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Abstract: Due to the complexity of the pathological mechanisms of neurodegenerative diseases,
traditional differentially-expressed gene selection methods cannot detect disease-associated genes
accurately. Recent studies have shown that consensus-guided unsupervised feature selection
(CGUFS) performs well in feature selection for identifying disease-associated genes. Since the
random initialization of the feature selection matrix in CGUFS results in instability of the final
disease-associated gene set, for the purposes of this study we proposed an ensemble method based on
CGUFS—namely, ensemble consensus-guided unsupervised feature selection (ECGUFS) in order to
further improve the accuracy of disease-associated genes and the stability of feature gene sets. We also
proposed a bagging integration strategy to integrate the results of CGUFS. Lastly, we conducted
experiments with Huntington’s disease RNA sequencing (RNA-Seq) data and obtained the final
feature gene set, where we detected 287 disease-associated genes. Enrichment analysis on these genes
has shown that postsynaptic density and the postsynaptic membrane, synapse, and cell junction are
all affected during the disease’s progression. However, ECGUFS greatly improved the accuracy of
disease-associated gene prediction and the stability of the disease-associated gene set. We conducted
a classification of samples with labels based on the linear support vector machine with 10-fold
cross-validation. The average accuracy is 0.9, which suggests the effectiveness of the feature gene set.

Keywords: ensemble consensus guided unsupervised feature selection; disease-associated genes;
Huntington’s disease; RNA-Seq data

1. Introduction

Neurodegenerative diseases seriously affect human health and quality of life. It is reported that
half of the population aged seventy and over suffer from Alzheimer’s disease [1]. Neurodegenerative
diseases are usually the result of one or more genes combined with one or more environmental
factors. They are a kind of chronic disease characterized with complex symptoms. Alzheimer’s disease
(AD) [2,3], Parkinson’s disease (PD) [4], and Huntington’s disease (HD) are some of the most common
neurodegenerative diseases. Due to the complexity of neurodegenerative diseases, there are still
many unknown parts of molecular mechanisms. It has been shown that the pathogenic gene of HD
is IT15, and although it is widely expressed in various tissues within the body, only the neurons
of specific tissues are damaged. Additionally, HD results from the misfolding of the protein Htt,
and the symptoms of this disease usually develop after the age of 40 [5,6]. Due to the complexity of
these diseases [7], identifying disease-associated genes is helpful for revealing the pathogenesis of
the diseases.
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With the rapid development of high-throughput sequencing technologies, working to identify
disease-associated genes using statistic-based and machine learning methods to deal with gene
expression data is a valuable endeavor. There are mainly three kinds of methods which can be
used to identify disease-associated genes. Firstly, there are statistic-based methods, including the t-test
method [8] and the fold change (FC) rank product method [8], which select differentially-expressed
genes according to the statistically significant p-value by comparing the gene expression between
disease samples and normal samples. Because the interaction between genes is not considered in
these methods, the results have low accuracy. Secondly, there are machine learning methods, such as
the flexible non-negative matrix factorization method (FNMF) [9], which works by sorting the genes
according to a l2 -norm by using a disease-driven relative gene expression matrix, whereby you can then
select the top-ranking genes as disease-associated genes. Due to the random initialization of FNMF,
the final gene rankings are somewhat unstable, which may result in some noise. Thirdly, network-based
methods [10,11], such as the multi-label propagation (LP) clustering algorithm [12], are used to detect
disease-associated gene modules. However, LP only relies on the similarity between gene expression
data and lacks a feature gene selection process, which makes the selected disease-associated gene
set imprecise. Consequently, the above methods have some limitations in accurately identifying
disease-associated genes to some extent.

Disease-associated gene identification can be seen as a feature selection problem in the machine
learning field. Due to the sample labels being unknown and the acquisition of label information
being costly in many cases [13], unsupervised machine learning methods are more promising when
dealing with biological data [14]. Due to the importance of consensus-clustering in feature gene
selection, we used the consensus-guided unsupervised feature selection (CGUFS) [15] method to
identify disease-associated genes. The random initialization of the feature selection matrix in CGUFS
results in instability of the final feature gene set. Ensemble methods have been used effectively in
bioinformatics [16,17] in recent years. For example, ensemble classifiers are applied in Zou et al. [18]
to improve tRNAscan-SE annotation results. Since Zou et al. [19] also uses ensemble support vector
machines to detect N6–methyladenosine sites from RNA transcriptomes, we designed the ensemble
strategy using bagging [20] to improve the accuracy of the disease-associated gene prediction.

Based on the above analysis, we proposed an ensemble method based on CGUFS,
or namely, ensemble consensus-guided unsupervised feature selection (ECGUFS), to help identify
disease-associated genes. Firstly, we used bootstrap aggregation to generate multiple bags from the
RNA sequencing (RNA-Seq) data. For each bag, the gene weights and gene-ranked list were obtained.
Secondly, the area under the receiver operating characteristic (ROC) curve of the ranked list was
calculated to measure the accuracy of the disease-associated gene prediction. Finally, we obtained
ensemble gene weights through a linear combination of all the gene weights. The genes were sorted in
descending order according to these ensemble gene weights, and the higher the ranking, the more
disease-associated was the gene. The experimental results showed that ECGUFS improved both the
accuracy of the disease-associated gene prediction and the stability of the feature set. Compared
with other methods for predicting disease-associated genes, ECGUFS has proved superior in the
analysis of gene expression data for diseases with complex pathologies and also in the identification
of disease-associated genes. Finally, we conducted a classification of disease samples from normal
samples using the support vector machine. The experimental results further verified the effectiveness
of the feature gene set.

2. Materials and Methods

In this section, we will first introduce the CGUFS method [15]; second, describe the evaluation
criteria of disease-associated gene prediction accuracy; and finally, use a bagging integration strategy
to integrate the results of CGUFS, or namely, ECGUFS, to obtain a more unified disease-associated
gene set.
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2.1. Consensus-Guided Unsupervised Feature Selection

Let X = [xij]g×s denote the gene expression matrix. xij represents the expression level of gene

i in sample j. A clustering result of s samples is represented by an indicator matrix H ∈ {0, 1}s×K,
where hjk = 1 denotes that sample j belongs to the k − th cluster, and K is the number of clusters.

H =
{

H(1), H(2), · · ·H(r)
}

are the r basic clustering results of X in consensus clustering.
Part of CGUFS is the design of the following objective function, Equation (1). When the objective

function is minimized to get the feature selection matrix Z and the consensus indicator matrix H∗,
the l2 -norm of each row of the feature selection matrix Z is used as the weight of each feature gene.
In order to identify the disease-associated genes, the genes need to be sorted into descending order
according to weight. The highly-ranked genes are the disease-associated genes.

min
H∗ ,G,Z

− α
r

∑
i=1

Uc(H∗, H(i)) + ‖XTZ− H∗G‖2
F + β‖Z‖2,1, (1)

where H∗ is the consensus indicator matrix of the consensus clustering, Uc is a function that measures
the similarity of two basic clustering results to obtain the consensus clustering result [21]. Z ∈ Rg×K

is the feature selection matrix, G is a mapping matrix between XTZ and H∗, and both α and β are
parameters that control consensus clustering and sparse learning.

Specifically, CGUFS is an unsupervised feature selection method that does not require label
information. As CGUFS adopts consensus clustering for pseudo-label learning, it can greatly improve
clustering accuracy. CGUFS performs sparse regularization constraint on the feature selection matrix,
which reduces the model’s complexity and improves its operation rate. The optimization solution of
the objective function is as follows [15]:

Firstly, when given Z, update H∗ and G. A part of Equation (1) can be converted to Equation (2)
in order to simplify the optimization process [22]:

r

∑
i=1

Uc(H∗, H(i)) = −‖B− H∗C‖2
F + cons tan t, (2)

where B = [H(1), H(2), · · ·H(r)] is a matrix of the r basic clustering results of consensus clustering,
and C = [C(1), C(2), · · ·C(r)] is the center of B. Thus, H∗ and G can be updated through the optimization
of Equation (3).

min
H∗ ,G,C,Z

α‖B− H∗C‖2
F + ‖XTZ− H∗G‖2

F. (3)

Secondly, an optimization approach similar to K-means clustering is used to update H∗ and G [15].
Let U = [

√
αB XTZ], where ul is the i− th row of U. Update H∗, G, and C in the following way.

min
H∗ ,C,G,Z

α‖B− H∗C‖2
F + ‖XTZ− H∗G‖2

F

⇔ min
H∗

K
∑

k=1
∑

ul∈Ck

f (ul , mk)
, (4)

where mk is the k− th center of matrix U, and G is the last K row of center U.
Finally, update Z by giving H∗ and G. Since Z only appears in the last two terms of Equation (1),

update Z by optimizing the last two items. Let L = ‖XTZ− H∗G‖2
F + β‖Z‖2,1, and let the derivative

of L to Z be 0. The updated equation of Z is:

Z = (XXT + βF)
−1

XH∗G, (5)

where F = diag( 1
2‖Z1·‖2

, · · · 1
2‖Zg·‖2

).
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In our proposed method, the weight of the gene can be calculated by using Equation (6).
wi represents the weight of gene i, and W represents a vector of the weights for all genes.

wi = ‖Zi·‖2, (6)

W =
[
w1, · · · , wg

]
. (7)

2.2. Evaluation

We used the true positive rate (TPR), false positive rate (FPR), precision (P), and recall (R) to assess
the accuracy of disease-associated gene prediction. The ROC curve was plotted using TPR and FPR,
the precision-recall (PR) curve was plotted using P and R, and the area under the ROC curve (AUC)
and the area under the PR curve (AUPR) were used as measures of prediction accuracy [23].

2.3. Ensemble Consensus-Guided Unsupervised Feature Selection

Since the random initialization of the feature selection matrix in CGUFS caused instability in
the final gene ranking, this work proposed a bagging integration strategy to integrate the results of
CGUFS, or namely, ECGUFS, to obtain a more unified disease-associated gene set and also to improve
the accuracy of the final gene set.

Firstly, we used bootstrap aggregation to generate b bags from X = [xij]g×s. Each bag had c
samples, where c is generally equal to the number of samples. For the i− th bag, the gene weights
were calculated based on CGUFS and denoted as Wi. The gene-ranked list was obtained through Wi.
Secondly, we calculated the area under the ROC of the gene-ranked list, which is denoted by ai. Finally,
we used Equation (8) to calculate the ensemble gene weights.

W f inal =
b

∑
i=1

aiWi (8)

The genes were sorted in descending order according to W f inal . Highly-ranked genes indicated
that they played an important role in the discrimination between disease samples and normal ones.

Figure 1 shows the flow chart of ECGUFS. After these processes, the final feature gene set
is obtained.
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Figure 1. Flow chart of the ensemble consensus-guided unsupervised feature selection (ECGUFS)
algorithm. Consensus-guided unsupervised feature selection (CGUFS); Wi: a vector of weights for all
genes; ai: the area under the receiver operating characteristic (ROC) curve of the gene-ranked list.

The algorithm of ECGUFS can be described as follows in (Table 1).
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Table 1. Ensemble consensus-guided unsupervised feature selection.

Input:
X: The gene expression matrix;
B: The matrix of r basic clustering results;
α, β: Parameters;
b: The number of bags;
c: The number of samples in one bag.
Initialize W f inal = 0;

1: For i = 1, 2, · · · b
Initialize H∗,Z,F;

2: repeat;
3: build the matrix U = [

√
αB XTZ];

4: run K-means on U to update H∗ and G;

5: update Z = (XXT + βF)−1XH∗G;
6: update F;

7: until the value of the objective function remains unchanged.
8: Obtain the gene weights Wi according to Equation (7);

sort genes according to Wi to get the gene-ranked list;
9: get the area under the ROC of the gene-ranked list ai;
10: End
11: Calculate the ensemble gene weights according to Equation (8).

W f inal+ = aiWi
12: Output: W f inal

Note: Initialize the elements of Z between 0 and 1, F = diag( 1
2‖Z1·‖2

, · · · 1
2‖Zg·‖2

). Initialize H∗ through

consensus clustering.

3. Results

3.1. Gene Expression Data

The data used in this study was obtained from HDinHD (http://www.hdinhd.org), which is
the gene expression data of HD mice obtained by RNA-Seq technology. The dataset contained mouse
liver tissue, cortex tissue, and striatum tissue, and the genotypes of the mice were poly Q20, poly Q80,
poly Q92, poly Q111, poly Q140, and poly Q175. There were 8 samples for each genotype [24]. The mice
whose genotype was poly Q20 were normal mice, whereas mice with all other genotypes were
diseased mice. The longer the poly Q, the heavier was the phenotype of the diseased mice. There were
23,351 genes in the dataset, and most of the calculation methods used for data analysis were based on
differential expression genes to identify disease-associated genes. As it was difficult to identify the
genes whose expression levels did not change during the disease’s progression, we preprocessed the
gene expression data in order to reduce computational complexity. Firstly, the gene whose expression
value was zero in any sample was deleted according to the l0 -norm. Then, we normalized the gene
expression data for each sample. We ranked the genes into descending order according to the gene
variance in different samples, and only the top 4000 genes were selected. We then got the union set of
4000 genes in the three tissues and added the modifier gene set [24]. Finally, 6723 genes were selected
from the entire genome. As it has been reported that striatum tissue can be seriously affected by the
length of poly Q, we used striatum tissue data as experimental data in this study.

The modifier genes are from [24], including 520 genes, 89 of which are disease-associated genes
and the rest of which are non-disease-associated genes. It should be noted that we normalized the
gene expression data by each gene to ensure the convergence of the ECGUFS.

3.2. Parameter Setting

In ECGUFS, we set the number of clusters to K = 6 as the number of mouse genotypes was
six. We set the number of basic clustering results to r = 100 to ensure the robustness of consensus
clustering [15]. We set the parameter that controlled the consensus clustering to α = 104, and the

http://www.hdinhd.org
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parameter that controlled the sparse regularization to β = 1. The higher α and β were, the better the
performance of ECGUFS. When β was larger than 1, the results stabilized and were unaffected by α,
according to [15]. The number of bags was set to b = 20, and the number of samples in a bag to c = 48.

3.3. Performance Comparison between Ensemble Consensus-Guided Unsupervised Feature Selection and
Other Methods

To further verify the prediction accuracy of ECGUFS, we conducted comparative experiments
using statistic-based methods, machine learning methods, and network-based methods on the above
data set. The t-test method [8], FC [8], edgeR tool [25], limma [26], FNMF [9], the joint non-negative
matrix factorization meta-analysis method (jNMFMA) [27], LP [12], and CGUFS [15] were used as
comparison methods. For non-parametric methods, such as the t-test, FC, edgeR, limma, and LP,
only one experiment was conducted. The experimental results of parametric methods, such as
CGUFS, FNMF, jNMFMA, and ECGUFS were unstable due to the random initialization. Consequently,
this work conducted 10 experiments for each parametric method. The mean and standard deviation
of the prediction accuracy of the 10 experiments were calculated to evaluate the performance of the
corresponding method.

The experimental results of FNMF, jNMFMA, CGUFS, and ECGUFS are shown in Table 2.
From Table 2, we can see that the average AUC and AUPR of ECGUFS are better than FNMF,
jNMFMA, and CGUFS, which shows that ECGUFS improved the accuracy of the disease-associated
gene prediction. To analyze the performance of the nine methods in detail, a set of best-performing
experiments were selected for further comparison.

Table 2. Performance mean ± standard deviation of FNMF, jNMFMA, CGUFS, and ECGUFS.

FNMF jNMFMA CGUFS ECGUFS

AUC 56.0 ± 1.9 56.7 ± 1.6 54.3 ± 1.5 59.2 ± 0.8
AUPR 20.4 ± 1.9 20.7 ± 1.6 22.5 ± 1.8 29.4 ± 1.9

FNMF: Flexible non-negative matrix factorization method; jNMFMA: Joint non-negative matrix factorization
meta-analysis method; AUC: Area under the ROC curve; AUPR: Area under the precision-recall (PR) curve.

Figure 2 shows the ROC curves for the prediction accuracy of the t-test, FC, edgeR, limma, LP,
FNMF, jNMFMA, CGUFS, and ECGUFS. It can be seen from Figure 2 that the AUC of ECGUFS is
better than the other eight methods. However, the above methods could not effectively distinguish
the disease-associated genes from the non-disease-associated genes in the modifier gene set. Possible
reasons for this may be that the expression levels of the disease-associated genes did not change
significantly during the disease’s progression, or that a large number of gene expression levels had
changed during the disease’s progression, thereby making it difficult to identify the disease-associated
genes [28].

Figure 3 shows the PR curves of the nine methods. It can be seen from Figure 3 that the AUPR
of ECGUFS is better than the other eight methods. As ECGUFS has a higher prediction accuracy for
highly-ranked genes, it indicates that ECGUFS can better distinguish disease-associated genes from
non-disease-associated genes for highly-ranked genes.

Briefly, it can be seen from Table 2, and Figures 2 and 3 that the performance of ECGUFS is
better than CGUFS. The AUC and AURP standard deviation of the 10 experiments by ECGUFS is
small, indicating the stability of ECGUFS. Experimental results show that ECGUFS is more suitable for
identifying disease-associated genes than the other eight methods.
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prediction results.

From Figure 3, we can see that when the recall rate is less than 0.2, ECGUFS has high prediction
accuracy. Since there are 89 disease-associated genes in the modifier gene set, the top 18 (0.2× 89)
disease-associated genes have higher prediction accuracy. As the last of the 18 genes ranked roughly
at about 1000 in the overall ranking, this work further calculates the coincidence degree of the top
1000 genes in the ranked lists of any two experiments. The results are shown in Table 3, where we can
see that the coincidence degree is greater than 60%. The results also show that when ECGUFS is used
to identify disease-associated genes, many overlapped genes can be identified under the condition
of changes in sample size. Through the integration analysis we found that of the top 1000 genes,
there were 287 overlapped ones of the ten experiment-ranked lists. In addition, we also calculated the
coincidence degree of the top 2000 genes in different ranked lists. The results are shown in Table 4.
There are 962 overlapped genes in the top 2000 genes. The high coincidence degree indicates that
ECGUFS can improve the stability of a disease-associated gene set.
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Table 3. The number of overlapped genes between the top 1000 genes of any two ranked lists obtained
by ECGUFS.

E2 E3 E4 E5 E6 E7 E8 E9 E10

E1 710
(71%)

705
(70.5%)

686
(68.6%)

677
(67.7%)

695
(69.5%)

679
(67.9%)

663
(66.3%)

691
(69.1%)

666
(66.6%)

E2 697
(69.7%)

686
(68.6%)

657
(65.7%)

686
(68.6%)

721
(72.1%)

676
(67.6%)

737
(73.7%)

682
(68.2%)

E3 689
(68.9%)

677
(67.7%)

691
(69.1%)

683
(68.3%)

655
(65.5%)

678
(67.8%)

665
(66.5%)

E4 684
(68.4%)

704
(70.4%)

696
(69.6%)

681
(68.1%)

715
(71.5%)

668
(66.8%)

E5 659
(65.9%)

657
(65.7%)

674
(67.4%)

665
(66.5%)

664
(66.4%)

E6 670
(67.0%)

670
(67.0%)

691
(69.1%)

690
(69.0%)

E7 666
(66.6%)

707
(70.7%)

669
(66.9%)

E8 678
(67.8%)

649
(64.9%)

E9 682
(68.2%)

Note: E1 represents experiment 1 using ECGUFS.

Table 4. The number of overlapped genes between the top 2000 genes of any two ranked lists obtained
by ECGUFS.

E2 E3 E4 E5 E6 E7 E8 E9 E10

E1 1593
(79.7%)

1598
(79.9%)

1565
(78.3%)

1570
(78.5%)

1603
(80.2%)

1569
(78.5%)

1547
(77.4%)

1589
(79.5%)

1564
(78.2%)

E2 1623
(69.7%)

1589
(79.5%)

1550
(77.5%)

1621
(81.1%)

1618
(80.9%)

1534
(76.7%)

1621
(81.1%)

1595
(79.8%)

E3 1582
(79.1%)

1589
(79.5%)

1610
(80.5%)

1603
(80.2%)

1559
(78.0%)

1599
(80.0%)

1590
(79.5%)

E4 1573
(78.7%)

1605
(80.3%)

1563
(78.2%)

1570
(78.5%)

1592
(79.6%)

1567
(78.4%)

E5 1569
(78.5%)

1545
(77.3%)

1575
(78.8%)

1572
(78.6%)

1567
(78.4%)

E6 1597
(79.9%)

1570
(78.5%)

1607
(80.4%)

1619
(81.0%)

E7 1557
(77.9%)

1615
(80.8%)

1584
(79.2%)

E8 1561
(78.1%)

1550
(77.5%)

E9 1596
(79.8%)

To verify the effectiveness of the overlapped 287 genes, we conducted a classification of disease
samples from normal samples based on the support vector machine (SVM) [29], using ten-fold
cross-validation. The average accuracy is 0.9, suggesting the effectiveness of the 287 feature genes.
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3.4. Enrichment Analysis

We used the functional clustering tool DAVID [30] to perform enrichment analysis on 287
overlapped genes to further understand the functional annotation of these genes. Table 5 shows
the functional annotation results. In the first clustering module, the cellular component (CC)
annotations include postsynaptic density and the postsynaptic membrane, synapse, and cell junctions,
indicating that the morphology of the cells has undergone major changes during the progression
of HD. In fact, the connection between neurons of the striatum tissue gradually became sparse and
the nerve cells slowly died during the progression of the disease [31,32]. In the second clustering
module, the biological process (BP) annotations include a fatty acid metabolic process and a fatty acid
biosynthetic process. The Molecular Function (MF) annotation includes transferase activity, transferring
acyl groups other than amino-acyl groups. The Kyoto encyclopedia of genes and genomes (KEGG)
pathway annotation includes fatty acid metabolism. In the third clustering module, the MF annotations
include transferase activity, kinase activity, nucleotide binding, ATP (adenosine triphosphate) binding,
protein kinase activity, and protein serine/threonine kinase activity. The BP annotations include
phosphorylation and protein phosphorylation. In the fourth clustering module, the BP annotations
include learning or memory, regulation of synaptic plasticity, and embryo development. Studies have
shown that HD is related to mental disorders and cognitive decline. In the fifth clustering module,
the MF annotation includes cadherin binding involved in cell–cell adhesion. The BP annotation
includes cell–cell adhesion. The above molecular functions and biological processes are most likely to
be affected during the disease’s progression. Studies have shown that Huntington’s disease is caused
by excessive repetition of the CAG sequence of the huntingtin gene on the fourth chromosome. It leads
to a misfolding of the Htt protein, which affects protein transport, gene regulation, and other biological
processes. It eventually leads to sparse cell connections, neuronal apoptosis, and the formation of
amyloid plaques in the striatum of the brain [33–35].

Table 5. The functional annotation clusterings of the 287 overlapped genes.

Annotation
Cluster Category Annotation Count p Value Benjamini

1
Enrichment
Score: 3.02

GOTERM_CC_DIRECT Postsynaptic density 16 4.2 × 10−7 1.3 × 10−4

GOTERM_CC_DIRECT Postsynaptic membrane 10 2.2 × 10−3 9.1 × 10−2

GOTERM_CC_DIRECT Synapse 14 1.3 × 10−2 2.4 × 10−1

GOTERM_CC_DIRECT Cell junction 15 7.4 × 10−2 4.9 × 10−1

2
Enrichment
Score: 1.93

GOTERM_BP_DIRECT Fatty acid metabolic process 9 9.3 × 10−4 4.8 × 10−1

GOTERM_BP_DIRECT Fatty acid biosynthetic process 5 1.5 × 10−2 8.4 × 10−1

KEGG_PATHWAY Fatty acid metabolism 4 3.6 × 10−2 8.7 × 10−1

GOTERM_MF_DIRECT Transferase activity, transferring acyl groups
other than amino-acyl groups 3 3.7 × 10−2 7.6 × 10−1

3
Enrichment
Score: 1.81

GOTERM_MF_DIRECT Transferase activity 37 2.4 × 10−4 1.1 × 10−1

GOTERM_BP_DIRECT Phosphorylation 17 5.7 × 10−3 6.4 × 10−1

GOTERM_MF_DIRECT kinase activity 18 8.5 × 10−3 5.7 × 10−1

GOTERM_MF_DIRECT Nucleotide binding 38 1.4 × 10−2 6.3 × 10−1

GOTERM_MF_DIRECT ATP binding 30 2.6 × 10−2 7.3 × 10−1

GOTERM_BP_DIRECT Protein phosphorylation 14 3.5 × 10−2 9.6 × 10−1

GOTERM_MF_DIRECT Protein kinase activity 12 9.6 × 10−2 8.6 × 10−1

GOTERM_MF_DIRECT Protein serine/threonine kinase activity 9 2.1 × 10−1 9.4 × 10−1

4
Enrichment
Score: 1.58

GOTERM_BP_DIRECT Learning or memory 5 4.1 × 10−3 6.9 × 10−1

GOTERM_BP_DIRECT Regulation of synaptic plasticity 4 1.7 × 10−2 8.4 × 10−1

GOTERM_BP_DIRECT Embryo development 3 2.7 × 10−1 9.9 × 10−1

5
Enrichment
Score: 1.40

GOTERM_CC_DIRECT Cell–cell adherens junction 10 2.0 × 10−2 2.9 × 10−1

GOTERM_MF_DIRECT Cadherin binding involved in cell–cell adhesion 9 3.3 × 10−2 7.7 × 10−1

GOTERM_BP_DIRECT Cell–cell adhesion 6 9.7 × 10−2 9.9 × 10−1
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4. Discussion

In this work we proposed ECGUFS based on CGUFS. The main goal is that we proposed a bagging
integration strategy to integrate the results of CGUFS. ECGUFS can effectively select disease-associated
genes when the labels are unknown. Experimental results verify the better feasibility and stability
of ECGUFS. In addition, we conducted an enrichment analysis of the overlapped 287 genes to
further explore the molecular pathogenesis of HD, as well as to provide guidance for subsequent
biological validation.
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