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b-arrestins are partners of the G protein-coupled receptors (GPCRs), regulating their
intracellular trafficking and signaling. Development of biased GPCR agonists, selectively
targeting either G protein or b-arrestin pathways, are in the focus of interest due to their
therapeutic potential in different pathological conditions. The CB2 cannabinoid receptor
(CB2R) is a GPCR involved in various functions in the periphery and the central nervous
system. Two common occurring variants of CB2R, harboring Q63R or L133I missense
mutations, have been implicated in the development of a diverse set of disorders. To
evaluate the effect of these mutations, we characterized the binding profile of these mutant
CB2 receptors to G proteins and b-arrestin2. Although their ability to inhibit cAMP
signaling was similar, the Q63R mutant had increased, whereas the L133I mutant
receptor had decreased b-arrestin2 binding. In line with these observations, the
variants also had altered intracellular trafficking. Our results show that two common
variants of the CB2 receptor have biased signaling properties, which may contribute to the
pathogenesis of the associated disorders and may offer CB2R as a target for further
development of biased receptor activation strategies.

Keywords: polymorphisms, biased, signaling, b-arrestin2, Q63R, L133I, CB2R, CB2 cannabinoid receptor
INTRODUCTION

The two major known receptors for exogenous and endogenous cannabinoids are the CB1 and CB2
cannabinoid receptors (CB1R and CB2R), they belong to the G protein-coupled receptor (GPCR)
superfamily (1). Both cannabinoid receptors are coupled to Gi/o proteins, which inhibit adenylyl
cyclase activity, activate voltage-gated calcium channels, initiate mitogen-activated protein kinase
(MAPK) and phosphoinositide 3-kinase (PI3K)-Akt pathways (2–4).

CB2R is abundantly expressed in peripheral organs with important functions in immune cells
(5). Beyond the receptors’ peripheral expression, it may also play an important role in the regulation
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of the central nervous system, as well. Although CB2R is
expressed at low levels in the brain under physiological
conditions, it is upregulated in various pathological conditions
(6) and plays a role in some mental disorders such as
schizophrenia (7, 8), depression, or alcoholism (9, 10).

CB2R, like the vast majority of GPCRs, binds b-arrestin
proteins and internalizes upon stimulation (11–13). The C-
terminus of the agonist-bound receptor is phosphorylated by G
protein-coupled receptor kinase (GRK) proteins, a process that
triggers the recruitment of b-arrestins to the receptor (14). In
addition to desensitization and internalization of the receptors,
b-arrestin proteins play a role in initiating further signaling
pathways in the cell. They act as scaffold proteins that trigger a
wide range of signaling events, such as the mitogen-activated
protein kinase (MAPK) pathway (15–17). In this way, they
regulate the growth of cells, play a role in the regulation of
pathways involved in cell survival, growth, apoptosis, and
modulation of immune function. Manipulation of their
functions may be beneficial in inflammatory diseases, fibrosis,
and cancer (18–20). Ligands selectively targeting either b-
arrestin or G protein activation, called biased ligands, are being
developed and have been shown to be beneficial in various
disorders (21–24). In the case of the CB2Rs, many agonists are
biased in one or the other direction (13, 25–27).

In recent years, the importance of polymorphisms of the
human gene of CB2R has emerged in several psychiatric
disorders. One missense polymorphism is the AA-GG
conversion at positions 188-189 of the CB2R coding DNA,
(rs2501432) which causes a glutamine-arginine amino acid
change at position 63 of the protein (CB2R-Q63R). This
mutation allele frequency seems to be 65% worldwide (28),
and has been suggested to affect some conditions like
depression, alcoholism (9, 10), schizophrenia (8), autoimmune
diseases (29, 30), juvenile idiopathic arthritis (31), immune
thrombocytopenic purpura in children (32, 33), and others. In
the case of another missense polymorphism (rs41311993), which
involves a leucine-isoleucine exchange at position 133 (CB2R-
L133I), a significantly higher mutant allele frequency was found
in bipolar disorder patients in an Italian population sample (34).
rs413119933 SNP was detected in Italy at the highest rate with a
prevalence of 2% (28).

The exact mechanism, by which these polymorphisms affect
the function of the CB2R, is still poorly understood. The aim of
this study was to investigate the impact of the naturally occurring
mutations, CB2R-Q63R and CB2R-L133I, on the G protein
activation, b-arrestin binding, cellular distribution, and
internalization of CB2R.
MATERIALS AND METHODS

Materials and Plasmid DNA Constructs
Molecular biology reagents and High Capacity NeutrAvidin-
Agarose Resin were from Thermo Scientific (Waltham, MA). 2-
Arachidonylglycerol (2-AG) and JWH-133 were from Tocris.
Cell culture reagents were from Invitrogen and Biosera.
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Coelenterazine h was obtained from Regis Technologies
(Morton Grove, IL). Biotin was from SERVA Electrophoresis
GmbH (Heidelberg, Germany).

The pRluc8-N1, MP–mVenus, barr2–Venus, Venus–b1 and
g2 plasmids were described previously (35, 36). pBirA-R118G-
N1 vector was created by replacing the Rluc8 sequence in
pRluc8-N1 vector with the BirA-R118G sequence with AgeI/
NotI restriction enzymes after its PCR amplification from
pcDNA3.1-BirA-R118G plasmid [acquired from Addgene
(37)]. The plasmid coding human CB2R was from cDNA
Resource Center (Bloomsberg, PA). We introduced the Q63R
and L133I mutations into CB2R with precise gene fusion PCR.
To generate wild-type or mutant forms of CB2R–Rluc8, CB2R–
YFP, and CB2R–BirA-R118G, we amplified the coding sequence
of CB2R without stop codon and inserted it into pRluc8-N1,
pEYFP-N1, or pBirA-R118G-N1 vectors, respectively. barr2–
Rluc8 was created by replacing Venus to Rluc8 in barr2–Venus
between AgeI/NotI restriction sites in Clontech N1 vector. To
generate Gai1–Rluc8, we inserted Rluc8 with linkers (SGGGGS)
between the 91st and the 92nd residues of Gai1 as in a previous
study (38). b2-adaptin–Venus was generated by N-terminally
fusing the b1 subunit of adaptor-related protein complex 2 to
Venus in pVenus-N1. Venus–Rab4, Venus–Rab5, and Venus–
Rab11 were created by replacing EYFP to monomeric Venus in
YFP–Rab4, YFP–Rab5, YFP–Rab11 constructs (39).

Cell Culture and Transfection
HEK 293T cells were purchased from the American Type
Culture Collection (ATCC CRL-3216) and were cultured in
DMEM medium supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin/streptomycin (Invitrogen) in 5% CO2

atmosphere at 37°C. For BRET measurements, cells were
transfected in suspension using Lipofectamine 2000
(Invitrogen) according to the manufacturer’s protocol and
plated on white poly-L-lysine coated 96-well plates. For the
other experiments, we used the calcium phosphate
precipitation method either with adherent cells or in cell
suspension. Briefly, plasmid DNAs were mixed in sterile
distilled water, 2.5 M CaCl2 was added (final concentration:
125 mM) and the solution was mixed dropwise with 2x HEPES-
buffered solution [HBS] (42 mM HEPES, 15 mM D-glucose, 1.4
mM Na2HPO4, 10 mM KCl, 274 mM NaCl 274 mM, pH 7.1).
This mixture was added dropwise to 1 ml cells either suspended
in 10% FBS supplemented DMEM or on attached cells. The cells
were plated on poly-L-lysine-coated plates, and the medium was
replaced with fresh DMEM after 6-7 hours.

BRET Measurement
We performed the BRET experiments on adherent cells 24–28
hours after transfection using a Thermo Scientific Varioskan
Flash multimode plate reader at 37°C as described previously
(35). Briefly, we replaced the medium with modified Kreb’s-
Ringer medium (120 mM NaCl, 10 mM glucose, 10 mM Na-
HEPES, 4.7 mM KCl, 0.7 mM MgSO4, 1.2 mM CaCl2, pH 7.4).
We determined the expression of the YFP- or Venus-tagged
proteins by recording fluorescence intensity at 535 nm with
excitation at 510 nm. After the addition of the luciferase
August 2021 | Volume 12 | Article 714561
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substrate coelenterazine h (5 mm), we measured luminescence
intensity every 85 seconds for 36–74 min at 530 nm and 480 nm
using filters. The BRET ratio was determined by dividing the
luminescence intensities with each other (I530nm/I480nm). To
calculate the stimulus-induced BRET ratio change, we
performed baseline BRET signal correction and subtracted the
BRET ratios of the vehicle-treated cells from that of stimulated
cells. All BRET measurements were performed at least
in triplicate.

Confocal Microscopy
To obtain confocal images of the cellular distribution of b-
arrestin2 in living cells, HEK 293T cells were plated on poly-L-
lysine-coated glass coverslips. The next day the cells were
transfected with plasmids encoding unlabeled CB2 receptors
and fluorescently labeled b-arrestin2. 24 h after transfection,
the cells were stimulated with 10 mM JWH-133. After 1 hour,
the medium was changed to modified Kreb’s-Ringer medium,
and the localization of the probes was examined in living cells
at 37°C with Zeiss LSM 710 confocal laser-scanning microscope
using a ×63 objective.

To explore the intracellular localization of receptors, we
transfected the cells on 6-well plates with the wild-type or the
mutant receptors labeled with YFP (2 mg/well). To label the cell
membranes and make the recognition of the cell edges easier,
plasma membrane-targeted Cerulean (L10-Cerulean, Cerulean
fused to the targeting sequence of Lyn kinase (40) was
coexpressed in these cells (0.2 mg/well). Experiments were
performed 48 hours after transfection. Cells were detached
with trypsin and plated on 8 well Ibidi plates with 50.000 cells/
well density. 4-5 hours later, cells were stimulated with JWH-133
(10 mM) for one hour, after which they were fixed in 4%
paraformaldehyde for 10 minutes. 5x5 images were taken with
40x objectives. The cells were identified on the composite images
using the cellpose cellular segmentation algorithm (41), https://
github.com/MouseLand/cellpose) in ml-workspace docker
environment (https://github.com/ml-tooling/ml-workspace). In
the next step, the masks were applied to the YFP images to
separate the cells. Using the scikit-image python library, the
original masks were both dilated and eroded in 20 and 40 cycles,
respectively, with one pixel at a time. Differences between two
masks in consecutive steps gave concentric contours whose
points defined a specific distance from the cell edge. Mean
fluorescence was measured under these contour masks.
Contours between dilation cycles 10 and 20 (most distant
contours) were taken as background for each cell and were
subtracted from all contour mean values. Contour at the cell
edge was labeled with 0, intracellular contours with positive,
extracellular values with negative indices. Membrane-to-
cytoplasm ratios were calculated as the ratio of fluorescence
under contours between 0 - 5 (membrane), and contours
>5 (cytoplasm).

Affinity Purification
HEK 293T cells were transfected in suspension with plasmids
encoding wild-type or mutant CB2R–BirA (promiscuous biotin
ligase, 0.5 mg/well) and b-arrestin2–Venus (0.125 mg/well) in 24-
Frontiers in Endocrinology | www.frontiersin.org 3
well plates. 24 h after transfection, cells were stimulated with 10
mM JWH-133 (CB2R agonist), and simultaneously 100 mMbiotin
was added for 20–24 h to allow substantial biotinylation of b-
arrestin2–Venus. Reactions were stopped by placing the dishes
on ice and washing with them ice-cold PBS solution. The
washing step was repeated 3 times. Then the cells were lysed
with RIPA buffer (50 mM Tris-HCl, 150 mMNaCl, 1% Triton X-
100, 0.1% SDS, 0.25% sodium deoxycholate, 1 mM EDTA; pH
7.4) supplemented with cOmplete Protease Inhibitor mixture
(Roche) and Phosphatase Inhibitor Mixture 3 (Sigma). Lysates
were collected, rotated for 10 min at low speed, then centrifuged
at 20,800 × g for 10 min. Supernatants were incubated with 30 ml
of High Capacity NeutrAvidin-agarose resin (Thermo Scientific)
for 20 h at 4°C, then the beads were washed 2 times for 30
minutes with ice-cold high salt RIPA (50 mM Tris-HCl, 900 mM
NaCl, 1% Triton X-100, 0.1% SDS, 0.25% sodium deoxycholate,
250 mM LiCl, 1 mM EDTA; pH 7.4) and once with PBS. The
beads were resuspended in PBS. YFP and fluorescence intensities
were determined by exciting at 510 nm and measuring emission
at 535, respectively, using a Thermo Scientific Varioskan Flash
multimode plate reader.

Immunoblot Analysis of GRKs
HEK 293T cells plated on 10 cm plates expressing wild-type or
mutant CB2R–BirA (10 mg/well) were treated with JWH133 and
biotin similarly as above described. Proteins were eluted from
HEK 293T cell extracts in SDS lysis buffer containing biotin and
10% mercaptoethanol. The samples were boiled and centrifuged.
Proteins were separated with SDS-polyacrylamide gel
electrophoresis and were blotted onto PVDF membranes.
Membranes were treated with antibodies against GRK2 (C-15)
or GRK3 (C-14) (sc-562 and sc-563, Santa Cruz) followed by the
treatment with HRP-conjugated secondary antibodies. Blots
were also stained with Alexa680-streptavidin (ThermoFisher) to
assess the total protein amounts in the pull-downs. Visualization
was made with Immobilon Western chemiluminescent HRP
Substrate (Millipore), and fluorescence was detected with Azure
c600 (Biosystems). The results were quantitatively evaluated with
densitometry (ImageJ).

CB2R Structure Depiction and
Molecular Dynamics
We used a refined CB2R structure with bound CP55,940
published recently (42). For molecular modeling, molecular
dynamics, and analysis the YASARA tool was used (43). The
original receptor structure was subjected to in silico “point
mutations” resulting in the L133I and Q63R structure variants.
The ‘runmembrane’ macro of the supplied macro library
was applied for the three structures, that is: immersion of the
receptor to a membrane; balancing the charges; hydration of the
system; applying periodic box conditions; initial energy
minimization by steepest descent and then simulated annealing
method; MD simulation on 298 K° with electrostatic interactions
up 8 Å, simulation snapshots were taken at 250 ps intervals.
Reference molecule structures have been sampled from the MD
simulation frames and depicted using UCSF Chimera 1.14
software (44).
August 2021 | Volume 12 | Article 714561
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GloSensor Assay
HEK 293T cells were transfected with or without an untagged
CB2R construct (0.2 mg/well) and GloSensor™ (Promega, 2mg/
well) plasmid, and were plated on 6-well plates. The next day
cells were detached with trypsin and plated on 96 well plates with
50.000-100.000 cells/well density. Experiments were performed
48 hours after transfection. Before the measurement the medium
of the cells was changed to colorless HBSS buffer (Hank’s
Balanced Salt Solution: 1.25 mM CaCl2.2H2O, 0.5 mM
MgCl2.6H2O, 0.4 mM MgSO4.7H2O, 5.4 mM KCl, 0.4 mM
KH2PO4, 4.2 mM NaHCO3, 137 mM NaCl, 0.3 mM Na2HPO4,
5.5 mM D-glucose pH 7.4) containing 1 mM luciferin and 0.1%
BSA. To load the cells with luciferin, the plates were incubated at
room temperature for 2 hours, protected from light. After the
incubation period, bioluminescence was recorded using a
VarioSkan Flash plate reader (0.3 s/well) at 37°C. The cells
were treated with cannabinoid agonist ligands (JWH-133 and
2-AG) in increasing concentrations. Cells were incubated with
the agonists for 4 min, and then the cAMP signal was induced by
the stimulation of the endogenous b2-adrenergic receptors with 1
mM isoproterenol (ISO). The inhibition of the ISO-induced cAMP
production was analyzed by comparing the bioluminescence
intensities at 7 minutes after the addition of ISO.
Frontiers in Endocrinology | www.frontiersin.org 4
Statistical Analysis
Data are presented as mean ± standard error of the mean
(S.E.M). GraphPad Prism 9.0.0. software or python matplotlib
and seaborn libraries were used for graph construction, statistical
analysis, and curve fitting. The results were analyzed by two-way
ANOVA and Tukey’s post-hoc test was applied for pairwise
comparisons of the wild-type and mutant CB2Rs.
RESULTS

CB2R Variants Have Similar G Protein
Activation in HEK293T Cells
First, we tested whether the two studied CB2R polymorphisms,
CB2R-Q63R and CB2R-L133I, affect the G protein activation of
the CB2R (Figure 1). CB2R is known to activate the Gi/o

subfamily of G proteins and decrease the intracellular cAMP
levels. We assessed the basal and the agonist-induced Gi1

activation of untagged CB2Rs using a Gi1 bioluminescence
resonance energy transfer (BRET) activation sensor. The basal
activity was determined by treatment with the inverse agonist
AM630, and agonist-induced activation in the first 30 minutes
A B

DC

FIGURE 1 | (A, B) G protein activity followed by BRET: HEK 293T cells were transfected with the indicated CB2R, Gai1–Rluc8, Venus–b1, and g2 DNA constructs.
Concentration-response curves showing G protein activation of CB2 receptors: CB2R-WT (black squares) CB2R-Q63R (grey triangles) and CB2R-L133I (grey circles)
in HEK 293T cells under basal and JWH-133 (A) or 2-AG-stimulated (B) conditions. The results were analyzed by two-way ANOVA (stimulation and expressed
receptor) and Tukey’s post-hoc test was applied for pairwise comparisons of the wild-type and mutant CB2R. * indicates a significant difference between wild-type
CB2R vs. CB2R-L133I (p<0.01). No other comparison between receptors was significantly different, but all receptors differed from control (p<0.001). The mean ±
S.E.M. of the data from 4 independent experiments is shown. (C, D) cAMP signaling: ISO-induced cAMP signal decreases with CB2R stimulation. Cells were co-
transfected with CB2Rs and GloSensor, and no CB2R was expressed in control cells. The cAMP signal was induced with 1 mM ISO. Data show the effect of JWH-
133 (C) or 2-AG (D) treatment on cAMP formation by the three CB2 receptors. The results were analyzed with two-way ANOVA (stimulus and expressed receptor)
and Tukey’s post-hoc test was applied for pairwise comparisons of the wild-type and mutant CB2R. There was no significant difference between the CB2Rs.
August 2021 | Volume 12 | Article 714561
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was analyzed using 2-arachidonoylglycerol (2-AG) and JWH-
133 as agonists. We found no significant difference between the
agonist-induced concentration-response curves of the wild-type
and the CB2R-Q63R receptors (Figures 1A, B). Although the
basal activity in the case of the CB2R-Q63R was slightly lower,
the difference was not significant. On the other hand, when
stimulated with JWH133, but not with 2-AG, the efficacy in
the case of CB2R-L133I was enhanced compared to CB2R-WT.
We also tested the effect of CB2R mutants on cAMP level,
the downstream signaling event of the Gi/o proteins. We
measured the changes in the cAMP signal induced by the
stimulation of endogenous b2-adrenergic receptors using a
luciferase-based cAMP probe, GloSensor (Figures 1C, D).
The cAMP signal was inhibited by the simultaneous activation
of the Gi/o-activating CB2Rs, and no significant difference was
detected between the wild-type and the mutant CB2Rs
upon activation.

CB2R Variants Have Distinct b-Arrestin2
and GRK Binding Properties
In addition to the G protein activation, another important event
following GPCR activation is the binding of b-arrestins.
Therefore, we next examined the ability of the mutant receptors
to bind these proteins. CB2R binds b-arrestins transiently at the
vicinity of the plasma membrane suggesting that it is a class A
receptor (45, 46). Since CB2R, similarly to other class A receptors,
is known to bind b-arrestin2 stronger than b-arrestin1 (47), we
focused on b-arrestin2. First, we followed b-arrestin2 recruitment
with confocal microscopy (Figure 2A). Agonist stimulation of
all three receptors resulted in plasma membrane translocation
of Venus-tagged b-arrestin2, whereas no b-arrestin2 on
intracellular vesicles was observed. This confirms the transient
nature of the coupling of these two proteins. Visually no
significant difference was observed between the receptor
subtypes, so to quantitatively analyze the extent of b-arrestin2
binding, we performed real-time bioluminescence resonance
energy transfer (BRET) measurements. In these experiments,
BRET signal was detected between RLuc8-tagged CB2Rs and
Venus-tagged b-arrestin2 (Figures 2B, E). Interestingly, CB2R-
Q63R mutant had increased, whereas CB2R-L133I had decreased
b-arrestin2 binding compared to the CB2R-WT upon both JWH-
133 and 2-AG stimuli.

To verify the results above in another experimental setup, we
used proximity biotin-labeling and quantified the interaction
between CB2Rs and b-arrestin2. HEK 293T cells were co-
transfected with receptors labeled with BirA-R188G biotin
ligase (CB2-BirA) and b-arrestin2–Venus. R188G mutation
turns BirA into a promiscuous biotin ligase, which biotinylates
all proteins in the vicinity of the BirA-R118G-labeled protein
(37). Interaction between CB2R-BirA and b-arrestin2–Venus
was induced by stimulation with 10 mM JWH-133, and the
biotinylated proteins were pulled down with NeutrAvidin beads.
The fluorescence of b-arrestin2–Venus bound to the beads was
then measured. JWH-133 induced b-arrestin2 binding both to
the wild-type and the mutant CB2-BirA receptors. CB2R-Q63R-
BirA stimulation led to a slightly elevated, whereas CB2R-L133I-
Frontiers in Endocrinology | www.frontiersin.org 5
BirA stimulation led to a decreased b-arrestin2–Venus signal,
compared to the wild-type receptor (Figure 3A).

b-arrestin binding to GPCRs is regulated by GRK kinases. To
test whether mutations in CB2R affect GRK recruitment, we
performed further proximity biotinylation experiments. After
stimulation of the receptors, biotinylated endogenous proteins
were pulled down and GRK2 and GRK3 were detected with
immunoblotting (Figure 3B). The results show that upon
stimulation of the receptors with JWH-133, endogenous GRK2
and GRK2 were enriched in samples, showing their interaction
with the activated receptor. Interestingly, the GRK binding
pattern to CB2Rs correlated with the binding of b-arrestin2
(Figures 3B, C). These results suggest that GRK-binding
preference to the receptor may contribute to the observed
differences in b-arrestin2 binding (Figure 3B, C).

CB2 Variants Have Altered
Intracellular Trafficking
To assess the intracellular distribution of the mutant receptors,
we expressed yellow fluorescent protein (YFP)-tagged CB2Rs in
HEK 293T cells. After taking confocal microscopy images, we
identified the cells using the cellpose cellular segmentation
algorithm (41). We analyzed total fluorescence and the
fluorescence intensity distribution of the receptors relative to
the cell edge (Figure 4A). The receptors (wild-type, Q63R, and
L133I) had similar expressions (Figure 4D) and cellular
distributions (Figures 4B, C), with intensity peaks at the
vicinity of the cell edge. The similar membrane expression of
the receptors in cells suggests that the differences seen in b-
arrestin2 binding are not caused by altered intracellular
distributions. When the cells were stimulated with JWH-133
for 1 hour, the distribution profile changed considerably with
lower fluorescence in the cell membrane and higher fluorescence
in the cytoplasm for both wild-type and Q63R mutant receptors.
However, in the case of the L133I mutation, the change in
distribution was not significant (Figures 4C, D).

To further characterize the receptor trafficking with higher
sensitivity, we followed the receptor disappearance from the cell
membrane and their appearance in intracellular vesicles in
bystander BRET experiments (Figure 5) (35, 39). BRET was
detected between Rluc8-tagged receptors and a Venus-labeled
either plasma membrane- or intracellular vesicle-localized
marker . The p lasma membrane was labe led wi th
myristoylated-palmitoylated Venus (MP-Venus), whereas the
intracellular vesicles were marked with different Rab small
proteins also tagged with Venus fluorescent protein (Venus–
Rab4 for rapid recycling endosomes, Venus–Rab5 for early
endosomes, Venus–Rab7 for late endosomes and Venus–Rab11
for late recycling endosomes). We also followed the interaction
of b-arrestin2–Rluc8 with b2-adaptin–Venus. b2-adaptin is a
key protein in the initiation of clathrin-dependent endocytosis
(48) (Figure 5B). An increase or decrease of the BRET signal
indicates the appearance or disappearance of the CB2R at a
specific cellular location, respectively. As shown in Figure 5,
stimulation is followed by receptor disappearance from the
membrane and appearance in intracellular vesicles. In parallel
August 2021 | Volume 12 | Article 714561
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A

B

D E

C

FIGURE 2 | (A) b-arrestin2 localization: HEK 293T cells were co-transfected with unlabeled CB2Rs and b-arrestin2–Venus. Cells were untreated (control) or
stimulated with JWH-133 (10 mM), for 1 hour. The cells were visualized by laser scanning confocal microscopy. (B–E) b-arrestin2 coupling to CB2Rs: BRET
measurements showing the recruitment of b-arrestin2 to CB2 receptors upon agonist stimulus. CB2R-Rluc8 constructs (CB2R-WT: black squares, CB2R-Q63R: grey
triangles, or CB2R-L133I: grey circles) were co-expressed with b-arr–Venus in HEK 293T cells, and BRET was measured upon JWH-133 (10 mM, B) or 2-AG (10
mM, C) stimulus. Data are shown as the percentage of the maximal response to 10-5 M JWH-133. Measurements were baseline-corrected to vehicle data (indicated
by horizontal dashed line). Arrows indicate the time point of stimulation. (C) Concentration-response curves showing the recruitment of b-arrestin2 to CB2 receptors:
in HEK 293T cells under basal and different JWH-133 (logEC50: -6.276; -6.373; -5.922 for wild-type, Q63R and L133I CB2 receptors) (D) or 2-AG-stimulated
conditions (logEC50: -5.538; -5.725; -5.040 for wild-type, Q63R and L133I CB2 receptors) (E). The results were analyzed by two-way ANOVA (stimulation and
mutation) and Tukey’s post-hoc test was applied for pairwise comparisons of the wild-type and mutant CB2R. The mean ± S.E.M. of the data in the form of 4
experiments is in the results. *, #, $ indicate a significant difference between control vs. CB2R-Q63R, control vs. CB2R-L133I, and CB2R-L133I vs. CB2R-Q63R,
respectively (p<0.001).
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A

B

C

FIGURE 3 | Proximity biotinylation assays: HEK 293T cells were either co-transfected with plasmids encoding wild type or mutant CB2R–BirA and b-arrestin2–
Venus (A) or transfected only with BirA-tagged CB2Rs (B, C). 24 h after the transfection, cells were stimulated with 10 mM JWH-133, and at the same time 100 mM
biotin was added for 20–24 h (A) The cells were lysed and the biotinylated b-arrestin2–Venus was pulled down using NeutrAvidin beads. Total Venus fluorescence
on the beads is shown ± S.E.M. Two-way ANOVA indicated significant effects on the variation of both the mutations and the stimulation (stimulation: p<0.001,
mutation: p<0.01) (B–D) Interaction of CB2Rs with endogenous GRK2 and GRK3. Representative blots of pull-downs are shown on panel (B). Quantified densities
were normalized to streptavidin staining and data are shown as individual samples and mean ± S.E.M. (n=6-5) (C). The results were analyzed by two-way ANOVA
(stimulation and mutation) and Tukey’s post-hoc test was applied for pairwise comparisons of the wild-type and mutant CB2R. For both GRKs, two-way ANOVA
indicated significant effects on the variation of both the mutations and the stimulation (stimulation: p<0.01 for both, mutation: p<0.001 for GRK2 and p<0.05 for
GRK3, respectively). # indicates significant difference vs. mock-stimulated samples, * indicates a significant difference compared to L133I mutant and $ indicates a
significant difference compared to Q63R in pairwise comparisons in the post-hoc test (p<0.05) (A, C).
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with the internalization of the receptors, b-arrestin2 also interacted
with b2-adaptin (Figures 5A, B). The internalization pattern
corresponded to the b-arrestin2 binding patterns observed with
the mutant receptors. Namely, CB2R-Q63R, which has stronger
coupling to b-arrestin2, also had slightly enhanced disappearance
from the membrane and appearance in Rab5 and Rab11
endosomes. CB2R-L133I, which had weaker coupling to b-
arrestin2, showed slower internalization and arrival into all four
types of endosomes (Figure 5A–G). Since prolonged stimulation
resulted in distinct intracellular distribution of the mutant receptors,
we retested the G protein activity after 2 hours of continuous
stimulation with JWH-133 with Gi1 BRET sensor in cells also
overexpressing b-arrestin2. In this setup, the L133I mutant had
increased G protein response, while the Q63R showed decreased G
protein activation compared to the wild-type receptor. This result
correlates with the differences observed in the degree of
internalization and cellular distribution of the mutant
receptors (Figure 5H).

Isoleucine at Position 133 Alters the ICL2’s
Protrusion Towards the Cytoplasm
To gain an insight into the structural changes induced by the two
CB2R mutants, we carried out molecular dynamics simulations
with CB2R bound to cannabinoid receptor agonist, CP55,940
(42) on the wild-type, Q63R, and L133I receptors embedded into
a lipid bilayer. In the case of the CB2R-Q63R, no major structural
rearrangements have been observed (not shown), although
arginine is sterically larger compared to the glutamine, and
Frontiers in Endocrinology | www.frontiersin.org 8
results in an increased number of positive charges on the
cytoplasmic side of the receptor (Figures 6A, B). On the other
hand, isoleucine in position 133 is positioned on the outer side of
the third helix (Figures 6A, C), and its g2 carbon atom’s position
results in a movement of the second intracellular loop towards
the cytoplasm (Figures 6C, D).
DISCUSSION

In this study, we examined two missense polymorphisms of the
CB2R, which may contribute to the development of a variety of
human diseases. We explored the effects of the mutations on the
G protein activation, b-arrestin2 binding, intracellular
distribution, and trafficking. We detected the most striking
changes in their b-arrestin2 binding properties, namely CB2R-
Q63R had increased, whereas CB2R-L133I had decreased
coupling compared to the wild-type receptor. The alteration of
their ability to activate G proteins, on the other hand, was less
pronounced, only CB2R-L133I showed some enhanced
activation when JWH-133 agonist in the Gi1 protein BRET
experiments was assessed. Although one could expect stronger
G protein activation in case of weaker b-arrestin binding and
desensitization, we could detect differences neither with the
endogenous agonist, 2-AG, nor when the endogenous cAMP
levels were assessed. This suggests that even if the G protein
activation is altered, the differences are minimal. Our results in
the case of the CB2R-Q63R’s G protein activation are in contrast
A B

DC

FIGURE 4 | CB2R distribution in HEK 293T cells following stimulation with JWH-133: HEK 293T cells were co-transfected with YFP-tagged CB2R isoforms and
L10-cerulean. Confocal microscopy images were taken with Zeiss LSM 710 confocal laser-scanning microscope, and the cells were detected with cellpose, a neural
network-based algorithm. For each cell, a mask covering the cell was determined (A, top, and middle), and the mask was iteratively dilated or eroded resulting in a
total of 60 contours (examples are shown on A, bottom). (B) Cell fluorescence profile was determined by measuring average fluorescence under each contour in
control and stimulated HEK293T cells. Cells expressed either CB2R-WT-YFP, CB2R-Q63R-YFP, or CB2R-L133I-YFP. Mean values ± S.E.M. @ are shown (n=9,
~50000 cells total). (C) Membrane (0-5 pixels from cell edge)/cytoplasm (>5 pixels from cell edge) fluorescence ratios for the wild-type and mutant CB2Rs in control
and stimulated cells. Mean ± S.E.M. @ are shown from n=9 experiments. * indicates a significant difference between control and stimulated samples (p<0.05),
analyzed with two-way ANOVA (stimulation, mutation) using Tukey’s post hoc test for multiple comparisons. (D) Cell fluorescence distribution in 9 experiments
representing ~50000 cells. Fluorescence is normalized to average overall cell fluorescence in each experiment.
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FIGURE 5 | CB2R intracellular trafficking and b-arrestin2 translocation followed by bystander BRET: CB2R-Rluc8-WT (black squares) CB2R-Rluc8-Q63R (grey
triangles) and CB2R-Rluc8-L133I (grey circles) were co-expressed with Venus-tagged membrane markers. The cell membrane was labeled with MP-Venus (A), rapid
recycling endosomes with Venus-Rab4 (C), early endosomes with Venus-Rab5 (D), late endosomes with Venus-Rab7 (E), and late recycling endosomes with
Venus-Rab11 (F). b-arrestin2-Rluc8 was coexpressed with a clathrin-coated pit marker, b2-Adaptin-Venus (B). The arrows show the time of the JWH-133 (10 µM)
treatment. Statistical analysis was performed with two-way ANOVA (time, mutation) followed by Tukey’s post-hoc test with multiple comparisons. * and # indicate
significant differences in pairwise comparisons, CB2R-L133I vs. CB2R-WT and CB2R-Q63R vs. CB2R-WT respectively (p<0.001). (G) Radial plot showing average
differences compared to CB2R-WT across all timepoints. (H) HEK 293T cells were transfected with the indicated CB2R, Gai1–Rluc8, Venus–b1, g2 and b-arrestin2
DNA constructs. Columns show G protein activation of the CB2 receptors: CB2R-WT (black squares) CB2R-Q63R (grey triangles) and CB2R-L133I (grey circles) in
HEK 293T cells after 2 hour JWH-133 stimulation (10 mM). The mean of the negative DBRET (G protein activity) values from 5 independent experiments were
compared by one-way ANOVA (repeated measures) and Tukey’s post-hoc test was applied for pairwise comparisons of the wild-type and mutant CB2R. *#
indicates a significant difference between wild-type CB2R vs. CB2R-Q63R and CB2R-L133I vs. CB2R-Q63R (p<0.01). All technical replicates from the 5
independent experiments are shown.
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to those previously reported (49). In the study of Carrasquer
et al., G protein activation was weaker in the receptor carrying
the R mutation. Although the reason for the difference is not
clear, there are methodological differences between the two
studies. They measured the cAMP signals induced by forskolin
in the presence of phosphodiesterase inhibitors, which might
result in increased sensitivity in their assays. Also, the G protein
assays might be sensitive to receptor expression differences.
However, when we stimulated the receptors for a prolonged
time, their G protein activations correlated with the intracellular
redistribution of the receptors, CB2R-L133I having stronger and
CB2R-Q63R having weaker G protein activity. Nevertheless,
the decreased cAMP signal would be in good agreement with
the increased b-arrestin2-binding of this mutant. Similarly,
decreased Erk1/2 activation by the CB2R-Q63R might also be
the consequence of the enhanced desensitization by the
arrestins (50).

To assess b-arrestin2 coupling to CB2R, we used both BRET
measurements and a proximity-labeling technique with BirA-
labeled receptors. BRET experiments showed enhanced binding
to CB2R-Q63R and decreased coupling to CB2R-L133I. Although
with the proximity biotinylation method only the effect of the
L133I mutation was significant, it has to be noted that in
proximity biotinylation experiments the cells have been
stimulated for ~18 hours, which might lead to biotinylation of
b-arrestins in multiple coupling-uncoupling cycles, eventually
until all the expressed b-arrestins are labeled. Thus, the method
Frontiers in Endocrinology | www.frontiersin.org 10
might not be sensitive enough for differentiating modest
differences, especially if the binding is already sufficiently strong.

When receptor-b-arrestin binding experiments are evaluated,
the membrane expression of the receptors has to be also
addressed. Since CB2R binds b-arrestin only near to the cell
membrane, higher or lower receptor membrane expressions
themselves may lead to bigger or lower b-arrestin2 BRET
signals, respectively. We assessed the intracellular distributions
of the CB2Rs in confocal images using computer-aided high-
throughput analysis. The applied cellpose algorithm enables the
separation of the cells in microscopic images, and the analysis
can be carried out on each cell separately. We analyzed the
spatial fluorescence profile of the cells. The analysis showed that
the distribution, as well as the total fluorescence of the three
CB2Rs, are not significantly different. Thus, the differences in b-
arrestin2 binding of the two mutant CB2Rs cannot be explained
by localization and expression differences, but on the contrary,
altered b-arrestin2 binding may result in the changes observed in
the ligand-induced internalization and appearances in the late
endosomes and recycling. Namely, in the case of the CB2R-
Q63R, stronger b-arrestin2-coupling seems to result in enhanced
internalization and trafficking to Rab5 and late Rab7 endosomes,
whereas weaker b-arrestin2-binding of CB2R-L133I leads to a
slower rate of internalization and weaker appearance in all
intracellular vesicles (Figure 5G). Thus, changes in b-arrestin2
binding of the CB2Rs affect their intracellular trafficking, which
in turn may lead to altered signaling and may offer an
A

B D

C

FIGURE 6 | Localizations of Q63 and L133 amino acids and molecular dynamics simulation: (A) Q63 (red) amino acid is located on the cytoplasmic surface of the
CB2R, whereas L133 (blue) is located on the outer side of the TM3. CB2R receptor structure is shown from the cytoplasmic side. (B) R63 amino acid position on the
CB2R cytoplasmic site. (C) Superposed structures of CB2R-WT (magenta) and CB2R-L133I (green). ILC2 is pushed towards the cytoplasm in the CB2R-L133I. (D)
Distances are shown between the centers of masses of the TM helices and the ICL2 amino acids during the simulation.
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explanation for the observed clinical consequences. Neither of
the two mutations affects the serine/threonine amino acids in the
C-terminal tail of the receptor since they reside on the first
(Q63R) or near the third (L133I) intracellular loops. There are at
least two possible explanations for the differences seen in b-
arrestin binding between the wild-type receptor and the two
mutants. First, the mutations might affect GRK binding to the
receptor and have an effect on the receptor phosphorylation.
Indeed, GRK2 binding correlated well with the b-arrestin2
binding pattern of the two mutations. Secondly, mutations in
Q63 and L133 amino acids might affect the binding of the b-
arrestin2 directly. b-arrestin-GPCR interactions are composed of
at least two interaction sites: the interaction with the C-terminus
and the core interaction. The core interaction involves the
protrusion of the finger loop into the transducer pocket of the
GPCRs and several other interactions between the second and
the third intracellular loops (ICL2 and ICL3, respectively) (51).
Q63 resides in the ICL2, and the replacement of this amino acid
to arginine brings an increased number of positive charges to the
receptor-b-arrestin2 interface, possibly changing the binding
properties of these two proteins. In the case of the L133I
mutation, the possible effect is not that obvious. The amino
acid resides in the third helix of the receptor, with its side chain
pointing towards the outer side of the receptor, and is not likely
to be directly involved in the receptor-b-arrestin2 interaction.
The leucine-isoleucine change also does not warrant major
structural or charge changes. Therefore, we carried out
molecular dynamics simulations using a recently described
CB2R model in which the receptor active state is stabilized
with a high-affinity agonist, CP55,940 (Figures 6C, D).
According to these simulations, the methyl group of the g2
carbon atom in the isoleucine clashes with the amino acids
140-141 in ICL2 of the wild-type structure, forcing it towards the
cytoplasm. This movement might interfere with the receptor-b-
arrestin interaction, decreasing the affinity of the binding.

Although the differences in the receptor-b-arrestin2 binding
between the wild-type and the mutant receptors are relatively
small, these changes significantly affect the cellular distribution
of the receptors after their prolonged stimulation. These
differences may in turn lead to altered downstream signaling
events, where the differences may be even more exaggerated due
to the signal amplification steps. In further studies, it would be
interesting to test the effect of endogenous or exogenous
cannabinoids on the downstream signaling of cells that express
CB2R endogenously, such as peripheral immune cells, microglia,
and neuronal cells, derived from subjects harboring wild-type or
variant CB2R. These investigations would further help
understand the role of CB2R variants in the development of
the reported immune and psychoneurological disorders.
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In conclusion, we show that two commonly occurring CB2R
missense mutations, Q63R and L133I mutations affect the
receptor’s ability to bind b-arrestin2. Since the G protein
activations seem to be very similar or might be even enhanced
in the case of the L133I mutant, these changes lead to biased
signaling of the CB2R and could explain the clinical observation
linked to these mutations. Moreover, since biased CB2R agonists
are being developed (21, 52, 53), pharmacological strategies
targeting the b-arrestin-binding of the CB2R might be options
for further research in diseases affected by these mutations.
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39. Szakadáti G, Tóth AD, Oláh I, Erdélyi LS, Balla T, Várnai P, et al. Investigation
of the Fate of Type I Angiotensin Receptor After Biased Activation. Mol
Pharmacol (2015) 87:972–81. doi: 10.1124/mol.114.097030
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