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SUMMARY

Despite great progress in battery safetymodeling, accurately predicting the evo-
lution of multiphysics systems is extremely challenging. The question on how to
ensure safety of billions of automotive batteries during their lifetime remains un-
answered. In this study, we overcome the challenge by developing machine
learning techniques based on the recorded data that are uploaded to the cloud.
Using charging voltage and temperature curves from early cycles that are yet
to exhibit symptoms of battery failure, we apply data-driven models to both pre-
dict and classify the sample data by health condition based on the observational,
empirical, physical, and statistical understanding of the multiscale systems. The
best well-integrated machine learning models achieve a verified classification ac-
curacy of 96.3% (exhibiting an increase of 20.4% from initial model) and an
average misclassification test error of 7.7%. Our findings highlight the need for
cloud-based artificial intelligence technology tailored to robustly and accurately
predict battery failure in real-world applications.

INTRODUCTION

The increase in environmental awareness and development of high-energy rechargeable batteries, as well

as policy incentives, greatly stimulated the growth of electric vehicles (EVs) (Foulds and Christensen, 2016;

Plötz et al., 2019).Innovation initiative to accelerate the progress on clean energy research and EV technol-

ogy is currently succeeding in its quest to support carbon mitigation. However, to compare favorably with

conventional vehicles using internal combustion engines, EVs should have a long driving range, a short re-

charging time, and an affordable cost. Thus, huge efforts have been devoted worldwide by engineers and

researchers focusing on the improvement of energy storage capability of battery energy storage technol-

ogy (Roberts et al., 2014; Nitta et al., 2015; Zeng et al., 2019; Gao and Lu, 2021; Li et al., 2021b; Manthiram

and Goodenough, 2021; Thackeray and Amine, 2021). One price for this reasonable action are safety issues

when squeezing more active materials in the cell or aggressive operation windows (Burke, 2014; Finegan

and Cooper, 2019). From the serious consequences of the fire incidents (Sun et al., 2020), it can be

concluded that safety issues are a top priority and they are highly related to EV industrial security, which

is of great significance to create positive and sustainable transformations into a greener future. Therefore,

we must address safety issues of EV batteries in real-world applications, even if the absolute probability of

such an event remains very low.

Over the past decades, great efforts have been made to improve the safety of battery systems in the safety

enhancement at the material and cell levels (Wu et al., 2014; Liu et al., 2018b; Deyab et al., 2021), data-

driven prediction methods using physics-based models (Deng et al., 2018; Finegan et al., 2020), and inves-

tigation of failure mechanism andmitigating solutions (Feng et al., 2017; Galushkin et al., 2018; Wang et al.,

2019; Bla et al., 2020; Chombo and Laoonual, 2020; Feng et al., 2020; Xiong et al., 2020; Chen et al., 2021; Li

et al., 2021a). Nevertheless, safety issues related to battery failures in real-world applications are still a

serious issue for EVs. Most early efforts in battery safety modeling are at the material or cell level with a

focus on a single abuse condition such as mechanical or thermal failure. These efforts may not completely

reflect the failure of batteries in automotive applications (Deng et al., 2018). The plausible, cutting-edge

methods being considered can provide insights into the early detection of battery failure; however, it is still

difficult to find a robust method to accurately predict battery failure in real-world EV applications. One

reason is that although data-driven, machine learning-basedmethods offer opportunities for advancement

in the predictive capabilities in the energy storage realm (Correa-Baena et al., 2018; Sendek et al., 2019;

Aykol et al., 2020; Ng et al., 2020; Lombardo et al., 2021; Roman et al., 2021). The absence of high-quality,
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full-scale datasets is one of the most critical challenges facing the accurate prediction of battery failure in

EV use (Finegan et al., 2020). One recent study can be considered an excellent starting point in the predic-

tion of battery safety for EVs, in which a largematrix of mechanical loading conditions in terms of geometry,

mass, loading speed, and angle is simulated, and safety boundary conditions, named a safety envelope, is

established using the machine learning technique (Li et al., 2019a). However, in practical terms, placing

sensors in each cell to detect the loading condition will greatly increase the costs of EVs, which is undesir-

able for both manufacturers and consumers. In addition, mechanical abuse conditions are only one of the

detonators that may trigger hazardous failure. Besides, in addition to various abuse conditions, uninten-

tional defects or contamination occurring during manufacturing and subtle and undetected differences

in synthesis conditions make the gap between experimental data and field failure under real-world condi-

tions larger than we expected.

Establishing a high-accuracy detailed computational model of cells to cover all the abuse conditions is a

good scientific method, although not feasible (Finegan and Cooper, 2019; Finegan et al., 2020). The exper-

imental datasets that cover the complete picture of battery failure and underlying mechanisms under

various conditions of failure occur very infrequently, which makes them experimentally very difficult (if

not impossible) to obtain even for an effective collaboration between academia and industry. In addition

battery failure is becoming more rare with ever-improving production techniques and packaging designs;

this makes it much more difficult to create the test matrix covering all the types of failure mechanisms and

loading patterns for collection of high-quality and robust data. Another reason why accurate prediction of

battery failure in real-world application is very challenging is because of the absence of precise knowledge

of field failure mechanisms, uncertainties in materials and manufacturing processes, and dynamic environ-

mental and operation conditions. The challenge is daunting: the realistic conditions in EV applications have

made the issue quite a different proposition. Degradation mechanisms and health conditions greatly

depend on the operating conditions. Besides, finding methods to design and develop representative

charge/discharge cycles and rest/shelf cycles from large volumes of battery data to simulate field condi-

tions in EV use is also very time-consuming because of their complex operational lifetime. There may be

a huge and unrecognized risk for just a few days or weeks of operation in real-world applications.

Even if all the aforementioned problems are solved, another, far more pressing matter must be faced is the

onboard battery management strategy (BMS) including voltage balancing and thermal management (i.e.,

heating and cooling). There is no possible way to generate full-scale relevant data covering all the failure

scenarios and mechanisms at the pack level even for a large EV manufacturer. In addition, random noise,

unpredictable driving cycles, and dynamic charging protocols in real-world EV use also cover the informa-

tion that is extremely valuable to reflect the real conditions of the automotive battery. Unfortunately, very

few studies have considered the impact of the strategies encoded in the BMS on the predictivemodeling of

automotive batteries in real-world applications. These practical issues not only make huge efforts-based

experimental data and physics-basedmethods useless, but they alsomake interpretation of the field failure

much more difficult than can be imagined, based on the analysis of the field data in EV applications.

The question that needs to be asked is whether there exists a method that holds excellent robustness and

high accuracy. The efforts in understanding multiscale physics by numerically solving partial differential

equations (PDEs) provide an effective method in the modeling and predicting the evolution of nonlinear

electrochemical energy storage systems. However, modeling and predicting the nonlinear dynamics of

multiphysics and multiscale systems remains a daunting problem. High-dimensional multiphysics prob-

lems governed by parameterized PDEs can be a formidable task, particularly in the case of solving real-

life physical problems with uncertain parameters or noisy data. Recent advances in machine learning

opened up a new world of opportunities to accelerate the pace of continuous innovation in material and

battery technologies. Such probabilistic machine learning offers an elegant way of integrating noisy

data and statistical models and has a chance to achieve better prediction accuracy and improved gener-

alization performance.

In this study, we proposed a creative cloud-based closed loop solution for robustly and accurately predict-

ing battery failure, with the maturity of the technologies on cloud-computing (Drake, 2014) and internet of

things (IoT) (Al-Fuqaha et al., 2015). To best represent and manipulate uncertainty about models and pre-

dictions, a well-integratedmachine learningmodel with rapid evolution and predictive robustness is devel-

oped as a key ingredient of the closed loop system. The cloud-based framework using data-driven models
2 iScience 25, 104172, April 15, 2022



Figure 1. Schematic illustration of cyber-BMS for EVs

The cyber chain is composed of the vehicle-end, tube-end, and cyber-end. Vehicle-end represents a complex automotive

system with the kinematics and dynamics characteristics, in which an enormous number of power units can be considered

as a bridge and dynamic force of co-operation, creating opportunities and mechanisms for safe, effective, and smart

operation of the vehicles under realistic conditions. The tube-end is a communicating channel with service-oriented

pipeline architecture and security equipment, which offers opportunities to iteratively update the strategies encoded in

on-spot BMS. In cyberspace, a battery digital twin is created, enabling the self-controlling system with machine learning

models to work efficiently and effectively. Periodically, the longitudinal electronic health records for the battery systems

are established by the cyber-BMS on the cloud platform based on the fault detection and failure prediction.
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can seamlessly learn from the historical automotive battery data and generate longitudinal electronic

health records in cyberspace, thereby achieving continual learning for the prediction task (Figure 1). In

addition, the cloud-based framework is an efficient solution for promoting a greater understanding on bat-

tery failure in vehicle applications and accelerates the implementation of artificial intelligence and machine

learning techniques for cloud-based battery management systems (i.e. Cyber-BMS). Along with the intro-

duction to the methodology and modeling, we also discussed the most intractable problems that need to

be addressed for establishing the framework and early warning mechanism in real-world applications. This

work demonstrates that the combination of cloud-based data generation and machine learning modeling

is a more practical approach for ensuring automotive battery safe operation under realistic conditions. The

authors hope that this exnovation will create reference value to the EV and battery industries for amelio-

rating the hurdles for the prediction of battery failure and attract more initiatives in academia and industry

to fully exploit its potential.

A CLOUD-BASED CLOSED LOOP FRAMEWORK FOR THE PREDICTION OF BATTERY

FAILURE IN EV APPLICATIONS

Data generation

Over the past decade, the availability of large datasets facilitates faster acceptance of artificial intelligence

in various communities. More recently, in the field of energy storage, a number of innovative technologies

have been launched and are now starting to shape battery research in terms of performance evaluation,

such as cycle life prediction (Severson et al., 2019), charging protocols optimization (Attia et al., 2020),

and safety modeling (Deng et al., 2018; Li et al., 2019a). These new innovations open a new avenue to

develop highly accurate and detailed computational models of lithium-ion batteries by using machine

learning techniques based on the data collected in the laboratory. However, in the case of prediction of

automotive battery failure in real-world applications, it will make experimental design covering the entire

spectrum of failure conditions under various operating windows to simulate real-world environments a very

challenging task (if not impossible), even for a battery industry that is used to being proficient in battery

design and management. In addition, the gap between experimental environment (a small number of tests
iScience 25, 104172, April 15, 2022 3



Figure 2. Schematic illustration of the cloud-based closed loop method for data generation
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at the cell level) and field scenarios (huge amounts of data at the pack level) under real-world conditions

makes it difficult to transfer academic progress to industrial applications (Aykol et al., 2020). In a typical

example, field failure caused by a foreign object (e.g., metal particle) or a vehicle crash may evolve into haz-

ardous failure with little warning during what appears to be normal operation of the battery. Offline safety

modeling provides a greater understanding on battery safety issues. However, the problem is to update

the model under complex, nonlinear, and random operating conditions in automotive applications, such

as operating voltage window, charging/discharging rate, and operating temperature. As Finegan stated

in a more recent perspective, the operational history of the cell plays a pivotal role in the prediction of

the health state, because the degradation mechanisms hinge largely on the operating conditions (Finegan

et al., 2020). In this formidable task, one of the most tactical approaches, to circumvent these limitations, is

establishing digital twins for the battery system in cyberspace. Cloud-based cyber-physical-systems and

platform technologies can serve as a best practice for creating self-improved AI models that are competent

and resourceful to handle matters. In this study, we totally generate a comprehensive dataset consisting of

failure/positive data (36 samples) and safety/negative data (58 samples) for the model training, calibration,

and testing. Figure 2 illustrates how we use the cloud-based digital solution to facilitate date generation

and achieve data-driven machine learning-based predictions.

Feature engineering

Over the past decade, data-driven machine learning-based techniques have proven capable of providing

effective tools for scientific discovery and optimization in the field of energy storage. In the scope of ma-

chine learning tasks, feature engineering plays a pivotal role in the process of predictive modeling (Sever-

son et al., 2019; Duboue, 2020). Insights into physical failure mechanisms would help guide physics-based

data-driven models and establish feature engineering. However, efforts have been devoted worldwide to

establishing performance metrics for various energy storage devices (Zhang and Pan, 2015; Cao et al.,

2019; Noori et al., 2019; Zhao and Burke, 2020; Burke and Zhao, 2021). There are no well-defined metrics

for evaluating the batteries in terms of safety and risk, which makes it much harder to automate feature en-

gineering for an accurate description of the detailed physical failure mechanisms. Therefore, prior knowl-

edge is a necessary part in the case of development of appropriate performance metrics/feature engineer-

ing in this prediction task. In this regard, a practice to establish an all-around, comprehensive evaluation

method is the combination of electrochemical metrics at the cell level and statistical engineering at the

pack level for predicting the state and risk of automotive batteries (Figure 3). A number of parameters

have been amply demonstrated that they may trigger hazardous failure after long-term incubation,

including internal short circuit (Liu et al., 2018a), lithium-plating (2019b), and capacity degradation (Fleisch-

hammer et al., 2015). Therefore, they are used as electrochemical feature engineering (Figures S1–S3) in

this study. Considering that a number of field failures occur without any noticeable symptoms during

what appears to be a normal operation of the battery (Burke, 2014; Wang et al., 2019; Finegan et al.,

2020; Chen et al., 2021), which makes the electrochemical-based prediction so singularly useless, in partic-

ular with the online historical battery data. In this case, the statistical features provide accurate numerical
4 iScience 25, 104172, April 15, 2022



Figure 3. Performance metrics for the prediction of battery failure

Electrochemical metrics include internal short circuit, capacity fade, and lithium plating, which will be used for physics-

guided supervised learning modeling. Statistical metrics includes dimensional, dimensionless statistics, and pack

consistency for unsupervised learning. Both electrochemical and statistical metrics will be used for semi-supervised

learning modeling.
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calculations based on deviations and outliers of cell behavior at the pack level, and hence it can contribute

to detect seemingly trivial details in the task of predicting battery failures. Battery pack consistency (Fig-

ure S4), in terms of voltage, temperature, and capacity, as well as nondimensional features such as kurtosis,

skewness, crest, margin, impulse, and waveform factor during the operational lifetime offer advantages in

analysis of dynamic signals, which contain much more information on a battery’s state than a quasi-steady-

state detection and analysis (Krewer et al., 2018). For a more detailed description of the measurement of

electrochemical feature engineering and the formula for the statistical feature engineering, please see

the STAR Methods.

A well-integrated machine learning technique

Machine learning using probabilistic frameworks are well suited for prediction tasks and have hence

emerged as one of the principal theoretical and practical solutions to designing self-controlled machines

to automatically recognize and organize patterns from training data (Ghahramani, 2015). In this study, a

well-integrated machine learning technique using both the electrochemical-based and statistical feature

engineering (see Feature engineering section) is developed to achieve robust and accurate prediction

of automotive battery failure in real-world applications. The well-integrated technique consists of three

different machine learning models: physics-guided supervised learning, high-dimensional unsupervised

learning, and disagreement-based semi-supervised learning.

Generally, the sample data can be clearly labeled as positive samples (failure) or negative samples (safety)

after a full examination in the laboratory. But it is not only impractical but is also impossible to check each

vehicle in a laboratory under strictly controlled conditions. To achieve this goal, the prediction model must

provide an acceptable level of accuracy. As such, a cloud-based closed loop framework is established to

achieve the stated aims by using the data-driven, machine learning-based models. In short, the training
iScience 25, 104172, April 15, 2022 5



Figure 4. Data-driven prediction of automotive battery failure

(A) Data generation and model training. All data is stored on the cloud servers for cloud computing using the developed

computational data-driven models.

(B) Online fault detection and early-warning is achieved by a well-integrated model consisting of three different

probabilistic machine learning models.
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data are used for physics-guided supervised learning modeling and verifying the effectiveness of the elec-

trochemical performances. An unsupervised learning model is trained to discern multiple categories and

classify samples into either a safety or a failure group in a high-dimensional space. To handle the unclear,

inadequate input–output pairs, a semi-supervised learning model is developed. The structure of the ma-

chine learning modeling process is illustrated in Figure 4.

Physics-guided supervised learning

In the case of battery failure prediction, supervised learning offers advantages in designing the safety

models to identify the electrochemical behavior of cells that may trigger failure through incorporating

domain-specific knowledge into machine learning models. It would be intriguing and potentially beneficial

to combine the knowledge with machine intelligence to automatically distinguish safe and unsafe cells in a

data-driven manner. In the prediction of battery failure, the physics-guided machine learning model signif-

icantly improves the interpretability of the prediction reasoning, which is of great value for uncovering the

underlying physics and mechanisms. An expert system consisting of engineering experience and domain

knowledge is developed for supervised learning, which can extract what experts know—a process called

knowledge acquisition (Russell and Norvig, 2020). With such a physics-guided learning, the model not

only recognizes faulty information but also provides reasonable interpretation on what happens to the

observed data (i.e., battery cell).

The most intuitive way to recognize battery failure is to build a collection of rules. In this study, fuzzy set

theory and multi-criteria decision-making approach have been employed in the supervised learning

modeling. The application of the fuzzy set theory is used to determine the type of fundamental parameters,

such as the abnormal temperature increment, abnormal voltage fluctuation, and drop. Further, as dis-

cussed earlier, the underlying electrochemical abuse conditions include internal short circuit, lithium
6 iScience 25, 104172, April 15, 2022



Figure 5. Unsupervised machine learning

(A) The unsupervised clustering is achieved by K-Means in a 2D space after a reconstruction using principal component

analysis (PCA) method. Batteries were categorized into two clusters, which are characterized by high-density and low-

density regions with plenty of discrete points, respectively. All failure samples (red points) are clustered in the second

classification.

(B) Feature engineering used for unsupervised learning.
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plating, and abnormal capacity fade. Therefore, these key parameters are used as feature engineering for

developing predictive models. Symptoms are analyzed and evaluated by the expert system using the an-

alytic hierarchy process. Every symptom is given a weight to calculate the fuzzy membership grade of a

certain kind of failure. Symptom inspection is achieved by a rule established in the decision tree. The rule-

making for the supervised learning model follows the principle of "information entropy," which gives pri-

ority to the rules with high differentiation.

However, in some cases, the classification test exhibits that the domain knowledge-based supervised

learning model fits the observed data very well but shows a poor generalization performance because

of extrapolation or observational biases and most importantly, lack of insufficient labeled data. The label-

ing effort and the analysis work are very time-consuming, making the modeling infeasible when the unla-

beled dataset is in a tremendous volume.

High-dimensional unsupervised learning

The physics-guided supervised learning offers advantages in the interpretation of what we can specifically

learn from the model. Although recent studies have shed some light on the common characteristics of bat-

tery failure, the failure mechanism is still unclear in particular for the cases in real-world applications. There-

fore, domain knowledge-based supervised systems are inherently limited to fairly low-dimensional prob-

lems for a small amount of the sample data in this case. In addition, a number of field failures occur

without any noticeable symptoms during what appears to be normal operation of the battery, which makes

the electrochemical-based prediction so singularly useless. Therefore, supervised learning from the

perspective of electrochemical performance evaluation is far from a guarantee of battery safety during

its operational lifetime. This also shows how crucial seemingly trivial details could be. In this regard, statis-

tical feature-based probabilistic machine learning offers distinct advantages in this prediction task. To

solve this problem, unsupervised learning provides an effective solution to discerning multiple categories

from a high-dimensional space in a collection of unlabeled data (Figure 5). It can effectively recognize out-

liers using clustering analysis, which is a promising approach to divide safe and risky cells into different cat-

egories from a form of plausible reasoning based on degree of similarity and convergence. In practice, this

unsupervised learning offers unexpected earnings when adopting the metrics that are often utilized in the

time domain analysis of signals. However, both lack of labels and noise create a continuum between super-

vised and unsupervised learning. Although unsupervised learning can effectively categorize the samples

into different groups, it can be seen that the failed samples cannot be accurately separated from the large

samples of data. Merging the best properties of each of the learning methods opens up opportunities to

develop a robust prediction of battery failure that possesses the advantages of the individual machine
iScience 25, 104172, April 15, 2022 7



Figure 6. The NLLP of the disagreement-based learning model

The quadratic loss function of the supervised models using GBDT, SVM, naı̈ve Bayes, and EN are shown in the (A), (B), (C), and (D) respectively. The final loss

for the training set and testing set are both much lower than those losses of the four supervised learning models, as shown in the (E).
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blocks, in addition to eliminating the associated shortcomings. Hence, semi-supervised learning is devel-

oped to tackle the challenges in this subject, which is fully discussed in the next section.

Disagreement-based semi-supervised learning

To achieve more significant improvements in the accuracy of machine learning, it is of great importance to

address the challenge-lack of sufficient labeled data. In this case, disagreement-based semi-supervised

learning is developed to overcome the challenges of generating plentiful class-labeled data (Figure S5).

In the development of disagreement-based models, four different supervised machine learning methods

are used, namely, including gradient boosting (GB), Bayesian regression (BR), support vector machine

(SVM), and elastic net (EN). All of these methods have proven to be effective for the prediction of battery

failure, and each of these techniques have a particular advantage in different situations of data distribution.

GB achieves a good balance between bias and variance by combiningmultiple ‘base’ classifiers to produce

a form of committee, in which the weighting coefficient for each data point depends on the performance of

the previous classifiers (known as low-bias weak learners). SVMs are better suited for the prediction of big

data that have high sampling rate (e.g., 1 s) and high dimensional feature space. Bayes regression in gen-

eral has a better robust and efficient performance if training data contains both continuous and discrete

features, because each can be represented separately using appropriate probability assumptions. EN is

preferred in the case of simply distributed training data with noise or there are high correlations between

the features.

The utilization of disagreement-based learning has several advantages (He et al., 2020): (1) the more

learners in this method, the more accuracy pseudo labels have. (2) The model can effectively reduce vari-

ance of each learner, in addition to removing overall bias among the whole dataset. (3) The final model can

ignore invalid data because of the ‘‘Majority Voting’’ mechanism. To test the disagreement-based model,

the negative log likelihood probability (NLLP) is used as a parameter for multimode process monitoring

(Wu et al., 2020). As shown in Figure 6, the disagreement-based semi-supervised machine learning model

achieves a much better ‘‘loss’’ and results in improved predictions than the four separate supervised

models. Please see STAR Methods for a more detailed description of the machine learning modeling

and the established safety envelope using each machine learning technique could be found in

Figures S6–S9.
8 iScience 25, 104172, April 15, 2022



Table 1. Model metrics for training with a primary modeling and model refining

Train Data 1st Refining 2nd Refining 3rd Refining

Positive samples 8 4 3 9

Negative samples 50 2 3 2

Total samples 58 6 6 11

Training accuracy rate 75.9% 89.1% 94.3% 96.3%

Precision in validation 66.7% 50.0% 81.8% 90.0%

Training and refining refer to the data used to learn the model and improve model performance, respectively.
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Cloud-based digital solution

In practical application scenarios such as EVs, the processor onboard can be used to control and manage

the EV battery system in real time. However, the onboard processor in general has a limited resource of

data storage and processing capability; therefore, the use of large datasets combined with pretrained

data-drivenmodels is better suited for off-board use. To achieve the task of predicting battery failure, there

is an urgent need for more efficient operation of the complex computational models. In this case, the cloud

platform effectively alleviates the computational burden of onboard microprocessors on the vehicle

because of its exponential increase in the computational power and storage space. In addition, cloud-

based computing and storage also has a tremendous amount of flexibility on how and where to perform

the mission unconstrained by physical space, benefiting from its distributed nature. This high-speed,

low-cost computational environment provides fertile ground for training date-driven artificial intelligence

and machine learning models to achieve the tasks at the low unit cost.

Initially, raw battery data during the daily operation of the EVs are seamlessly uploaded to the cloud server

and hence the battery’s digital twin can be built in cyberspace. As an up-to-date virtual technology, the

digital twin opens up new avenues of investigation, in which it not only provides full information about

the battery system from the sensors but also offers advantages in structuring the computational models

to accomplish the task of prediction of battery failure. One benefit of this: the cloud-based data-driven

framework can generate longitudinal electronic health records periodically based on the machine learning

models developed. In addition, the cloud-based solution enables continuous improvement and iteration in

the battery failure prediction for EVs with the increase of battery data under realistic conditions. Thus,

remote monitoring, fault diagnosis and early warning is available because of the technological innovation,

namely, IoT.

RESULTS AND DISCUSSION

In this study, the dataset for machine learningmodeling is established using the data that are uploaded to a

cloud monitoring platform to best address the safety issues of automotive batteries in real-world applica-

tions. Totally, we generate a comprehensive dataset consisting of failure/positive data (36 samples) and

safety/negative data (58 samples), which is based on the monitoring and analysis using onboard diagnos-

tics provided by the closed loop self-taught machine learning system. Initially, the training dataset (8 pos-

itive samples and 50 negative samples) were used to develop an early-prediction machine learning model.

Failure is a necessary part in the predictive coding process because from failure comes learning, iteration,

adaptation, and the establishment of newmachine learningmodels through an iterative learning process in

a high-dimensional state-space. Using the early-prediction machine learning models, the cloud-based

closed solution achieves a continuous lifelong learning based on the confusionmatrix by statistical analysis.

We calibrate the model 3 times to accelerate training and enhance generalization, which generates 16 pos-

itive samples and achieves a training classification accuracy of 96.3%. Table 1 displays the performance of

the well-integrated machine learning model applied to our one training dataset and three refining data-

sets. We then evaluate the model on two testing datasets (the primary one is 10 samples, the secondary

one is 3 samples), which attains an average test classification precision of 92.3% (only one sample is mis-

classified out of the 13 samples), as shown in Table 2. Besides, the well-integrated model provides an ac-

curate and robust prediction of the health condition of the samples, as shown in Figure 7.

Dynamic and multidimensional analysis on the cloud server-farms opens up a new world for developing a

continual learning method to deal with the emergence of new data sources at unknown time points during
iScience 25, 104172, April 15, 2022 9



Table 2. Model metrics for testing

1st Test 2nd Test

Positive samples 9 3

Negative samples 1 0

Total samples 10 3

Precision of the classifier 90.0% 100.0%

Primary/secondary test refers to the data used to evaluate model performance.
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the daily operation of the vehicles while enabling models to adapt to new operating environment (e.g.,

different vehicle models but same battery cell, various driving and using behaviors) with excellent robust-

ness. The focus of continual lifelong learning using machine learning techniques is to enhance the ability to

handle new tasks in a closed loop model, where the model must learn online over a continuous stream of

nonstationary data (Harari, 2017; Parisi et al., 2019). In this case, the continual lifelong learning is achieved

by using the cloud-based closed loop system with nonstop action and operation. When the machine

learning model tends to be stable and shows an overall uniform convergence, it is able to form a safety en-

velope of battery failure in real-world applications while classifying samples data as either a safety or a fail-

ure group, as shown in Figure 8. In addition, regression models can be trained using the labeled data to

quantify the risk of battery failure, which is illustrated in Figure 9.

Conclusions

New technologies are driven primarily by their ability to provide affordable, efficient solutions to prob-

lems previously impossible to solve. Considering the challenge of accurately predicting complex,

nonlinear systems, closed-based machine learning techniques using probabilistic frameworks are well

suited for prediction tasks. This study highlights the difficulties of realizing robust and accurate predic-

tion of EV battery failure in real-world applications and offers a cloud-based well-integrated machine

learning solution. We develop a data-driven early-prediction model using the training data generated

from commercial battery packs using NMC/graphite cells. The proposed cloud-based closed-loop

framework using machine learning models can learn from the historical EV battery data and generate

longitudinal electronic health records in cyberspace through the establishment of digital twins for battery
Figure 7. The well-integrated machine learning model for the classification

The green and red points represent negative samples (safety) and positive samples (failure), respectively.

(A) Scatter plot in the 3D state space.

(B–D) are the scatter plots in the two-dimensional plane.
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Figure 8. Classification model for the development of safety envelope in the prediction of battery failure

The red region and gray region represent the unsafe and the safe ranges, respectively.

(A) Classification in three-dimensional space.

(B) Classification in each two-dimensional plane.
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systems. In the classification setting, we obtain a test error of 7.7% using the field data. This level of ac-

curacy is achieved by a well-integrated machine learning model, and observational, empirical, physical,

and statistical understanding of the electrochemical energy storage systems. The authors believed that

the closed-based machine learning techniques not only provide an innovative method for achieving ac-

curate prediction of battery failure, but they also offer a very grounded view of the multipronged

approach to become continual lifelong learning taking advantage of the self-taught and self-improved

artificial intelligence techniques with nonstop availability to the server-farms. We hope this effort will pro-

vide a useful contribution to the energy-storage and the electrification of the transportation community
Figure 9. Regression model for the development of safety envelope in the prediction of battery failure

The colored region and the gray region represent the unsafe and the safe ranges, respectively.

(A) Regression analysis shown in the three-dimensional space.

(B) Regression analysis in each two-dimensional plane.
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as a roadmap for ameliorating the hurdles for the prediction of automotive battery failure in real-world

applications.
Limitations of the study

It should be noted that the present study does have some limitations. First, although the closed loop ma-

chine learning-based framework provides a robust and accurate method in both predicting and classifying

automotive battery cells by their risk, the study did not provide new insights into physical failure mecha-

nisms and how specific phenomena govern risk. More effort needs to be focused on the investigation of

failure mechanisms at the molecular, atomic, single-atom level, and establishing methods for mechanism

identification. However, it is a significantly positive compromise and up-to-now an essential one because of

the huge cost of the establishment of the test matrix that can cover all types of failure mechanisms, loading

patterns, and field scenarios. Second, the as-developed safety envelope is visualized with two types of

phase diagrams: a classifier that can fast distinguish safety and unsafety in terms of the consistency of

the battery pack for the online EVs in a data-driven manner and a regressor that can quantitatively the

risk and exhibits the information that rises to the level of concern. However, the safety envelope was devel-

oped for one type of battery pack using prismatic NMC/graphite cells in-series with specific cell balancing

and thermal management strategy and is therefore not universal.
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METHOD DETAILS

Electrochemical feature engineering at the cell level

Internal short circuit

Online ISC detection can be a valuable indicator of possible battery failure in EV use (Figure S1). In this re-

gard, Ouyang and coworkers provide an effective online ISC detection method for both the battery pack

and cells (Feng et al., 2016, 2018). Four indicators were used for the ISC characterization: (i) SOC imbalance,

(ii) abnormal heat generation, (iii) cell temperature deviation and (iv) cell voltage deviation.

Lithium plating

Differential voltage analysis using small charge or discharge currents is one common method for detection

of lithium plating (Figure S2). Voltage plateau during the rest period after a charge stage is considered as

an appropriate metric for the evaluation of lithium stripping process. Methods related to differential anal-

ysis of the voltage plateau have been proposed and widely used for the estimation of the amount of plated

lithium (Ren et al., 2018; Yang et al., 2018; Campbell et al., 2019). Study has shown that it takes a longer time

to reach dV/dt peak when larger amount of lithium is plating. It is also suggested that the duration of

voltage plateau (i.e. the time to reach the dV/dt peak) can be an important performance metric for quan-

tifying the amount of plated lithium under different conditions.

Capacity fade

Up to now, a variety of techniques have been developed for state of health estimation of lithium-ion battery

(Figure S3). The feature-based data-driven model is a promising method for the prediction of battery SOH,

which has recently been demonstrated in a study by Severson and coworkers. In addition, incremental ca-

pacity analysis (ICA) is another effective method in providing detailed information to identify battery fade
iScience 25, 104172, April 15, 2022 15
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(Pastor-Fernandez et al., 2017; Feng et al., 2019). In EV use, ICA has a particular advantage for on-board

prediction using partial charge/discharge voltage segments.
Statistical feature engineering at the pack level

In practice, the voltage values of the cells for each battery pack in a charging process can be treated as

signal information, for which the voltage curves equivalent to the waveforms in the time domain. Therefore,

the voltage values can be evaluated using the samemethod as used in the signal analysis and then used for

the unsupervised learningmodelling. The formula for the statistical feature engineering can be obtained as

follows:
Categories Statistics Equation

Dimensionless Statistic Maximum Value DVmax = maxðfDVigÞ
Mean Value

DV =
1

N

XN

i =1
DVi ;N = kfDVigk

Root Mean Squared
RMSðDVÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i =1
jDVi j2

r

Variance (unbiased)
VarðDVÞ = 1

N� 1

XN

i = 1
ðDVi � DVÞ2

Dimensionless Statistic Skewness Factor SkewðDVÞ =
1

ðN� 1Þ,VarðDVÞ3=2
XN

i = 1
ðDVi � DVÞ3

Kurtosis Factor KurðDVÞ =
1

ðN� 1Þ,VarðDVÞ2
XN

i = 1
ðDVi � DVÞ4 � 3

Peak Factor
PeakðVÞ = DVmax

RMSðDVÞ
Pulse Factor

PulðVÞ = DVmax

DV

Margin Factor
MarðVÞ = DVmax 

1

n

Xn

i = 1

ffiffiffiffiffiffiffiffiffiffiffi
jDVi j

p !2

Waveform Factor
WavðVÞ = RMSðDVÞ

DV
Supervised learning methodology

For a dataset D and a feature f, there are V dividing methods that could split dataset D by feature f. The

information gain is defined as

GainðD; f Þ=EntðDÞ �
XV
v = 1

jDv j
jDj EntðD

vÞ (Equation 1)

The information entropy (Ent) of a dataset with K kind of labels is defined as.

EntðDÞ= �
XjK j
k =1

pk log 2pk (Equation 2)

where pk is the frequency of data with a label of kth.

Besides being the basis of estimating threshold, the information gain is also the decisive factor of deter-

mining which feature would be the best feature to divide the dataset. In knowledge-based decision tree

model, the feature selection is accomplished by domain knowledge. Machine learning task in this model

is only to calculate the threshold.
16 iScience 25, 104172, April 15, 2022
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Unsupervised learning methodology

Principal components analysis

Principal Component Analysis (PCA) is an effective method to reduce the complexity of high-dimensional

data. To project points in original space into a vector, the centroids of the original space should be given by

x =
1

N

XN
n= 1

xn (Equation 3)

Assume that u1 is the projection vector and that the variance after projection is

1

N

XN
n= 1

�
uT
1xn � uT

1x
�2

= uT
1Su1 (Equation 4)

Using the Lagrange multiplier method:

L= uT
1Su1 + l1

�
1� uT

1u1

�
(Equation 5)

Taking the derivative of the above equation and let the equation be equal to zero,

Su1 = l1u1 (Equation 6)

which is the standard eigenvalue expression, where l corresponds to the eigenvalue and u corresponds to

the eigenvector. The condition for obtaining the maximum value on the left side of the above equation is

when l1 is maximum, i.e., when the maximum eigenvalue is obtained. Suppose we want to project a

D-dimensional data space into an M-dimensional data space (M<D), then we take the first M eigenvectors

to form the projection matrix.

K-means clustering

As a clustering technique, the K-Means randomly selects k points as the initial cluster centers, and then cal-

culates the distances from each data point to each cluster center and categorizes the data object into the

class of the nearest cluster center. The center of adjusted clusters is computed with new cluster data. In

each iteration, the classification of each sample is checked to see if it is correct, and if it is not, it is adjusted.

After adjusting all the data, modify the cluster centers to enter the next iteration. If all data objects are

correctly classified in once iteration, there will be no adjustment on the cluster center, which indicates

that clustering process has converged.

The loss function of K-Means is:

J =
XC
i = 1

XN
j = 1

rijv
�
xj;mi

�
(Equation 7)

where

v
�
xj;mi

�
= kxj � m2

i k; rnk =
�
1 if xn ˛ k

0 if xn ; k
(Equation 8)

To get the maximum value, let the partial derivative of the loss function equal to 0:

vJ

vmk

= 2
XN
j = 1

rjk
�
xj � mk

�
= 0 (Equation 9)

XN
mk =
j = 1

rjkxjXN

j = 1
rjk

(Equation 10)

where k is the kth central point.
Semi-supervised learning methodology

Disagreement-based learning

Disagreement-based methods exploit unlabeled sample data through disagreement/diversity among

multiple learners, which consists of gradient boosting decision tree, Gaussian naive Bayesian regressor,

support vector machine and elastic net (Figure S5). The principle of this method is to train several initial
iScience 25, 104172, April 15, 2022 17
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models based on the same labeled sample data, then let each models select the samples with the highest

classification confidence and assign labels to the unlabeled samples. The pseudo-labeled sample data is

fed into another classifier to learn.

Gradient boosting decision tree

Gradient Boosting Decision Tree (GBDT) is a common machine learning technique used in regression and

classification tasks by establishing an ensemble model (i.e., a linear combination of basic functions) and

continuously reducing the residual values generated by the training process.

The model can be described as

FMðxÞ=
XM
m= 1

Tðx; qmÞ (Equation 11)

The model is trained for a total of M rounds, and each round produces a weak learner Tðx; qmÞ. The target

function of the weak learner is:

qm = argminqm
XN
i = 1

Lðyi;Fm�1ðxiÞ+Tðxi; qmÞÞ (Equation 12)

Fm�1ðxÞ is the current model, and GBDT determines the parameters of the next weak learner by minimizing

the empirical risk.

Gaussian naive bayesian regressor

There are two steps in Gaussian Naı̈ve Bayesian Regressor Learning Process, which are the inference step

and the predicting step.

In inference step, model parameters would be inferred by given data. In linear regression, weight matrixW

is learning by using least square method, while in Gaussian Naive Bayesian Learning W is learned by

Bayesian equation.

In probability perspective, predicting result is a function of input data and Gaussian noise.

Y = WTX + ε; ε � N
�
0;s2

�
(Equation 13)

W can be given by

pðWjDataÞ = pðWjX;YÞ = pðW;YjXÞ
pðYjXÞ

=
pðYjW;XÞ,pðWXÞR

pðYjW;XÞ,pðWjXÞdW
(Equation 14)

Due to independence of W and X,

pðWjDataÞ= pðYjW;XÞ,pðWÞR
pðYjW;XÞ,pðWÞdW ; pðWÞ � Nð0;SÞ (Equation 15)

According to the ‘‘naive’’ assumption and Gaussian assumption, X is independent between its compo-

nents, where each component confirmed to the Gaussian distribution. As a result, pðWjDataÞ should

also confirmed to a Gaussian distribution. The likelihood of Y is

pðYjW;XÞ=
YN
i = 1

1ffiffiffiffiffiffi
2p

p
s
exp

�
� 1

2s2

�
yi �WTxi

�2�

=
1ffiffiffiffiffiffi
2p

p
s
exp

(
� 1

2s2

XN
i = 1

�
yi �WTxi

�2)

=
1

2p
n
2sn

exp

�
� 1

2s2
ðY � XWÞTs�2IðY � XWÞ

�
(Equation 16)

�
2
�

pðYjW;XÞfN XW ;s I

where I is identity matrix and N is the number of components of X.
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Using Gaussian subsection multiplication method, we achieve the distribution ofW and the mean value mW

and variance SW of this distribution can be estimated by:8>><
>>:

pðWjDataÞ=NðmW ;SW Þ
mW = s�2A�1XTY

SW =A�1

(Equation 17)

where A = s�2XTX +
P�1

In predicting step, for a new input data x�, the prediction value y� is sampled by

y� = f ðx�Þ+ ε=N
�
x�TmW ; x�TSWx� + s2

�
(Equation 18)

Support vector machine

Support vector machine (SVM) provides a flexible method for both linear and nonlinear predictions. The

basic idea of SVM is to maximize the margin between different kinds of data, which is the minimal distance

from all the points to the classifying hyperplane. For a hyperplane y = wTx+b, the distance from a point to

this hyperplane is wTx+b. Maximizing the margin can be expressed as

max margin=max min distance=max min
1

kWk
		WTX +b

		
s:t: yi

�
WTX +b

�
>0

(Equation 19)

With scaling of the problem, yiðWTX +bÞ can be larger than an arbitrary nu mber. Set yiðWTX +bÞ> 1, the

equation goes to

min
1

2
WTW

s:t: 1� yi
�
WTxi +b

�
%0

(Equation 20)

Applying Lagrange multiplier method,

min
w;b

max
l

L ðw;b; lÞ
s:t: liR0

(Equation 21)

1 X� � ��
L ðw;b; lÞ=
2
WTW+ 1� yi W

Txi +b (Equation 22)

The solution of this equation is untraceable, as a result we turn to solve the dual problem of Lagrange

problem.

max
l

min
w;b

L ðw;b; lÞ
s:t: liR0

(Equation 23)

It has been proved that the original problem and the dual problem shares the same solution. Using the KTT

method, the dual problem can be solved as the following equation.

max
l

� 1

2

X
i

X
j

liljyiyjx
T
i xj +

X
li

s:t: liR0;
X

liyi = 0

(Equation 24)

Elastic net

Elastic Net is a general form of regularized linear regression with an improvement of elastic regularization

ratio. Assuming our labeled data input is fX ;Yg. X is the input feature and Y is the target value of each

learning module. The number of data is N.

X = fx1; x2;.; xNgT (Equation 25)
T
Y = fy1; y2;.; yNg (Equation 26)

The target function of basic linear regression is
iScience 25, 104172, April 15, 2022 19
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q= argmin
q

1

2m

Xm
i = 1



qTX ðiÞ � Y ðiÞ

�2
(Equation 27)

There are two kinds of regularized linear regression, Lasso Regression and Ridge Regression. Lasso Regres-

sion add L1 penalty term on the target function, while Ridge Regression add L2 penalty term on the target

function.

qLasso = argmin
q

1

2m

Xm
i = 1



qTX ðiÞ � Y ðiÞ

�2
+ l
XN
j = 1

kqk1 (Equation 28)

m 
 � N
qRidge = argmin
q

1

2m

X
i =1

qTX ðiÞ � Y ðiÞ 2

+ l
X
j = 1

kqk2 (Equation 29)

However, in some cases it is not able to decide which kind of penalty terms contribute more on regulariza-

tion effect. Elastic Net combines the advantages of both regularized linear regressions, using a ratio to bal-

ance the effect of two penalty terms.

qElastic = argmin
q

1

2m

Xm
i = 1



qTX ðiÞ � Y ðiÞ

�2
+ l1

XN
j =1

kqk1 + l2
XN
j = 1

kqk2 (Equation 30)

QUANTIFICATION AND STATISTICAL ANALYSIS

Figures represent averaged or representative results of multiple independent machine learning models.

Analyses and plots were performed with python.
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