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Oligodendrocytes are major myelin-producing cells and play essential roles in the
function of a healthy nervous system. However, they are also one of the most vulnerable
neural cell types in the central nervous system (CNS), and myelin abnormalities in the
CNS are found in a wide variety of neurological disorders, including multiple sclerosis,
adrenoleukodystrophy, and schizophrenia. There is an urgent need to identify small
molecular weight compounds that can stimulate myelination. In this study, we performed
comparative transcriptome analysis to identify pharmacodynamic effects common to
miconazole and clobetasol, which have been shown to stimulate myelination by mouse
oligodendrocyte progenitor cells (OPCs). Of the genes differentially expressed in both
miconazole- and clobetasol-treated mouse OPCs compared with untreated cells, we
identified differentially expressed genes (DEGs) common to both drug treatments.
Gene ontology analysis revealed that these DEGs are significantly associated with the
sterol biosynthetic pathway, and further bioinformatics analysis suggested that sterol
regulatory element binding factors (SREBFs) might be key upstream regulators of the
DEGs. In silico screening of a public database for chemicals associated with SREBF
activation identified fenofibrate, a peroxisome proliferator-activated receptor α (PPARα)
agonist, as a drug that increases the expression of known SREBF targets, raising the
possibility that fenofibrate may also stimulate myelination. To test this, we performed
in vivo imaging of zebrafish expressing a fluorescent reporter protein under the control
of the myelin basic protein (mbp) promoter. Treatment of zebrafish with fenofibrate
significantly increased expression of the fluorescent reporter compared with untreated
zebrafish. This increase was attenuated by co-treatment with fatostatin, a specific
inhibitor of SREBFs, confirming that the fenofibrate effect was mediated via SREBFs.
Furthermore, incubation of zebrafish with another PPARα agonist, gemfibrozil, also

Abbreviations: DEG, differentially expressed gene; dpf, days-post-fertilization; mbp, myelin basic protein; mEpiSC, murine
epiblast stem cell; OPC, oligodendrocyte progenitor cell; PPAR, peroxisome proliferator-activated receptor; SREBF, sterol
regulatory element binding factor; TF, transcription factor.
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increased expression of the mbp promoter-driven fluorescent reporter in an SREBF-
dependent manner. These results suggest that activation of SREBFs by small molecular
weight compounds may be a feasible therapeutic approach to stimulate myelination.

Keywords: SREBFs, fenofibrate, gemfibrozil, oligodendrocytes, myelination, comparative transcriptomics,
zebrafish, systems pharmacology

INTRODUCTION

Oligodendrocytes are major myelinating cells of the central
nervous system (CNS) and are thus critical to proper neuronal
functioning. However, they are also an extremely vulnerable
cell type, and CNS myelin abnormalities are found in a
variety of neurological disorders (reviewed in Chew and DeBoy,
2015), including white matter pathologies associated with brain
injury, endocrine and metabolic abnormalities, and psychiatric
and neurodegenerative conditions. The aberrant myelination
associated with these heterogeneous pathologies can result from
the production of myelin with abnormal structure, the virtual
absence of myelin, and damage to existing myelin by insults
such as oxidative stress, mechanical injury, and inflammation.
Ultimately, the loss of normal myelination leads to defective
impulse conduction along the nerve fiber.

Current therapeutic approaches are aimed at reducing
demyelination by immune-, excitotoxic-, and oxidative stress-
mediated injury and at promoting myelination through cell
engraftment, direct protection of endogenous oligodendrocytes,
and enhancement of OPC activity. However, there are
some reports of effective non-immune-based remyelinating
therapeutics, including benztropine (Deshmukh et al., 2013),
miconazole (Najm et al., 2015), clobetasol (Najm et al., 2015;
Porcu et al., 2015), and halcinonide (Porcu et al., 2015).
Benztropine stimulates myelination by antagonizing the
M1/M3 muscarinic receptor (Deshmukh et al., 2013), whereas
miconazole and clobetasol stimulate myelination, at least in part,
through mitogen-activated protein kinase and glucocorticoid
receptor signaling, respectively (Najm et al., 2015). Clobetasol
and halcinonide have also been shown to stimulate myelination
through activation of Smoothened in the hedgehog signaling
pathway and retinoid X receptor γ (RXRγ) (Porcu et al., 2015).
This common mechanism of action suggests the existence of
convergent pathways through which the drugs may stimulate
myelination.

In this study, we performed comparative transcriptome
analysis of mouse epiblast stem cell-derived OPCs (mEpiSC-
OPCs) treated with miconazole and clobetasol to identify
common mechanisms underlying myelination. We were able to
identify a number of genes regulated in common by miconazole
and clobetasol. Bioinformatic analysis of these genes revealed
that SREBFs may be involved in myelination induced by
miconazole and clobetasol, raising the possibility that other
SREBF-activating drugs may also stimulate myelination. In silico
screening of a public database revealed that the peroxisome
proliferator-activated receptor α (PPARα) agonist fenofibrate
can activate SREBFs, which prompted us to examine the drug’s
effect on myelination in vivo. Using in vivo imaging of zebrafish

expressing a fluorescent reporter protein driven by the mbp
promoter, we confirmed that fenofibrate and a second PPARα

agonist, gemfibrozil, could increase mbp promoter activity in a
SREBF-dependent manner. Quantitative PCR (qPCR) analysis
demonstrated that the PPARα agonists increased the expression
of two genes downstream of SREBFs and mbp. These results
suggest that activation of SREBFs may be a convergent pathway
for drugs that stimulate myelination.

MATERIALS AND METHODS

Ethics Statement
This study was carried out in strict accordance with Japanese law
[The Humane Treatment and Management of Animals (2014),
Standards Relating to the Care and Management of Laboratory
Animals and Relief of Pain (2013), and the Guidelines for
Proper Conduct of Animal Experiments (2006) (Science Council
of Japan, 2006; Ministry of the Environment of Japan, 2013,
2014)]. All efforts were made to minimize animal suffering.
Mie University Institutional Animal Care and Use Committee
guidelines state that no approval is required for experiments
using zebrafish.

Compounds
Fenofibrate and gemfibrozil were obtained from Tokyo Chemical
Industry (Tokyo, Japan). Methimazole, propylthiouracil,
thyroxine, and fatostatin were obtained from Sigma (St. Louis,
MO, USA). Stock solutions of these chemicals were prepared by
dissolving in dimethyl sulfoxide (Nacalai Tesque, Kyoto, Japan).
2-Phenoxyethanol was obtained from Wako Chemical (Osaka,
Japan).

Comparative Transcriptome Analysis of
mEpiSC-OPCs Treated with Miconazole
or Clobetasol
To identify genes related to the mechanisms of miconazole- and
clobetasol-induced myelination, we downloaded a transcriptome
dataset (GSE63804) from Gene Expression Omnibus (Barrett
et al., 2009), which was derived from an analysis of the effects of
miconazole and clobetasol on the enhancement of myelination by
mEpiSC-OPCs (Najm et al., 2015). The raw data from GSE63804
were processed according to previous reports (Trapnell et al.,
2009; Liao et al., 2013, 2014). A count-based differential
expression analysis was performed using “TCC” (Sun et al., 2013)
to identify DEGs in mEpiSC-OPCs treated with miconazole or
clobetasol for 2, 6, or 12 h compared with untreated mEpiSC-
OPCs, using a false discovery rate of 20% as the threshold.
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The murine gene symbols of the DEGs were converted to those
of the human orthologs using Life Science Knowledge Bank
(World Fusion, Tokyo, Japan). The lists of DEGs are shown
in Supplementary Tables S1(1–6). DEGs common to mEpiSC-
OPCs treated with miconazole and clobetasol are shown in
Supplementary Table S2.

Bioinformatic Analysis of Genes
Regulated by Both Miconazole and
Clobetasol
To identify the biological pathways enriched in the DEGs
regulated by both miconazole and clobetasol in mEpiSC-OPCs,
we used ClueGO (Bindea et al., 2009) in Cytoscape (Shannon
et al., 2003) with the default settings. The biological pathways
significantly enriched in the DEGs are shown in Supplementary
Tables S3-1 (6 h) and S3-2 (12 h).

To identify TFs potentially regulating the common DEGs,
we used iRegulon (Janky et al., 2014) in Cytoscape (Shannon
et al., 2003). iRegulon exploits the fact that genes co-regulated
by the same TF contain common TF binding sites, and uses
gene sets derived from ENCODE ChIP-seq data (Gerstein
et al., 2012; Janky et al., 2014). The predicted TFs with
normalized enrichment scores >5 are shown in Supplementary
Tables S4-1 (6 h) and S4-2 (12 h).

Identification of Chemicals That Increase
Expression of Genes Targeted by
SREBFs
To identify chemicals that have been reported to increase the
expression of genes regulated by SREBFs, we searched the
Comparative Toxicogenomics Database (Davis et al., 2015). The
database has been successfully used for in silico prediction
of biological pathways associated with metal exposure and
developmental disorders, followed by experimental validation
of the pathway prediction (Ahir et al., 2013). We searched for
compounds that increased the expression of HMGCR and SCD.
A list of chemicals identified by the in silico screening are shown
in Supplementary Tables S5(1) (SCD) and Supplementary Table
S5(2) (HMGCR). A list of FDA-approved drugs common to
Supplementary Tables S5(1,2) is shown in Supplementary Table
S5(3).

Zebrafish Strains
We used an albino zebrafish line (Kelsh et al., 1996) obtained
from the Max Planck Institute for Developmental Biology
(Tübingen, Germany) to make transgenic Tg (mbp: mCitrine)
zebrafish, which express the cyan fluorescent protein mCitrine
under the control of the mbp promoter (Jung et al., 2010),
allowing us to visualize myelin-producing cells. The promoter
and part of the first exon of zebrafish mbp (−1794 to
+159 bp from the transcription start site) was synthesized
by Invitrogen (Carlsbad, CA, USA). The coding region of
mCitrine was amplified by polymerase chain reaction using
pCS2 + 8NmCitrine (Addgene, Cambridge, MA, USA) as the
template. These DNA fragments were cloned into Tol2 vector
(Kawakami, 2007) using the In-fusion HD cloning kit (Takara

Bio, Shiga, Japan) to make a circular plasmid (pT2-mbp-
mCitrine). The pT2-mbp-mCitrine plasmid and transposase
mRNA (Kawakami, 2007) were injected into zebrafish embryos
at the 1- to 4-cell stage. Larval zebrafish expressing mCitrine
in the spinal cord were selected and maintained. Mature F0
zebrafish were mated with albino zebrafish, and F1 zebrafish
expressing mCitrine in the spinal cord were selected and
maintained. Mature F1 zebrafish were mated with Tg (eno2:
Cerulean) zebrafish, which express Cerulean fluorescent protein
specifically in neurons (Bai et al., 2007; Sasagawa et al.,
2016a), to create Tg (mbp: mCitrine, eno2: Cerulean) zebrafish.
Double Tg zebrafish expressing mCitrine and Cerulean in the
spinal cord were selected and subsequently maintained and
bred according to previously described methods (Westerfield,
2007; Nishimura et al., 2016). Briefly, zebrafish were raised
at 28.5 ± 0.5◦C with a 14-h/10-h light/dark cycle. Embryos
were obtained via natural mating and cultured in fish medium
(0.07 mM KCl, 2 mM CaCl2, 0.5 mM MgSO4, and 0.7 mM
NaHCO3, pH 7.4) until 5 days post-fertilization (dpf), at
which point they were used for in vivo imaging analysis.
Zebrafish were maintained on living Paramecium spp. from
5 dpf.

In Vivo Imaging of Tg (mbp: mCitrine,
eno2: Cerulean) Zebrafish
Tg (mbp: mCitrine, eno2: Cerulean) zebrafish were exposed
to chemicals from 10 h post-fertilization to 5 dpf in 12-well
plates (20 larvae/well). At 5 dpf, zebrafish were anesthetized with
2-phenoxyethanol and placed in a 96-well imaging plate (ZF
plate, Hashimoto Electric Industry, Mie, Japan). In vivo imaging
and quantitative analysis of the mCitrine fluorescent signal was
performed using ImageXpress Micro with customized programs
(Molecular Device, Sunnyvale, CA, USA). Briefly, the image was
first processed to identify the region of hindbrain and spinal cord
using the eno2 promoter-driven Cerulean fluorescence signal
(green borders shown in Figures 4 and 5). The mbp promoter-
driven mCitrine fluorescence signals within this region were
then measured (red dots shown in Figures 4 and 5). Bright-field
images of zebrafish were captured using an SMZ25 microscope
(Nikon, Tokyo, Japan).

Quantitative PCR Analysis
Total RNA was extracted from zebrafish at 5 dpf using a
Nucleospin RNA XS kit (Takara, Kyoto, Japan) according to the
manufacturer’s protocol. cDNAs were generated using a ReverTra
Ace qPCR RT Kit (Toyobo). qPCR was performed using an
ABI Prism 7300 PCR system (Life Technologies, Carlsbad, CA,
USA) with THUNDERBIRD SYBR qPCR Mix (Toyobo). The
thermal cycling conditions were: 95◦C for 1 min, followed by
40 cycles of 95◦C for 15 s, 60◦C for 15 s, and 72◦C for 45 s.
We measured the expression of 3-hydroxy-3-methylglutaryl-
CoA reductase (hmgcr), 7-dehydrocholesterol reductase (dhcr7),
mbp, and eukaryotic translation elongation factor 1 alpha 1
(ef1a). hmgcr, dhcr7, and mbp mRNA levels were normalized
to ef1a mRNA levels to correct for variability in the initial
template concentration and the conversion efficiency of the
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reverse transcription reaction. The primer sequences are shown
in Supplementary Table S6.

Statistical Analysis
Statistical analysis was performed using Prism 6 (GraphPad, La
Jolla, CA, USA). Group means were compared by analysis of
variance. Alpha was set at 0.05. Dunnett’s and Tukey’s multiple
comparisons tests were used for post hoc analysis of the in vivo
imaging and qPCR data, respectively, when significant effects
were found by analysis of variance. Data are shown as the
mean± standard error (SEM).

RESULTS

Identification of Differentially Expressed
Genes Regulated by Both Miconazole
and Clobetasol
To identify common mechanisms underlying myelination
induced by miconazole and clobetasol, we downloaded a
transcriptome dataset from an analysis of the effects of the
two drugs on mEpiSC-OPCs (Najm et al., 2015) from a public
database (Barrett et al., 2009). Using a false discovery rate
of 20% as the threshold, we identified 79 and 30 DEGs in
mEpiSC-OPCs treated for 2 h with miconazole and clobetasol,
respectively [Figure 1, Supplementary Tables S1(1,2)]. Five DEGs
were common to both treatments (Supplementary Table S2).
We also identified 322 and 65 DEGs in mEpiSC-OPCs treated
for 6 h with miconazole and clobetasol, respectively [Figure 1,
Supplementary Tables S1(3,4)]. Twenty DEGs were common to
both treatments (Supplementary Table S2). We also identified 90
and 899 DEGs in mEpiSC-OPCs treated for 12 h with miconazole
and clobetasol, respectively [Figure 1, Supplementary Tables
S1(5,6)]. Fifty-three DEGs were common to both treatments
(Supplementary Table S2). The change in expression of these
common DEGs was the same, with the exception of Abca1 that
was downregulated and upregulate by miconazole and clobetasol,
respectively (Supplementary Table S2). Taken together, these
data suggest that genes dysregulated in both miconazole- and
clobetasol-treated cells may be involved in a common mechanism
to promote myelination.

Identification of Cholesterol Biosynthesis
as the Key Biological Pathway Enriched
in Genes Regulated by Both Miconazole
and Clobetasol
To identify biological processes enriched in the DEGs regulated
by both miconazole and clobetasol, we used ClueGO, a
bioinformatics tool that has been used successfully to identify
biological functions associated with given gene sets (Bindea et al.,
2009; Sasagawa et al., 2016b). ClueGO identified 19 and 20
biological pathways significantly enriched in the 20 (6 h) and
53 (12 h) DEGs, respectively, regulated by both miconazole
and clobetasol [Figure 2, Supplementary Tables S3(1,2)]. There
were no biological pathways significantly enriched in the
five DEGs regulated in common by both miconazole and

FIGURE 1 | Venn diagrams of differentially expressed genes in
mEpiSC-OPCs treated with miconazole or clobetasol compared with
control mEpiSC-OPCs. Transcriptome data from mEpiSC-OPCs treated
with miconazole or clobetasol (GSE63804) were downloaded from a public
database. Genes differentially expressed in control mEpiSC-OPCs versus
mEpiSC-OPCs treated with miconazole or clobetasol for 2, 6, or 12 h were
identified using a false discovery rate of 20% as the threshold. The number of
DEGs in each group and the overlap between groups are shown in the Venn
diagrams for 2, 6, and 12 h of treatment.

clobetasol at 2 h, possibly because of the small number of
DEGs. The 19 biological pathways identified at 6 h were
clustered into three groups; sterol biosynthetic process, fatty
acid biosynthetic process, and isoprenoid biosynthetic process
[Supplementary Table S3(1)]. The 20 biological pathways at 12 h
were clustered into four groups; sterol biosynthetic process, fatty
acid biosynthetic process, “de novo” posttranslational protein
folding, and glycolytic process through fructose-6-phosphate
[Supplementary Table S3(2)]. These results suggest that sterol
biosynthesis and fatty acid biosynthetic processes may be key
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FIGURE 2 | Biological pathways significantly enriched in genes
regulated by both miconazole and clobetasol. DEGs common to
mEpiSC-OPCs treated with miconazole or clobetasol for 6 or 12 h were
independently subjected to ClueGO using Gene Ontology Biological Pathway
as the database. The pathways significantly enriched in the common DEGs at
6 and 12 h treatment are shown in (A,B), respectively. Each circle represents
one biological pathway. Pairs of biological pathways with similar kappa scores
are connected by lines. Biological pathways clustered in the same group are
shown in the same color.

pathways involved in miconazole- and clobetasol-stimulated
myelination.

Identification of SREBFs as Important
Transcription Factors Regulating the
Expression of Differentially Expressed
Genes Common to Miconazole and
Clobetasol
To identify TFs potentially regulating the DEGs common to
mEpiSC-OPCs treated with miconazole or clobetasol, we used
iRegulon, which has been used successfully to identify important
TFs from given gene sets (Nishimura et al., 2015b; Sasagawa

et al., 2016a,b). Based on the list of common DEGs at 6
and 12 h (Supplementary Table S2), the iRegulon analysis
identified SREBF1 and SREBF2 [Figure 3, Supplementary Tables
S4(1,2)], which is consistent with previous studies showing
that SREBF activation increases the expression of 3-hydroxy-
3-methylglutaryl-CoA reductase (HMGCR) (Vallett et al., 1996;
Bennett et al., 2004), stearoyl-CoA desaturase (SCD) (Tabor et al.,
1999), cytochrome P450 family 51 subfamily A polypeptide 1
(CYP51A1) (Halder et al., 2002), acyl-CoA synthetase short-
chain family member 2 (ACSS2) (Ikeda et al., 2001), and 7-
dehydrocholesterol reductase (DHCR7) (Prabhu et al., 2014).
SREBFs are also known to be important regulators of sterol
biosynthesis (Ye and DeBose-Boyd, 2011) and myelination
(Norrmen et al., 2014). There were no TFs significantly enriched
in the five DEGs regulated by both miconazole and clobetasol for
2 h, probably owing to the limited number of DEGs. These results
suggest that activation of SREBFs and the subsequent increase in
expression of these SREBF target genes may be involved in the
pro-myelinating effects of miconazole and clobetasol.

Identification of Fenofibrate as a Drug
That Increases the Expression of Genes
Regulated by SREBFs
From our findings with miconazole and clobetasol, we
hypothesized that chemicals that increase the expression of
the SREBF target genes might stimulate myelination. To test
this, we searched the Comparative Toxicogenomics Database
(Davis et al., 2015) for chemicals able to upregulate expression
of SCD, identified as the common DEG at 2, 6, and 12 h, and of
HMGCR, identified as the common DEG at 2 and 6 h (Figure 2,
Supplementary Table S2). The Comparative Toxicogenomics
Database is a public database of the relationships between
chemicals and various parameters, including gene expression,
curated from the scientific literature. This in silico screening
identified nine FDA-approved drugs that increase expression
of both SCD and HMGCR [Supplementary Table S5(3)]. It is
noteworthy that the list includes clozapine and haloperidol, two
antipsychotic medications used to treat schizophrenia. Both
compounds are known to activate SREBF and upregulate the
transcription of SREBF target genes (Ferno et al., 2006). The
PPARα agonist fenofibrate has also been shown to activate
SREBF2 (Rampler et al., 2003) and to have therapeutic potential
for the treatment of adrenoleukodystrophy (Berger et al., 2010),
consistent with the possibility that this drug may stimulate
myelination.

Fenofibrate and Gemfibrozil Increase
Expression of a Fluorescent Reporter
Protein Regulated by the Myelin Basic
Protein Promoter in Zebrafish
To investigate whether fenofibrate and a second PPARα agonist,
gemfibrozil, could increase myelin expression in vivo, we
examined Tg (mbp: mCitrine, eno2: Cerulean) zebrafish, which
express two fluorescent reporters: Cerulean in neurons (driven
by the eno2 promoter) and mCitrine in oligodendrocytes (driven
by the mbp promoter). MBP is the major constituent of
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FIGURE 3 | Identification of SREBFs as key transcription factors for
the genes regulated by both miconazole and clobetasol. (A,B) DEGs
common to mEpiSC-OPCs treated with miconazole or clobetasol for 6 or 12 h
were independently subjected to iRegulon to identify TFs potentially regulating
the DEGs. The DEGs potentially regulated by SREBF1 and SREBF2 after 6 h
(A) and 12 h (B) treatment are shown.

the myelin sheath and is produced by oligodendrocytes. To
validate in vivo fluorescent imaging of zebrafish as an assay
for examining the effects of chemicals on CNS myelination,
we first treated the animals with methimazole (MMI) and
propylthiouracil (PTU), which are known to decrease CNS
myelination, or with thyroxine, which increases it (Jagannathan
et al., 1998; Gilbert et al., 2012). To quantify the effects
on myelin promoter activity, we measured the fluorescence
intensity of mCitrine within the Cerulean-positive area of
the CNS in living zebrafish and found that MMI and
PTU dose-dependently decreased the mCitrine signal, whereas

thyroxine dose-dependently increased it (Figure 4). These results
suggest that in vivo imaging of mbp promoter-driven mCitrine
expression in zebrafish can be used to assess the effects of
chemicals on myelination.

We then examined the effects of fenofibrate and gemfibrozil
on the transgenic zebrafish and found that both fenofibrate
and gemfibrozil significantly increased the mCitrine fluorescence
(Supplementary Figure S1). To determine the involvement of
SREBFs in this increase, we co-treated zebrafish with fenofibrate
or gemfibrozil and fatostatin, a specific inhibitor of SREBFs
(Kamisuki et al., 2009). Notably, fatostatin reduced the mCitrine
fluorescence signal in zebrafish treated with fenofibrate or
gemfibrozil to the level seen in control zebrafish (Figure 5). To
exclude the possibility that the changes in mCitrine fluorescence
result from drug toxicity, we examined the zebrafish by bright-
field microscopy. As shown in Supplementary Figure S2, the
drug-treated animals showed no malformations, except in the
presence of MMI and PTU at 2 mM. Thus, it is unlikely
that the observed changes in mCitrine fluorescence are due
to drug-related toxicity. To examine whether SREBFs may be
activated in zebrafish treated with fenofibrate or gemfibrozil,
we quantified expression of the SREBF target genes hmgcr
and dhcr7. As shown in Supplementary Figure S3, hmgcr
mRNA levels were significantly increased in zebrafish treated
with either fenofibrate or gemfibrozil. dhcr7 mRNA levels were
also increased by both drugs, but the change was significant
only in gemfibrozil-treated zebrafish. These results suggest
that both fenofibrate and gemfibrozil may activate SREBFs in
zebrafish. We also quantified the expression of mbp mRNA
to determine its association with the increase in mCitrine
fluorescence in fenofibrate- and gemfibrozil-treated zebrafish. As
shown in Supplementary Figure S3, mbp mRNA levels were
increased by both drugs, with gemfibrozil having a statistically
significant effect. These results suggest that the fenofibrate-
and gemfibrozil-induced increases in mCitrine fluorescence may
correlate positively with the increase in mbp mRNA. Taken
together, these results suggest that fenofibrate and gemfibrozil
may stimulate myelination through activation of SREBFs in
zebrafish.

DISCUSSION

In this study, we demonstrated that activation of SREBFs
might be involved in myelination induced by miconazole
and clobetasol. We also demonstrated that fenofibrate and
gemfibrozil increase mbp promoter-driven expression of a
fluorescent reporter protein in zebrafish in a SREBF-dependent
manner, suggesting that the pro-myelinating effects of fenofibrate
and gemfibrozil occur through SREBF activation.

Myelination Is Induced by Activation of
SREBFs
Using comparative transcriptome analysis, we demonstrated that
SREBF activation may be a common mechanism underlying
myelination stimulated by miconazole and clobetasol. These
results are consistent with previous reports supporting a role
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FIGURE 4 | Effects of thyroid hormone modulators on mbp promoter-driven fluorescence in zebrafish. (A) Representative images from in vivo analysis of
Tg (mbp: mCitrine, eno2: Cerulean) zebrafish incubated with or without the indicated concentrations of methimazole (MMI), propylthiouracil (PTU), or thyroxine (T4).
(B) Quantification of mCitrine fluorescence intensity within the area of Cerulean fluorescence. (Top) Zebrafish were untreated (n = 40) or treated with MMI (n = 16 for
0.5 mM, n = 26 for 1 mM, n = 27 for 2 mM). (Middle) Zebrafish were untreated (n = 11) or treated with PTU (n = 5 for 1 mM, n = 10 for 2 mM, n = 3 for 3 mM).
(Bottom) Zebrafish were untreated (n = 20) or treated with T4 (n = 6 for 10 nM, n = 5 for 20 nM, n = 9 for 30 nM). ∗∗p < 0.01, ∗∗∗∗p < 0.0001 compared with
control.
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FIGURE 5 | Fenofibrate and gemfibrozil increase mbp promoter-driven fluorescent reporter expression through activation of SREBFs.
(A) Representative images from in vivo analysis of Tg (mbp: mCitrine, eno2: Cerulean) zebrafish incubated with or without the indicated concentrations of fenofibrate,
gemfibrozil, and fatostatin. (B,C) Quantification of mCitrine fluorescence intensity within the area of Cerulean fluorescence. (B) Zebrafish were untreated (n = 28) or
treated with fenofibrate (n = 27), fatostatin (n = 20), or fenofibrate and fatostatin (n = 5). ∗p < 0.05 compared with control. (C) Zebrafish were untreated (n = 7) or
treated with gemfibrozil (n = 7), fatostatin (n = 8), or gemfibrozil and fatostatin (n = 8). ∗p < 0.05 compared with control.
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for SREBFs in myelination. For example, mammalian target
of rapamycin complex 1 (mTORC1) regulates oligodendrocyte
differentiation and myelination through activation of SREBFs
(Norrmen et al., 2014), and mice carrying mutations in
SREBF cleavage activating protein (SCAP), a SREBF activator,
show congenital hypomyelination (Verheijen et al., 2009).
Although SREBFs have not previously been associated with
the pharmacological effects of miconazole and clobetasol,
the transcriptome analysis revealed cholesterol biosynthesis
as a pathway significantly enriched in genes perturbed by
both drugs (Najm et al., 2015). Collectively, our data and
these observations strongly suggest that the pro-myelinating
effects of miconazole and clobetasol are dependent on SREBF
activation.

We also demonstrated that known SREBF target genes,
including HMGCR (Vallett et al., 1996; Bennett et al., 2004),
SCD (Tabor et al., 1999), CYP51A1 (Halder et al., 2002),
ACSS2 (Ikeda et al., 2001), and DHCR7 (Prabhu et al., 2014),
are differentially upregulated in mEpiSC-OPCs treated with
both miconazole and clobetasol. Expression of SCD positively
correlates with peripheral axonal myelination (Garbay et al.,
1998). Increased HMGCR expression is the predominant
mechanism by which myelination is induced by neuregulin 1
in Schwann cells (Pertusa et al., 2007). These findings suggest
that increased expression of SCD and HMGCR may stimulate
myelination.

Using in silico screening of the Comparative Toxicogenomics
Database (Davis et al., 2015), we identified nine FDA-approved
drugs that increase the expression of both SCD and HMGCR.

Clozapine and haloperidol are known to increase SCD and
HMGCR expression through activation of SREBFs (Ferno et al.,
2006), and clozapine also promotes myelin lipid synthesis in
cultured oligodendrocytes (Steiner et al., 2014). Progesterone
stimulates remyelination in mouse models of demyelinating
diseases (Chew and DeBoy, 2015). Amiodarone increases
phospholipid levels, possibly through induction of genes
associated with cholesterol synthesis (Antherieu et al., 2011).
Although we are unaware of previous reports of a relationship
between the PPARγ agonist troglitazone and myelination, one
study showed that another PPARγ agonist, pioglitazone, does
stimulate myelination (Eto et al., 2008). Thus, chemicals that can
activate SREBFs and increase the expression of SCD and HMGCR
may stimulate myelination.

Fenofibrate and Gemfibrozil Stimulate
Myelination by Activating SREBFs
We used zebrafish to examine the effects of fenofibrate and
gemfibrozil on myelination in vivo. In a survey of 1318 human
drug targets, 86% had orthologs in zebrafish (Gunnarsson et al.,
2008). This high conservation makes the zebrafish a useful animal
model for drug screening. Although there can be interspecies
differences in drug pharmacodynamics, several studies have
shown that zebrafish can be used successfully to identify novel
drugs for treatment of human diseases and to examine the safety
and toxicity of drugs in preclinical studies (Barros et al., 2008;
Helenius and Yeh, 2012; Mathias et al., 2012; Rihel and Schier,
2012; Esterberg et al., 2013). Zebrafish have also been used as

a model organism to investigate CNS myelination (Mathews
et al., 2014; Preston and Macklin, 2015). The structure of
myelin and the molecular mechanism underlying myelination
are well conserved between zebrafish and mammals (Preston
and Macklin, 2015). The ease with which zebrafish can be
genetically manipulated, their transparency, and their ability
to absorb a wide range of chemicals from the surrounding
medium make zebrafish a highly suitable model for in vivo
chemical screening (Nishimura et al., 2015a; Rennekamp and
Peterson, 2015). Indeed, zebrafish have been used successfully
to identify novel compounds with pro-myelinating properties
(Buckley et al., 2010). Using in vivo imaging of zebrafish,
we were able to demonstrate that fenofibrate and gemfibrozil
increased the activity of the mbp promoter via activation of
SREBFs.

Several mechanisms can be proposed by which fenofibrate
and gemfibrozil might activate SREBFs. Both compounds
are PPARα agonists (Friedland et al., 2012), and activation
of PPARα can stimulate SREBF signaling through multiple
mechanisms, including increasing SREBF expression (Rampler
et al., 2003; Martens et al., 2008; Yan et al., 2014), enhancing
SREBF proteolytic cleavage (Knight et al., 2005), and increasing
SREBF activity via recruitment of transcriptional co-activators
(van der Meer et al., 2010). Gemfibrozil activates PPARβ/δ
(Ogata et al., 2009; Roy et al., 2013) and increases the
expression of myelin in human oligodendrocytes through
PPARβ/δ activation (Jana et al., 2012). PPARβ/δ activation
can also stimulate SREBF signaling (Yang et al., 2014).
Fibrates have been considered as potential therapeutics for
diseases associated with impaired oligodendrocytes, such
as multiple sclerosis, adrenoleukodystrophy, schizophrenia,
and traumatic brain injury (Besson et al., 2005; Yang et al.,
2008; Berger et al., 2010; Rolland et al., 2012; Mandrekar-
Colucci et al., 2013). Further studies are required to
determine whether fenofibrate and gemfibrozil can stimulate
myelination through activation of SREBFs in these neurological
disorders.
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FIGURE S1 | Effects of fenofibrate and gemfibrozil on mbp
promoter-driven fluorescence in zebrafish. (A,B) Quantification of mCitrine
fluorescence intensity within the area of Cerulean fluorescence. (A) Zebrafish were
untreated (n = 9) or treated with fenofibrate (n = 12 for 100 nM, n = 7 for 400 nM,
n = 15 for 700 nM). (B) Zebrafish were untreated (n = 17) or treated with
gemfibrozil (n = 11 for 250 nM, n = 6 for 500 nM, n = 14 for 750 nM).
∗∗p < 0.01, ∗∗∗p < 0.001 compared with control.

FIGURE S2 | Bright-field images of zebrafish treated with various drugs.
Zebrafish were treated with the indicated drugs from 10 h post-fertilization to 5 dpf
and bright-field images were captured at 5 dpf.

FIGURE S3 | Quantitative PCR (qPCR) analysis of hmgcr, dhcr7, and mbp
in zebrafish treated with fenofibrate or gemfibrozil. qPCR analysis of hmgcr,
dhcr7, and mbp mRNA levels in zebrafish treated with or without fenofibrate or
gemfibrozil from 10 h post-fertilization to 5 dpf. Expression was normalized to ef1a
mRNA levels. n = 6 per group. If two groups do not share a letter, the difference
between them is significant.
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