact mechanism linking endocrine disruption and
neurodevelopmental outcome. Animal studies however
can better define mode of action. Such studies link BPA
levels with behavioural outcomes often associated with
TH disruption including, hyperactivity (not sex specific)
(76, 77), anxiety (78) and decreased motor activity (79).
Prenatal BPA exposure in mice also results in mostly sex-
specific changes in aggression and cognitive defects (80,
81, 82, 83, 84, 85). These sex-specific changes are not
surprising due to the role of estrogen in differentiation
of sexually dimorphic areas involved in behaviour and
cognitive development (86). BPA exposure also causes
epigenetic changes (methylation) on the ER-a gene in the
cortex and hypothalamus of male and female mice and
alters mRNA levels of DNA methyltransferases DNMT1
and DNMT3A (78, 87). Interestingly, DNMT3A is a well-
known TH-responsive gene, activated by liganded TRs
(88, 89).

Halogenated BPAs include a bromine
(Tetrabromobisphenol A,  TBBPA) or  chlorine
(Tetrachlorobisphenol-A, TCBPA) substitute on the
phenolic ring and are common flame retardants. TBBPA is
currently the flame retardant with the highest production
volume worldwide. It is found in printed electronic circuit
boards and in plastics for electrical housings or piping.
Due to its high production volume, toxicological effects
attributed to TBBPA have been extensively reviewed by
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governments (90, 91, 92) and deemed to have no health
hazard, risk or concerns to humans. However, Van der Ven
and colleagues (93) assessing multiple in vivo studies on
rats concluded that the margin of exposure for humans
was only 2.6 and that TBBPA exposure was a matter of
concern for authorities.

What is more, TBBPA has been established in vitro
as neurotoxicant that disrupts multiple intracellular
pathways including zinc and calcium homeostasis,
inducing oxidative stress (94, 95, 96, 97) as well as acting
as a partial GABA, agonist at 0.1uM (98). So far, results
for in vivo developmental toxicity are less consistent. The
conclusions of Van der Ven et al. (93) for instance contrast
with those of certain toxicologists (99, 100). Although
Viberg and Eriksson (2011) reported more marked effects
for PBDE 99 than TBBPA in neonatal mouse brain, they
observed downregulation of a certain classes of nicotinic
receptors in the frontal cortex with both chemicals
(101). In our laboratory, studies on mice showed that
gestational exposure to TBBPA decreased TRH receptor
and melanocortin 4 receptor basal expression in pups,
dramatically affecting T;-induced repression of these
genes (102).

Some studies have reported neural defects, including
impaired motor function in zebrafish (103). Similarly,
Nakajima and colleagues reported behavioural effects
of TBBPA administration in adult mice and differential
accumulation of the chemical according to brain region
(104). Further, Lilienthal et al. noted increased latency
of hearing responses in a rat one generation study (10S5).
Interestingly, development of the inner ear is known to be
a TH-dependent process (106).

Significant reduction in circulating T, is the most
frequent phenotype seen across rodent studies as a
function of TBBPA exposure (93, 107). T, reductions could
occur through activation of UDP-glucuronosyltransferase,
UGT, which increases metabolism of T, in the liver and
subsequent reduction of serum T, levels (108). In vitro,
TBBPA competes with binding of transthyretin (TTR)
and interferes with T;-dependent cell proliferation (109).
In a fluorescent polarization assay, TBBPA was found to
modulate both coactivator and co-repressor interactions
with TR (110). TBBPA also shows TH-disrupting effects
in amphibian models. In Rana rugosa, TBBPA displayed
inhibitory effects on T;-induced tail shortening (111) and
in Xenopus laevis, TBBPA exerted antagonistic effects in
the presence of high TH levels, but agonistic activity with
low TH levels (112). TBBPA has also been demonstrated as
a TH disruptor using both the amphibian metamorphosis
assay (112, 113) and the Xenopus embryonic thyroid assay

© 2018 The authors
Published by Bioscientifica Ltd

http://www.endocrineconnections.org
https://doi.org/10.1530/EC-18-0029

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License.

QB0


https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1530/EC-18-0029

’ ) Endocrine B B Mughal et al.

W CONNECTIONS

(XETA) (114). In the latter study, TBBPA was further found
to alter expression of TH target genes implicated in neural
stem cell function and differentiation. Whether such
effects extend to other proliferative brain regions during
development remains to be investigated (115).

In rats, TBBPA exposure increases estrogen levels
(108) and uterine tumours (116), effects thought to be
related to inhibition of liver estradiol sulfotransferase
(109). The combined effects of TBBPA, increasing estrogen
and antagonising TH signalling could well interact to
modify genetic and cellular responses, as well as inducing
longer-term adverse physiological responses governing
reproduction.

Triclosan (TCS, 2,4,4-trichloro-hydroxy
diphenyl ether)

Triclosan (TCS) is a widely used chlorinated phenolic
antimicrobial and antifungal agent. It has been used for
over 40 years as an antiseptic, disinfectant or preservative
in medical and personal care products such as hand soaps
and shampoos, mouthwash, toothpaste and cosmetics.
While it has been banned from soaps and body washes
in the United States, it is still extensively used in skin
care products and toothpaste. TCS has a short half-life in
humans, that is it is rapidly absorbed, metabolized and
eliminated (primarily via urine) with a median excretion
half-life of 11h after oral intake (117). Despite this rapid
clearance, the over use of products containing TCS
maintain permanent, but varying exposure. The most
likely sources in humans are ingestion and skin absorption.
TCS has been found in the majority of urine samples
obtained via population-based studies in North America
(118, 119). TCS has also been detected in human milk and
pregnant women's urine (120, 121, 122). EU has restricted
TCS use as a preservative to a maximum concentration of
0.2% in mouthwashes and 0.3% in other categories (123).
In the environment, TCS likely accumulates in sediments
as it is a lipophilic compound with low aqueous solubility
and is commonly found contaminant in solid and water
compartments (124, 125).

Several animal studies have confirmed TCS to act as
a TH-disruptive chemical. In pregnant rats, TCS decreases
serum T, and T,, disrupts pup sex ratio balance and lowers
their body weights (126, 127, 128). TH disruption is also
evident during weaning rats when their mothers are
exposed to triclosan (126, 127). In mice, decreased levels
of T, are also observed after a short-term oral exposure
to triclosan (129, 130, 131). In amphibian models,
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the North American bullfrog (Rana catesbeiana) and
Xenopus laevis, TCS exposure results in the disruption
of TH-dependent metamorphosis, marked metabolic
disorders of the liver and modulation of innate immunity
(132, 133, 134).

In addition to TH, numerous studies report
adverse effects of TCS exposure on reproductive organ
development in male rats i.e., decreased testosterone and
sperm production (135), and early age of pubertal onset in
female mice (136). In vitro assays have confirmed TCS to
act as an estrogen agonist using ERa and ERf reporter gene
assays (137, 138, 139) stimulate breast and ovarian cancer
cell growth in vitro (140, 141) and magnifying the effects
of ethinyl estradiol (136, 142). In rodent models, TCS, like
TBBA (see above) inhibits estrogen sulfation by inhibiting
sulfotransferases, thus preventing metabolism of estradiol
into biologically inactive forms (143, 144, 145) thereby
increasing circulating estrogen levels (143). Similar effects
are seen in sheep (144). It is worth noting that these same
sulfotransferases metabolise TH as well.

Epidemiological studies have investigated the short-
term and long-term effect of TCS and TH parameters, with
inconsistent findings (56, 146, 147, 148, 149, 150). Many
report no significant disruptions in TH levels while some
report only most marked effects (149, 151). Among the
effects, some observe a positive association between TCS
and total T; (149) in adolescents, while others report an
inverse association between TCS and fT; (151) levels in
pregnant women. A prospective study on prenatal TCS
exposure recently reported reduced head circumference
in boys but not girls (152).

Flavonoids

Flavonoids are phenols that occur as natural food
items. Recent work identified the plant extract (Silybum)
silymarin, and its derivatives silychristin and silybilin,
as inhibitors of the membrane TH transporter, mct8
(slc16a2). Entry of both T,; and T, into target cells is
reduced (153). This feature highlights the possible, and
little studied, effects of compounds that interact with
membrane TH transporters.

Pesticides

Pesticide usage increased dramatically over the Ilast
century, arguably to keep up with the demands of a
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growing population. However, many studies have shown
that pesticide usage is excessive and that yields can be
maintained even when halving pesticide use (154). Many
pesticides exert toxicological effects, including on thyroid
signalling. Notably, the European Food Safety Authority
reported that of 287 pesticide files examined, 101 showed
effects indicative of thyroid disruption (155). Even though
many incriminated pesticides have now been banned,
many of them are still in use in emerging economies.
Further, many of these chemicals are persistent due to
their long half-lives and remain in the environment long
after their ban. Such pesticides are called legacy pesticides,
with many being common environmental contaminants.
Here, we choose a few examples of this latter category
and some others that currently on the market, but are
potentially problematic.

Dichlorodiphenyltrichloroethane (DDT)

Dichlorodiphenyltrichloroethane (DDT) is an
organochlorine insecticide, first used in World War 1 to
control malaria and typhus. Its initial notoriety arose
due to widespread effects on wildlife described by Rachel
Carlson in her 1962 book Silent Spring (156), notoriety that
led to its ban in the United States by 1972 and worldwide
by the Stockholm Convention on POPs later that decade.
Despite the ban, it is still used in certain countries to fight
against malaria and dengue fever (157). DDT, and its main
metabolite dichlorodiphenyltrichloroethylene (DDE),
are highly persistent, lipophilic compounds that bio-
accumulate and are still found in significant amounts in
the environment and in humans, including in pregnant
women (158, 159, 160). Prenatal exposure to p,p’-DDT
and p,p’-DDE has been associated with obesity (161, 162)
and a significant reduction in children’s psychomotor
neurodevelopment (162, 163, 164, 165, 166, 167, 168), in
some cases, in a sex-specific manner (162, 169, 170). The
latter is not surprising as DDT binds to and activates ERs
in both reproductive and other tissues including the brain
(171, 172). On the other hand, DDE has been shown to
inhibit androgens from binding to their receptors (173,
174). In adolescent boys, DDE is associated with increased
testosterone (175) and decreased luteinizing hormone
(176) while DDT is associated with decreases in both
luteinizing hormone and testosterone (176). In women,
in utero exposure to DDT, as judged by umbilical cord
levels, has been associated with an increased risk of breast
cancer later in life (177).

DDT and its metabolites have also been confirmed as
TH-disrupting chemicals through human epidemiological
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studies (158, 178, 179, 180, 181). Studies have found
negative association with DDE and total T; and T, levels
(182, 183) and a positive association with TSH levels (183);
suggesting an anti-thyroid effect. In contrast, recent studies
found a positive association of DDE with total T; and T,
levels, and a non-significant TSH reduction in floriculture
workers (158, 179). These differences could be due to
different levels of exposure and/or exposure to additional
chemicals and characteristics of the populations studied,
such as iodine or thyroid status and genetic factors.

In experimental studies, rats exposed to DDE exposure
exhibit lower free T, levels. One target of DDT action on
thyroid metabolism may be through the inhibition of TSH-
stimulated intracellular accumulation of cyclic adenosine
monophosphate (cAMP) by the action of DDT on the
TSH receptor (184, 185, 186, 187). The highly lipophilic
DDT may also interfere indirectly with the TSH receptor
by altering the phosphor-lipid composition of the thyroid
cell membrane, rendering the TSH receptor unable to
internalise and instead be released extracellularly in
vesicle forms in the presence of DDT (188). These vesicles
have been suggested to initiate autoimmunity favouring
the development of Graves’ disease (184). Mice exposed
to DDE also exhibit reduced expression of TTR and Dio2
mRNA, which further explains the reduced free T, levels
observed (189, 190). Increased expression of several
hepatic enzymes can further contribute to TH degradation
(190). Another study in mice reported that DDT exposure
was associated with increased peripheral conversion of T,
into T;, reduced TSH levels and morphological changes in
the thyroid gland typical of iodine deficiency (191).

Hexachlorobenzene (HCB)

Hexachlorobenzene (HCB) is an organochloride,
used primarily as a fungicide for seeds and as a wood-
preserving agent. It was banned globally in 1979 under
the Stockholm Convention on POPs as a pesticide. Its
current main source is through the industrial emission as
a by-product of the manufacture of chlorinated solvents
and pesticides. It is extremely lipophilic and accumulates
in the environment. It gained prominence during late
1950s when accidentally over-treated HCB-treated seeds
were consumed by the general public in Turkey. Affected
individuals, primarily children, displayed changed
porphyrin metabolism, leading to porphyria cutanea tarda,
enlarged liver and thyroid gland and osteoporosis (192,
193). Similar effects have been observed in HCB-exposed
rats (194) i.e. hepatic and thyroid neoplasms (195, 196,
197), porphyria (193, 198). Other epidemiological studies

© 2018 The authors
Published by Bioscientifica Ltd

http://www.endocrineconnections.org
https://doi.org/10.1530/EC-18-0029

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License.

QB0


https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1530/EC-18-0029

’ ) Endocrine B B Mughal et al.

W CONNECTIONS

have found associations between lower levels of HCB and
decreased gestational length (199), poor social competence
(200) and increased body weight during childhood (201).
Studies on floriculture workers have further revealed an
association between HCB with decreased levels of total T,
(TT,) (202) and TT; (203). In animal studies, HCB is known
to disrupt progesterone and estradiol concentrations
(204, 205, 206), impair reproductive efficiency (207, 208)
and reduce neonatal viability and growth (209). It also
disrupts levels of T; and T, (210, 211), leads to goitre (212)
and hypothyroidism (213). Disruption of the TH axis may
partly be due to HCB’s action on the activity and expression
of hepatic Diol and Dio2 enzymes, respectively (214).
In rats, HCB has been shown to induce apoptosis in the
thyroid cells, most likely due to action on mitochondria
through oxidative stress (215, 216). There is also evidence
that HCB may competitively inhibit binding of thyroxine
to serum carrier proteins (214, 215). More investigations
are required to elucidate the exact mechanisms of HCB on
TH signalling.

Chlorpyrifos (CPF, O,0-diethyl O-(3,5,6-trichloro-2-
pyridinyl) ester phosphorothioic acid)

Chlorpyrifos is a member of the organophosphate class of
insecticides that target the central and peripheral nervous
system specifically inhibiting the enzyme activity of
acetylcholinesterase (217). It is currently one of the most
widely used insecticides in the United States and other
countries, to manage insect pests on agricultural crop.
CPF applications were once particularly heavy in urban
areas, where the exposed populations included pregnant
women (218, 219). Interestingly, its ban in household
use in 2001 allowed for a natural experiment within
an ongoing birth cohort study at Columbia University.
Before the ban, decreases in birth weight and length were
observed in association with CPF in newborn cord blood.
After the ban, these outcomes disappeared (220). This
result has been observed more recently (221), a result that
is not surprising as CPF readily crosses the placenta (222).
Further studies have reported prenatal CPF exposure
association with impaired cognition and motor function
(223), attention-deficit hyperactive disorder (224),
deficits in working memory and reduced IQ (225) and
tremors during childhood (226). While some groups have
considered that the levels of CPF in cord blood are too
low to induce adverse effects (227, 228), one needs to take
into account that the half-life of CPF is approximatively
27h (229). Thus, the possibility of substantially higher
in utero levels of CPF is considerable. Despite these
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studies and its recent thorough evaluation by the World
Health Organization (WHO) and Danish Environmental
Protection Agency finding, toxicological evidence to
be strong and the epidemiological evidence to be of
moderate-to-high quality, the EPA denied a recent petition
for ban calling it ‘crucial to U.S. agriculture’ (230). Not
surprisingly, given the well-demonstrated epidemiological
data showing negative effects on brain development, this
decision has been severely criticised (231).

Given the importance of TH to brain development,
the neurological and impaired cognitive outcomes
associated with CPF exposure could well have underlying
thyroid hormone-dependent mechanisms. Two studies
based on analysis of NHANES data from the years
1999-2002 describe significant associations between levels
of chlorpyrifos metabolite, 3,5,6-trichloro-2-pyridinol
(TCPY) and thyroid parameters, namely increased TT,
in both males and females and decreased TSH levels in
males, with increased TSH levels in females (232, 233).

In rat studies, a reduction in brain T, levels is seen
following prenatal CPF exposure whereas postnatal
exposure results in a transient elevation in young
adulthood (234). Mice exposed to low-dose CPF display
reduced serum T, levels and display altered thyroid
follicular size, with an apparent higher vulnerability in
males (235) and anxiety-like behaviour (236). Reduction
of T, in response to CPF has also been observed in rats
(237), whereas exposure to CPF’s methyl counterpart
(chlorpyrifos-methyl) results in reduced T, and increased
TSH (hypothyroidism) (238). In our lab, CPF was shown
to affect TH signalling using a transgenic reporter.
Moreover, a short embryonic exposure impacts mature
brain structure (Spirhanzlova P, Leemans M, Sébastien LE,
Mughal BB, Wejaphikul K, Fini J-B, Visser T & Demeneix BA,
unpublished observations).

As to the effects on ER and AR signalling, CPF has been
found to interfere with the ERp mRNA steady state level
(239, 240) and exert an ERa-dependent estrogenic effect
on cell proliferation in vitro (241) and in vivo (242). CPF
also has anti-androgenic activity as Leydig cells from the
rat exposed to CPF in vitro exhibit a significant decrease in
testosterone biosynthesis (243). More epidemiological and
experimental data are urgently needed as this pesticide is
being assessed for renewal in the EU from 2019.

Other pesticides

As previously stated, more than a 100 of the 287 pesticides
examined by European Food Safety Authority (EFSA)
had features indicative of thyroid disruption (155).
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In the recent review of chemicals that could be used as
reference for thyroid disruption screening, Wegner and
colleagues identified a number of phytopharmaceuticals
or biocides with TH-disrupting activity (244). To cite a
few, their list contained different classes of fungicides
and organophosphates, along with a number of juvenile
hormone analogues. Among the fungicides, figure
the ethylene bisdithiocarbamates (EBDC) e.g. maneb,
mancozeb, ziram, zineb. Their common degradation
product, ethylene thiourea (ETU), in addition to being a
type IIB carcinogen, interferes with iodide organification by
inhibiting thyroid peroxidase (TPO) (245) thereby decreasing
thyroidal production of T; and T, in experimental animals
(246, 247). In addition, the animals exhibit increased
thyroid/body weight ratio, histopathological changes
and reduced serum protein-bound iodine (246). Recent
epidemiological data further underlines the importance of
iodine status and the effect of ETU on thyroid function (248).
Another class of fungicides with TH-disrupting activity are
the azoles. This class of fungicide can enhance TH hepatic
metabolism through the induction of enzymes uridine
diphosphate-glucuronosyl-transferase (UDPGT), thereby
increasingbiliary elimination of T;and T, (249). Reduction of
TH level varies considerably depending on the class
of azoles (250).

The organophosphate insecticide malathion is an
acetylcholinesterase inhibitor, similar to CPF widely
used in North American agriculture and residential
landscapes, and in public health pest control programmes
such as residential mosquito eradication. It has also been
characterised as an inhibitor of teleost TPO (251) and TTR
(252, 253). Other authors have documented increased levels
of T; and reduced T, as a function of malathion exposure
(254, 255). As it is currently an approved insecticide in
North America and Europe, it is important to note that it
has been associated with a strongly increased risk of thyroid
cancer in spouses of pesticide applicators (256).

Pyrethroids are synthetic organic insecticides similar
to the natural pyrethrins produced by the flowers of
chrysanthemums. Due to their high lipophilicity and
persistence, they are prone to bioaccumulation. Further,
toxicological studies have demonstrated their potential
to disrupt the endocrine system and exert developmental
toxicity (257). Permethrin (PM), one of the most heavily
used synthetic pyrethroids, estrogenic effect
in zebrafish (258) while other pyrethroids have been
demonstrated as interfering with TRs (259), TTR binding
(260) and Diol inhibition (261, 262). Several rat studies
also suggest that pyrethroid insecticides alter serum TH
levels, mostly increasing total T, levels (255, 263, 264, 265).

exerts
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Finally, a pyridine-based juvenile hormone analogue
pesticide, Pyriproxyfen, has been suggested as a TH-active
substance (244). This and other findings led us and
colleagues to suspect it could be implicated in the
increased incidence of Zika-induced microcephaly in
north eastern Brazil (266), especially given its use at high
levels in drinking water during the outbreak (266).

Polychlorinated biphenyls (PCBs)

PCBs are a class of organic man-made chemicals that
were mass produced globally since the 1920s, until their
commercial production ban in the United States in 1979.
They were widely used as plasticizers, in hydraulic fluids,
heat transfer fluids, lubricants and electrical equipment
like capacitors and transformers. A total of 209 possible
congeners exists, classed according to the number and
position of chlorine atoms carried. PCBs can also be
metabolized by hydroxylation to OH-PCBs. Due to their
high chemical stability, PCBs do not readily break down
and are still found in significant quantities throughout
the environment and human fluids (267). PCBs and
their metabolites are known to efficiently transfer from
maternal to foetal blood via the placenta (268, 269) and
to nursing children via milk (270, 271). Prenatal PCB
exposure in human has been associated with increased
risk of a number of TH-related disorders including, high
BMI (272), IQ loss (273, 274, 275), cognitive defects (23,
273, 276, 277, 278), reduced visual recognition memory
(274), attention and motor deficits (276, 279, 280, 281),
increased risk of autism (282, 283) and ADHD (273,
284, 285). In PCB-exposed adults, an increased risk of
cardiovascular disease has been reported (286), as has
a slightly increased risk of thyroid autoimmunity in
men (287, 288).

Due to their physiochemical properties, PCBs have
long been suspected to act as TH and other steroidal
hormone analogues (2, 289). Numerous publications
covering both epidemiological and experimental studies
have confirmed the association of hydroxylated and
non-hydroxylated PCBs with decreased TH levels, T,
(290, 291, 292) and Ty (292, 293, 294, 295). In fact,
serum hypothyroxinemia is the most frequently
reported adverse health effect in human populations
exposed to PCBs due to displacement of T, from TTR
and subsequent increase of metabolism (296). PCBs
in cord blood have also been linked with low thyroid-
binding globulin (TBG) (293) and high TSH levels (297,
298). In contrast to the latter study, a recent analysis of
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three cohorts revealed slightly lower levels of TSH with
PCB-153 exposure (299).

In experimental studies, PCB and their metabolites
demonstrate a clear association with reduced TH levels
in animal models (300, 301, 302) and induce long-
term effects on behaviour and neurodevelopment
(303, 304). More recent studies have highlighted other
possible mechanisms of PCB action on additional TH
axis components. TTR disruption may play a role in
distribution of hydroxylated PCBs to the placenta and the
brain as PCB metabolites are known competitors for TTR’s
T,-binding pocket (296, 305). PCB exposure suppresses
NIS expression (301) through the Akt/FoxO3a/NIS
pathway (306, 307). NIS suppression may also be due to
inflammation by PCB exposure. The PCB-induced AhR/JNK
pathway stimulates the production of cytokines and
thereby suppresses NIS expression (308). Hydroxylated
PCBs may also inhibit SULT-catalysed THs sulfation
(309). A more recent study on infants found further an
association between PCBs in maternal blood with high
T, and low 1T in cord serum indicating possible action
on deiodinases (310). Finally, iodine status can have a
major impact on the effect of PCB exposure (23). A pilot
study found that PCB exposure lessens the benefits of
iodine supplementation during pregnancy in a borderline
iodine-deficient group and higher PCB levels have a
negative impact on the neurocognitive development of
the offspring.

The importance of other endocrine systems especially
the sex hormones must not be overlooked as many sexually
dimorphic changes due to gestational PCB exposure
have been reported. Gestationally PCB-exposed females
pups display increased birth weight, higher locomotor
behaviours, higher corticosterone concentrations while
the males display increased anogenital distances (311,
312). Certain PCB metabolites have been shown to interact
with the ERs acting either as agonists or antagonists (313,
314). On the other hand, one PCB metabolite (PCB104)
exhibits both, AR antagonistic and ER agonist properties
(315). PCBs may also induce estrogenicity indirectly
through inhibition of the estrogen sulfotransferase (316).

Polybrominated flame retardants

PBDEs are widely used flame retardants being used in
furniture, carpets, automobiles, electrical appliances and
flame-retardant fabrics. PBDEs are lipophilic in nature
and as they are not chemically bound to the substrate,
they easily accumulate in the environment. High levels
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are found in diverse situations from house dust (317) to
river sediments (318). There are 209 congeners of PBDEs,
due to the different possible bromine substitutions on
the biphenyl backbone. Similar to PCBs, hydroxylated
PBDEs (OH-PBDEs) add to the complexity of chemical
interactions and stability. Production and usage of the
less brominated PBDEs were banned in Europe in 2004,
and more recently extended to BDE-209 (or deca-BDE). As
BDE-209, is the most highly brominated compound (10
bromines), it is easily broken down into less brominated
congeners (318). However, general levels of PBDE are
increasing despite the ban (see for instance: (319)). In the
United States, despite similar restrictions and phase out
of deca-PBDE at the end of 2013 (except for certain uses)
the entire population have detectable levels of at least one
PBDE congener in their blood (320).

As PBDEs are persistent, PBDE congeners are still found
in significant amounts in the placenta (321), fetal blood
(322), and breast milk (323). Early exposure of PBDEs
has also been associated with decreased 1Q, diminished
language and reading abilities, increased problems with
hyperactivity and attention, and poorer executive function
in children (324, 325, 326, 327, 328, 329, 330, 331, 332).
Among these, two studies further observed sex-specific
differences. Vuong et al. reported significantly poorer
executive function among boys with higher concurrent
BDE-153 and no associations in girls, while Sagiv et al.,
observed poorer executive function in girls with higher
4 PBDE (BDE-47, -99, -100, -153) concentrations, but not
in boys (327, 333). These sex-specific differences need to
be investigated further as other studies have revealed no
statistically significant sex interactions (328, 329).

The biological mechanism for sex differences in PBDE
exposure-related neurotoxicity remains unknown. These
behavioural changes are not surprising as PBDEs are well
known to pass the blood-brain barrier, accumulate in
the central nervous system and induce developmental
neurotoxicity (334). Neonatal rodents exposed to PBDEs
exhibit behavioural changes (335, 336, 337, 338), with
reduced hippocampal long-term potentiation, modified
intracellular calcium homeostasis (339), oxidative stress
(340) and reduced postsynaptic protein levels in the
hippocampus (341). Poorer attention and executive
function suggests that PBDEs may also target the prefrontal
cortex region of the brain (342, 343).

The precise mechanism of PBDE action at a molecular
level, still remains to be elucidated. Clearly, one plausible
action of PBDEs is through its disruption of TH availability.
Several epidemiological studies have reported increased
TSH levels, lower total T, and, in some studies greater
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free T, levels in humans, including children (295, 344,
345, 346, 347, 348, 349). These TH parameters are not
always consistent and the differences in findings may be
due to the median levels of PBDEs as demonstrated by a
meta-analysis (350). High levels of PBDEs were positively
correlated with TSH/T, levels while low PBDE levels
were negatively associated. Decreased levels of T, are,
however, the most consistently observed adverse effect
observed in populations, as a function of PBDE exposure.
Decreased circulating TH levels have also been observed
in experimental studies on rodents, fish and birds after
exposure to perinatal PBDE (340, 351, 352, 353, 354).
Further, PBDE congeners have been tested for their agonist
and antagonist properties against TRs. Using a reporter
gene assay, PBDE congeners, including hydroxylated
compounds, inhibited TR-mediated transcription at
varying concentrations (355, 356, 357, 358, 359). The
antagonist action of PBDEs on TR is further evident
through its effect on purkinje cell dendrite arborisation
and neural progenitor cell differentiation into the
oligodendrocyte lineage (360, 361). In contrast, several
hydroxylated PBDEs have been reported to act as agonists
on TH-dependent transcription (355). Recently, using
zebrafish knock down model of TR, the developmental
toxicity of PBDE was demonstrated (362).

Several hydroxylated PBDE congeners have been
shown to bind to and alter T, binding to the two TH
distributor proteins, TBG and TTR (363, 364). The
displacement of T, from TTR and TBG, may lead to
its increased glucuronidation, followed by decrease
in circulating T, and hence higher TSH. PBDEs and
hydroxylated metabolites alter DIO2 activity in different
astrocyte cell lines (365). BDE-99 decreased DIO2 activity
by up to 80% while 3-OH-BDE-47, 6-OH-BDE-47,
and 5-OH-BDE-99 also decreased DIO2 activity by
45-80%. Multiple mechanisms appear to contribute
to the decreased DIO2 activity, including weakened
expression of DIO2 mRNA, competitive inhibition of
DIO2, and enhanced post-translational degradation of
DIO2. As astrocytes produce more than 50% of T, used
by the brain, Roberts et al. propose that PBDE exposure
could compromise T, delivery to the brain (365). A
possible mechanism for this effect has been investigated
in silico and thought to be halogen bonding of PBDEs
to the active site selenocysteine (366). Studies have also
found upregulation of Diol and Dio3, i.e. inducing local
hyperthyroidism, in the periventricular zone of the brain,
suggesting another, as yet under-estimated, mechanism
impacting neurodevelopment. (367, 368).
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Phthalates

Phthalates or phthalate esters are esters of phthalic acid
and mainly used as plasticizers and softeners in various
commercial products such as furniture, cosmetics, food
packaging, and medical equipment such as catheters and
perfusion bags/drips. Phthalates are also one of the most
volatile EDCs and can be found at high concentrations in
enclosed spaces where air conditioning is used, such as in
vehicles (369). One of the most widely used phthalates is
di-(2-ethylhexyl) phthalate (DEHP), used as a plasticizer
in PVC recycling, but not manufacturing. This phthalate
used in soft medical devices and toys was of major concern
due to its high migration rate (370) and to the vulnerable
population in contact with the compound. Consequently
production was banned and manufacturing ceased by
BASF in 2002. Other notable common phthalates are
dibutyl phthalate (DBP) and its metabolite monobutyl
phthalate (MBP), mono-(2-ethylhexyl) phthalate (MEHP),
monoethyl phthalate (MEP), benzylbutylphthalate (BBP),
diisodecyl phthalate (DIDP), and diisononyl phthalate
(DINP). Alternatives to phthalate such as hexamoll Dinch
are now being used in medical devices. A transgenerational
study carried out by BASF in 2005, unpublished but
described in EFSA 2006 (371) and NICNAS 2012 (372)
reports, showed significant hepatic effects and thyroid
hyperplasia induced by Dinch (372).

Phthalates do not bio-accumulate in the environment
but since they are ubiquitous in our daily life, the
potential of consequences of continuous exposure has
raised concerns. Current EU legislation focuses on levels
in children’s toys. Some phthalates (DEHP, BBP and DBP)
cannot be used in toys and childcare products. Other
phthalates (DINP and DIDP) are banned only from toys
that could be potentially placed in mouth. Urinary levels
of phthalates serve as a good biomarker and high exposure
levels have been found in the general public, including
pregnant women (373, 374, 375, 376, 377).

In humans, DEHP and its metabolites measured
in maternal urine have been associated with adverse
neurodevelopment and behaviour in offspring (378, 379,
380, 381, 382). Interestingly, the phthalate metabolites,
MEHHP, MEOHP and MBP were associated with both
mental and behaviour defects in male but not female
infants of 6 months (378). Prenatal exposure to phthalates
has also been associated with ‘reduced masculine play’
among boys of 3- to 6-year (383). In contrast, Téllez-Rojo
et al. reported lower scores on the mental developmental
index (Bayley’s test) in females but not males at 2-3 years
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(380). These sex-specific differences seem to attenuate with
age (7-9 age) (384). More studies are needed to determine
if gender differences are found as a function of phthalate
exposure in older children. While these previous studies
have focused on cognitive and behavioural defects during
early years, other studies have found association between
phthalates and more severe neurodevelopmental defects
during school ages such a reduced IQ (385) and attention-
deficit disorder (ADD) (386).

As for a number of pesticides, these negative effects
on brain development can be linked to changes in TH
levels. In pregnant women, urinary MBP, MEP and MEHP
have been associated with low serum T, and fT, during
the second trimester (387, 388, 389, 390, 391, 392).
These inverse relationships between MEHP and DEHP
and T, levels have been reported in the adult population
including men (59, 393). In children, there are varying
reports of levels of phthalates and its effect on TH levels.
Some report inverse relations between the two (388,
394), others a positive relation (59), and one that relied
on a relatively small cohort found none at all (395). This
highlights the importance of study design, age group,
sample size, and exposure profiles when studying non-
persistent chemicals.

Since DBP down-regulates the human NIS promoter
(396), modulating the transcriptional activity of NIS may
be one of the underlying causes of thyroid hyperactivity
and decreased circulating T, concentrations. DBP also
appears to act as a thyroid antagonist when assessed
through reporter gene assays (397). Zebrafish and male
rats exposed to varying concentrations for MEHP and
DEHP respectively demonstrate similar low levels of
whole body T, levels (398, 399). It is interesting to note
that in 2017, ECHA classified DPB, DEHP, BBP and DIBP
as substances of high concern due to their endocrine-
disrupting properties.

Perfluorinated compounds

Perfluorinated chemicals (PFCs) are widely used in the
manufacture of fabrics, carpets, surfactants, emulsifiers,
Teflon, lubricants, cosmetics, and fire-fighting foams.
They are commonly used as surfactants due to their fully
fluorinated linear carbon chain attached to a hydrophilic
head. Surfactants are compounds that lower the surface
tension between two liquids or between a liquid and a
solid and therefore are used in detergents, wetting agents,
emulsifiers, foaming agents, and dispersants. They are
also highly stable and therefore extremely persistent in
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the environment including both wildlife and human
populations (400). Between the years 2000 and 2002,
the main producers discontinued production of certain
PFCs, including perfluorohexane sulfonate (PFHXxS),
perfluorooctanoate (PFOA) and perfluorooctane sulfonate
(PFOS). Following its discontinuation, a significant
decrease in the serum levels of PFOA and PFOS were
observed (401, 402, 403). However, another factor that
needs to be taken into consideration is their relatively
long half-life in humans being approximately 3.8 years for
PFOA, 5.4 years for PFOS, and 8.5 years for PFHxS (404).
Despite the ban, they are still found in significant levels
in drinking water. A 2016 study covering 2/3 of drinking
water supplies in the United States found unsafe levels of
PFCs at the minimum reporting levels required by the EPA
(405). PFOS has been banned in the EU since 2008 but
there are no restrictions on PFOA and PFHxS. In the USA,
the EPA launched a voluntary campaign in which the
companies committed to reduce global facility emissions
and product content of PFOA and related chemicals by
2015. The last update for this reduction was in 2013/2014.

Several animals studies have shown low-dose
exposure of PFCs during neonatal development results
in irreversible neurotoxic effects and alterations in
spontaneous behaviour, habituation capability, learning
and memory (assessed at 4 months) (406, 407). PFCs were
also shown to alter the levels of synaptophysin and tau
proteins in the cerebral cortex and hippocampus. Both
proteins are important for the formation and growth of
dopaminergic synapses and alterations in the dopamine
transporters and receptors are one of the underlying causes
of behavioural defects such as ADHD (408, 409). Several
cross-sectional studies have investigated the potential
association between PFC levels in school-age children and
ADHD (410, 411). Hoffman et al. (410) reported a positive
association between levels of PFOS, PFOA and PFHxS with
ADHD symptoms while Stein and Savitz (411) reported
an association with only PFHxS. High impulsivity has
also been reported in children with high PFC levels (412)
and high levels of PFOS exposure during pregnancy have
been associated with delayed motor development in the
first two years of life (413, 414). TH dysfunction is a well-
established risk for ADHD (5, 415, 416, 417, 418).

PFC exposure and TH disruption have also been
reported in adults. A large study of employees in a PFC
manufacturer revealed negative associations between
PFOA and free T, levels (419). In the US, women with high
levels of PFOA and men with high levels of PFOS are also
at increased risk of thyroid diseases (420). Low levels of T,
as a function of PFC exposure have also been confirmed
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in several animal models. A single dose of PFOS in adult
rats resulted in an initial increased {T, and decreased TSH
levels, followed by decrease in total T, and T; levels (421).
In other adult rat studies, PFOA exposure resulted in
decreased T, levels (422, 423). Perinatal exposure to PFOS
also results in decreased levels of T, in both the mother
and the offspring (424, 425, 426, 427). A test of twenty-
four PFCs revealed competitive binding of most PFCs to
TTR (428) which in turn can explain the dysfunctional
levels of T, observed in humans and animal models. Of
the 24 PFCs, PFHXS displayed the highest competitive
binding followed by PFOA and PFOS equally. PFOS has
also been shown to decrease hepatic Diol mRNA while
increasing thyroidal Diol mRNA (429). Whether this is a
direct effect on Diol transcription or a response to levels
of T,, is not yet clear.

Conclusion

The above review covers the main categories of chemicals
that affect thyroid signalling. However, we have not
reported environmental and human levels of exposure
for each chemical class or effects of mixtures. There
are wide variations in exposure to individual chemical
exposure due to geographical location and legislation of
the country of residence. Moreover, as we are exposed
to multiple chemicals at a given time, it is increasingly
important to address the effect of chemicals as a mixture,
since synergistic effects of chemical mixtures without
individual effects have been reported (430, 431). Our
laboratory has shown that exposure to mixtures of
common chemicals found in human amniotic fluid, alter
TH signalling, brain structure and behaviour (432, 433).
Together, these findings highlight the current impact of
EDC exposure on neurodevelopment and argue for rapid
public health intervention.
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