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Abstract The utility of cell-free nucleic acids in monitoring cancer has been recognized by both 
scientists and clinicians. In addition to human transcripts, a fraction of cell-free nucleic acids in 
human plasma were proven to be derived from microbes and reported to have relevance to cancer. 
To obtain a better understanding of plasma cell-free RNAs (cfRNAs) in cancer patients, we profiled 
cfRNAs in ~300 plasma samples of 5 cancer types (colorectal cancer, stomach cancer, liver cancer, 
lung cancer, and esophageal cancer) and healthy donors (HDs) with RNA-seq. Microbe-derived 
cfRNAs were consistently detected by different computational methods when potential contam-
inations were carefully filtered. Clinically relevant signals were identified from human and micro-
bial reads, and enriched Kyoto Encyclopedia of Genes and Genomes pathways of downregulated 
human genes and higher prevalence torque teno viruses both suggest that a fraction of cancer 
patients were immunosuppressed. Our data support the diagnostic value of human and microbe-
derived plasma cfRNAs for cancer detection, as an area under the ROC curve of approximately 0.9 
for distinguishing cancer patients from HDs was achieved. Moreover, human and microbial cfRNAs 
both have cancer type specificity, and combining two types of features could distinguish tumors of 
five different primary locations with an average recall of 60.4%. Compared to using human features 
alone, adding microbial features improved the average recall by approximately 8%. In summary, this 
work provides evidence for the clinical relevance of human and microbe-derived plasma cfRNAs and 
their potential utilities in cancer detection as well as the determination of tumor sites.
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Editor's evaluation
This study provides an interesting clinical relevance of human and microbe cell free RNAs derived 
from plasma that can be used as biomarkers for cancer detection and cancer type classification, and 
thereby having potential in clinical application.

Introduction
Recently, noninvasive liquid biopsy of plasma cell-free nucleic acids has emerged as a convenient 
and cost-effective method for cancer screening and monitoring. The clinical utilities of cell-free DNA 
(cfDNA) and cell-free RNA (cfRNA) in cancer have been extensively studied. Mutations (Abbosh et al., 
2017), methylation levels (Anders et al., 2015), fragmentation patterns (Cristiano et al., 2019) of 
plasma cfDNA, and expression levels of different cfRNA species (miRNA, circular RNA [circRNA], 
signal recognition particle RNA [srpRNA], long noncoding RNA [lncRNA], mRNA, etc.) (Best et al., 
2015; Li et al., 2015; Tan et al., 2019) in plasma, platelets, and extracellular vesicles (EVs) were iden-
tified as potential diagnostic or prognostic markers. In addition to early detection, it is also favorable if 
liquid biopsy could provide clues about the tumor’s primary location to guide further clinical decisions. 
Plasma cfDNA methylation and the platelet transcriptome were reported to have cancer type speci-
ficity (Shen et al., 2018; Best et al., 2015) but whether plasma cfRNAs have such properties remains 
largely uncharacterized.

Studies of the human cancer-related microbiome are increasingly valued for their novel biological 
insights and potential clinical applications. It is well established that several bacteria and viruses are 
involved in cancer development and progression. For instance, chronic infection with HBV and HPV is 
the leading cause of liver cancer and cervical cancer, respectively (Arbuthnot and Kew, 2001; Burd, 
2003). Helicobacter pylori infection is a well-known risk factor for developing gastric cancer (Polk and 
Peek, 2010). Fusobacterium nucleatum was reported to drive tumorigenesis in colon cancer (Han, 
2015). It has also been reported that in pancreatic cancer, higher microbial diversity predicts better 
prognosis (Riquelme et  al., 2019). A more recent study reported that cancer type-specific living 
bacteria can be detected inside tumor cells, suggesting that there are unexpectedly complicated 
interactions between microbes and tumor cells (Riquelme et al., 2019).

Traditionally, blood was thought to be sterile in individuals without sepsis (Gosiewski et al., 2017; 
Blauwkamp et al., 2019). Although it remains controversial whether the blood of healthy donors 
(HDs) contains living bacteria (Best et  al., 2015; Potgieter et  al., 2015), several recent studies 
suggested that bacteria-derived nucleic acids can be confidently detected in human plasma, which 
cannot be simply attributed to contamination in reagents and other potential sources (Gosiewski 
et al., 2017; Zozaya-Valdés et al., 2021; Kowarsky et al., 2017; Pan et al., 2017). Many uncharac-
terized bacteria and viruses can be assembled from blood DNA-seq data (Kowarsky et al., 2017). In 
obese patients, gut microbe-derived EVs, which contain microbial DNA, can enter the bloodstream 
and induce an inflammatory response (Luo et al., 2021). A recent study also suggested that the abun-
dance of microbial-derived plasma cfDNA could accurately distinguish between different cancer types 
(Poore et al., 2020).

Most of the previous cfRNA studies focused on small RNA species (Mitchell et al., 2008), which are 
relatively stable in plasma. Long RNA species in plasma have relatively low concentrations, which are 
mainly 100–200 nt fragments lacking poly-A tails and intact ends. Therefore, regular RNA-seq, which 
usually uses ligation techniques to add adaptors, will not work well for long cfRNAs. The recently 
developed SMART-seq (Picelli et al., 2014)-based techniques offer the potential to overcome these 
issues. Furthermore, to sequence total RNAs in plasma, we need to simultaneously remove the abun-
dant rRNA fragments, which are enabled by a CRISPR-based technology called depletion of abun-
dant sequences by hybridization (DASH; Gu et al., 2016). This motivated us to study the biological 
relevance and clinical utilities of human and microbe-derived long cfRNAs, taking advantage of the 
above techniques.

Here, we investigated diverse cfRNA species (>50 nt, rRNA depleted) in ~300 plasma samples of 
cancer patients and HDs. This cohort included five cancer types (colorectal cancer, stomach cancer, liver 
cancer, lung cancer, and esophageal cancer) that were responsible for 75% of cancer-related mortality 
in China (Siegel et al., 2015). Most of the cancer patients were in the early stages. To the best of our 
knowledge, our study demonstrated for the first time that both human and microbe-derived RNAs in 
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plasma detected by cfRNA-seq could reflect cancer type-specific information. We also showed that 
combining microbial cfRNA signatures could improve the performance of human cfRNAs in cancer 
classification.

Results
Sequencing of cfRNAs captures signals of various long RNA species in 
the plasma
Here, we adapted a SMART-based total RNA sequencing method (SMART-total) to profile plasma 
total cfRNAs. This technique was optimized for low-input RNA sequencing and robust for partially 
degraded RNA fragments. SMART-total was successfully applied to detect cfRNAs in the plasma of 
pregnant women and cancer patients in previous studies (Pan et al., 2017; Ngo et al., 2018; Yu 
et al., 2020). One of these studies, which investigated plasma cfRNAs of pregnant women, suggested 
that microbial signals detected by SMART-total can also provide useful information (Pan et al., 2017). 
We applied SMART-total to a cohort of 295 plasma samples, and the percentage of patients with 
early-stage cancer (stages I and II) ranged from 65% in stomach cancer to 86% in lung cancer (Supple-
mentary file 1).

For low-biomass metagenomic profiling, laboratory and kit contamination can lead to unreliable 
conclusions (Eisenhofer et  al., 2019). Given the low concentration of both human and microbial 
cfRNAs in plasma, little contamination could have detrimental impacts on downstream analysis. 
To minimize the impacts of potential microbe contamination introduced in sample collection, RNA 
extraction, library preparation, and sequencing, two Escherichia coli samples and one human brain 
RNA sample were processed and sequenced following exactly the same procedure as plasma samples, 
serving as controls for contamination.

In addition to potential contaminations, misclassification of microbe-derived reads also renders the 
result less interpretable. We carefully designed a computational pipeline to mitigate these problems 
(Figure 1A, see Materials and methods). In brief, after removing human rRNA and other unwanted 
sequences, reads were aligned to the human genome and circRNA back-spliced junctions to quantify 

Figure 1. Pipeline for cell-free RNA (cfRNA) sequencing data processing. (A) The bioinformatic pipeline for plasma cfRNA sequencing data processing. 
After adapter trimming, spike in, potential vector contaminations, and human rRNA sequences were removed. Cleaned reads were aligned to the 
human genome and circular RNA back-spliced junctions. Unmapped reads were classified with a k-mer-based pipeline and an alignment-based 
pipeline. Genera detected by both pipelines were used for downstream analysis. Potential contaminations (known common laboratory contaminants, 
genera detected in control samples, skin microbes, and suspicious viral genera) were excluded. See the Materials and methods section for details. 
(B) Average fractions of different cfRNA components in cleaned reads. Microbe-rRNA refers to reads annotated to rRNA. Microbe-others refers to non-
rRNA reads that were assigned to microbial genomes by kraken2.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Quality control of sequencing data.

https://doi.org/10.7554/eLife.75181
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human gene expression. Several quality control rules were applied to ensure data reliability, and 263 
high-quality samples were reserved for further analysis (Figure  1—figure supplement 1, Supple-
mentary file 2). Unaligned reads were classified with kraken (Wood et al., 2019), an efficient but less 
stringent method based on k-mer contents and a stringent but relatively computationally intensive 
method based on bowtie2 alignment (Langmead and Salzberg, 2012). Since the majority of micro-
bial reads are rRNA, we only mapped microbial rRNA reads against the Silva database (Yilmaz et al., 
2014) to reduce the computational burden. The rest non-rRNA reads were aligned to viral genomes. 
From the resulting microbial profile, we filtered away genera that were found in our control samples 
(Supplementary file 3), previously reported common laboratory contaminations (Salter et al., 2014), 
and abundant skin microbes (Oh et  al., 2016), which are often regarded as potential sources of 
contamination (Schierwagen et al., 2020). Several suspicious viral genera with nonhuman eukaryotic 
hosts (Mihara et al., 2016) were also excluded (Supplementary file 3).

Using this computational pipeline, the majority of cleaned reads were mapped to the human 
genome (79.36% on average) and back-spliced junctions of circRNA (1.24% on average). In the 
remaining reads, 10.18% were annotated as nonhuman rRNA, and 2.06% were further assigned to 
microbial genomes by kraken2 (Figure 1B, Supplementary file 4).

Consistent with the intracellular long RNA profile, mRNAs and lncRNAs were the most abundant 
human RNA species captured in the SMART-total library (Figure 2A). Several housekeeping genes, 
such as ACTB, TUBB1, and PTMA, as well as noncoding RNAs, such as srpRNA (RN7SL2), are highly 
abundant in the plasma of both cancer patients and HDs (Figure 2—figure supplement 1). For these 
transcripts, the coverage was uniformly distributed along the full-length transcripts in samples from 

Figure 2. Human genes and microbial signals revealed by cell-free RNA (cfRNA)-seq. (A) The number of detected human transcripts (counts per million 
>2) of different RNA types and their relative abundances. (B). Representative coverages for ACTB and TUBB1 in healthy donors (HDs) from three clinical 
centers (samples HD-1, HD-2, and HD-3 are provided by PKU, ShH-1, and SWU, respectively). (C). Metagene plot for read coverage around 5’ exon 
boundaries and 3’ exon boundaries. The mean coverage of 100 nt around exon boundaries for exons with read coverage >3 is shown. (D). Relative 
abundance of reads assigned to different phyla by kraken2. (E). Representative read coverage of Lawsonella clevelandensis 16S and 23S rRNA in healthy 
donors from three clinical centers. (F). A representative read coverage on the HBV genome in cfRNA of a patient with liver cancer.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Most abundant human genes and microbial genera in plasma cell-free (cfRNA) libraries.

https://doi.org/10.7554/eLife.75181
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different clinical centers (Figure 2B). Previous studies demonstrated that mRNAs mainly exist as short 
fragments up to several hundred nucleotides (Larson et al., 2021). This uniform coverage indicates 
that at least for these most abundant transcripts, such a naturally occurring fragmentation process 
does not have a strong sequence preference. Moreover, a sharp boundary of read coverage at exon-
intron junctions further demonstrated that there was minimal genomic DNA contamination in our 
sequencing libraries (Figure 2C).

For microbe-derived reads, the most abundant phylum was Proteobacteria, followed by Firmicutes 
and Actinobacteria (Figure 2D). This composition resembles previous reports for microbe-derived 
cfDNA and cfRNA in plasma (Zozaya-Valdés et al., 2021; Pan et al., 2017; Yao et al., 2020; Paisse 
et al., 2016; Lelouvier et al., 2016). Consistent with previous studies (Liang and Bushman, 2021), 
Caudovirales, an order of viruses known as tailed bacteriophages, makes up the majority (the median 
fraction is higher than 95%) of reads assigned to viruses by kraken2.

We investigated the read coverage for detected microbes by aligning nonhuman reads to their 
genomes. As expected, for bacteria, most of the RNA-seq signals agree with the previous notion 
that most microbial reads are from rRNA, and for Lawsonella clevelandensis, a pathogen reported 
to induce abscess (Goldenberger et al., 2019) as an example (Figure 2E). The RNA-seq signals for 
viruses are also consistent with their genome annotations. For instance, in a representative coverage 
of the HBV genome (Figure  2F), the read coverage of HBX gene agrees well with its annotated 
boundary.

Table 1. Enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of significantly up- 
and downregulated human genes based on the cell-free RNA (cfRNA)-seq data of all cancer patients 
vs. healthy donors (HDs).

Pathways* p value Gene ratio† Trend

Platelet activation 1.52E-19 0.0728 Up

Calcium signaling pathway 1.28E-07 0.0695

ECM-receptor interaction 2.98E-07 0.0364

Neutrophil extracellular trap formation 4.15E-07 0.0579

Focal adhesion 5.79E-07 0.0596

Phospholipase D signaling pathway 3.52E-06 0.0464

Human cytomegalovirus infection 8.81E-06 0.0596

Regulation of actin cytoskeleton 1.09E-05 0.0579

Rap1 signaling pathway 1.21E-05 0.0563

Viral carcinogenesis 4.16E-05 0.0530

Ribosome 2.32E-69 0.174 Down

PD-1 checkpoint pathway in cancer 1.74E-03 0.026

Proteasome 2.51E-03 0.017

Pyrimidine metabolism 3.43E-03 0.019

Th17 cell differentiation 3.85E-03 0.028

Th1 and Th2 cell differentiation 6.45E-03 0.025

Transcriptional misregulation in cancer 6.85E-03 0.042

NOD-like receptor signaling pathway 7.08E-03 0.040

Cytosolic DNA-sensing pathway 7.16E-03 0.019

NF-kappa B signaling pathway 7.39E-03 0.026

*Enriched pathway of pan-cancer upregulated and downregulated genes.
†Fraction of upregulated or downregulated genes annotated to a KEGG pathway.

https://doi.org/10.7554/eLife.75181
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cfRNA profile alterations in patients are cancer relevant
To investigate the biological relevance of plasma cfRNAs in cancer patients, the enriched Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways of human genes differentially expressed in 
cancer patients (Supplementary file 5) were identified (Table 1). Enriched pathways of upregulated 
genes include extra-cellular matrix [ECM]-receptor interactions and neutrophil extracellular traps, 
which have been recognized to promote metastasis (Xiao et al., 2021a). Downregulated cfRNAs are 
highly enriched in pathways mainly related to ribosome biogenesis. Downregulation of translation-
related pathways was previously reported in tumor-educated platelets (TEPs; Best et al., 2015), indi-
cating that translational events might be globally suppressed in the blood milieu of cancer patients. 
More interestingly, multiple immune-related pathways (PD-1 checkpoint, T-cell differentiation, NOD-
like receptor signaling, cytosolic DNA-sensing, and NF-κB signaling) are downregulated in cancer 
patients, depicting their suppressed immune status. These findings suggest that signals related to 
the tumor and tumor microenvironment can be identified by cfRNA-seq. For comparisons among 
different cancer types and HDs, similar patterns were also observed (Figure 3—figure supplement 1).

For microbial cfRNAs, we found that the plasma abundance of multiple viral genera, including 
Lymphocryptovirus, Mastadenovirus, Roseolovirus, several genera of torque teno viruses (TTVs), and 
Orthohepadnavirus, was significantly higher in cancer patients (Figure 3A). This result is supported 
by both pipelines (Supplementary file 5). The viral loads of two prevalent genera, Alphatorquevirus 
and Orthohepadnavirus, are associated with liver cancer (Figure 3B). TTVs are highly prevalent viruses 
even in the healthy population and are not considered pathogens of a specific disease, but associa-
tions between TTV and liver diseases have been widely reported (Mrzljak and Vilibic-Cavlek, 2020). 
Higher TTV abundance is also associated with suppressed immune status and has been utilized as 
an indicator of immunosuppression after organ transplantation (Mrzljak and Vilibic-Cavlek, 2020; 
Jaksch et  al., 2018; Spandole et  al., 2015; De Vlaminck et  al., 2013). The enrichment of TTVs 
in cancer patients is concordant with the downregulation of immune pathways we found in human 

Figure 3. Biological relevance of alterations in the microbial cell-free RNA (cfRNA) profile. (A) Example genera with significantly altered abundance in 
cancer patients when compared to healthy donors (HDs). FC: fold change. FDR: false discovery rate. FC and FDR were calculated using the result of 
the alignment-based method, and labeled genera were supported by both pipelines. (B) Abundance of Alphatorquevirus and Othohepavirus in the 
alignment-based pipeline across different samples ranked in descending order; colors indicate different sample groups. (C) Virus genera with significant 
abundance alterations (FDR <0.05 and log2fold-change >1) in liver cancer patients when compared to HDs.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of differentially expressed human genes for each cancer 
type.

https://doi.org/10.7554/eLife.75181
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cfRNAs. The association between liver cancer and Orthohepadnavirus, a genus to which HBV belongs, 
is expected, as 60% of the liver cancer patients in this study had a history of HBV-induced chronic 
hepatitis (Supplementary file 1). Other viral genera that were significantly altered in liver cancer are 
also shown (Figure 3C).

Evaluating the cancer detection capacity of human and microbial 
cfRNAs
We used bootstrapping to evaluate the capacity of the plasma cfRNA abundance profile in distin-
guishing cancer patients from HDs. For both human and microbial cfRNA abundance, we normalized 
the data and performed batch correction with removing unwanted variations using control genes 
(RUVg) (Risso et al., 2014; Figure 4—figure supplement 1). For microbe data, the results of both 
k-mer-based and alignment-based pipelines were used. Training instances were sampled from the 
original dataset with replacement until the size of the training set reached the size of the original 
dataset. Using these training instances, we performed feature selection and fitted a balanced random 
forest classifier (see Materials and methods). The holdout samples were utilized for performance eval-
uation. This procedure was repeated 100 times.

Figure 4. Cell-free RNA (cfRNA) features for cancer detection. (A) Performance (AUROC) on the holdout dataset in 100 rounds of bootstrap resampling 
using abundance of human gene expression, microbe abundance (kraken2’s results), and combining both data for the binary classification (cancer 
patients vs. healthy donors). (B) Out-of-bag ROC curve using human or microbe features. For each sample, the median value of probabilities predicted 
by classifiers fitted in bootstrap replicates that reserved this sample in the testing set was utilized to generate the ROC curve. (C) Recurrent features 
with top fold changes when combining human and microbe features for bootstrap analysis. The left panel depicts Z scores of the expression levels in 
different subjects. The right panel illustrates their average importance ranks, frequency of identified as top 50 features, and fold change compared to 
healthy donors.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Data normalization for machine learning.

Figure supplement 2. Binary classification for cancer detection.

https://doi.org/10.7554/eLife.75181
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The average AUROC scores of human cfRNAs on testing sets across 100 bootstrap replicates were 
approximately 0.9, and microbial cfRNAs quantified by k-mer-based pipeline achieved AUROCs from 
approximately 0.8 to above 0.9 (Figure 4A). As the majority of patients in the cohort were in early 
stages (stages I and II), when only using early-stage cases for bootstrapping, comparable performance 
was achieved (Figure 4A, Figure 4—figure supplement 2). A similar result was observed when using 
the alignment-based method (Figure 4—figure supplement 2).

We wondered which features contributed to the model performance in cancer detection. When 
combining microbe and human features, among those identified as the top 50 most important ones 
for at least 40 times in 100 bootstrap samplings, features with top fold changes were exemplified 
(Figure 4C). These recurrent features are dominated by human genes. Among the upregulated genes, 
ADAM10 (encodes a zinc-dependent protease) and TMEM165 (encodes a Golgi body transmem-
brane protein) have been reported to promote the invasion of tumor cells in multiple cancer types 
(Wetzel et al., 2017; Smith et al., 2020; Lee et al., 2018). Consistent with our KEGG analysis, the 
downregulation of several genes that encode protein components of the ribosome (RPL8, RPS8, and 
RPL10A) in plasma is associated with cancer.

When considering microbial data alone, frequently selected features are shown (Figure  4—
figure supplement 2F). Compared to human genes, microbial abundance is more heterogeneous in 
different individuals, which partly explains why microbial features are rarely selected when combined 
with human gene expression data.

Figure 5. Cancer classification using human and microbial cell-free RNAs (cfRNAs). (A–B) Confusion matrix of human (A) and microbe (B) features 
averaged across bootstrap replicates. (C) Top 1 and top 2 recall for each cancer type in multiclass classification. The statistical significance was 
determined by a one-tailed Mann-Whitney U test. (D–E) Recurrent human (D) and microbe (E) features with the top fold change in multiclass 
classification. The sizes and colors of the circles indicate the relative abundances (bowtie2 result, scaled to 0–1) and p values in the one vs. rest 
comparisons, respectively.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Performance for multiclass classification.

https://doi.org/10.7554/eLife.75181
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The cancer type specificity of human and microbial cfRNA
Given that the cfRNA profile could distinguish cancer patients from HDs, we further assessed the 
feasibility of using cfRNAs for classifying cancer patients with different primary tumor locations. A 
similar bootstrapping strategy was used for performance evaluation.

Using human cfRNA features, an average recall of 52.5% was achieved (Figure 5A). The average 
recall of microbial cfRNA features in the k-mer-based pipeline was 58.4% (Figure 5B). These perfor-
mances were further improved when microbial features were combined with human features: 
compared to using human features alone, when combining both features, the average recall was 
60.4%, improved by 7.9%; the average top 2 recall was 82.1%, improved by 6.2% (Figure 5C). Using 
the alignment-based pipeline, the multiclass classification performance was marginally worse (50.3% 
on average, Figure 5—figure supplement 1A) but still much better than random guesses, and adding 
microbial features also significantly boosted the average classification performance (Figure 5—figure 
supplement 1D). Taken together, the human and microbial fractions in plasma cfRNAs both provide 
tumor site-specific information.

Given that cfRNAs can distinguish the primary locations of tumors in cancer patients, some cfRNA 
features should be specific for certain cancer types. For human and microbe data, we identified 
features that recurrently ranked as the top 500 most important. Among these recurrent features, for 
each cancer type, human genes and microbe genera with the greatest fold changes (compared to the 
remaining cancer types) are illustrated (Figure 5D, Figure 5E).

For human genes, the top features for colorectal cancer and stomach cancer are mainly circRNAs. 
Several cfRNAs specific to liver cancer are genes known to be specifically expressed in the liver (TF, 
HRG, CP, and FGA) (Liu et al., 2008). The lung cancer-specific cfRNAs IL1R2 and CLEC4E are related 
to immune regulation (Patin et al., 2017; Molgora et al., 2018).

To investigate circRNAs that are specifically upregulated in colorectal cancer and stomach cancer 
more systematically, we analyzed mioncocirc (Vo et al., 2019) data and ranked circRNAs according 
to fold change between tumor and normal tissue, followed by gene set enrichment analysis (GSEA) 
using circRNA specifically upregulated. In both cancer types, we found mild but significant enrichment 
(Figure  5—figure supplement 1E), suggesting that a subset of circRNAs upregulated in primary 
cancer tissue sites may enter the circulatory system and contribute to the plasma cfRNA pool.

Regarding microbial features (Figure  5E), Mycoplasma and Acholeplasma were identified as 
colorectal cancer specific in our cfRNA profiles. The relevance between Mycoplasma infection and 
cancers was previously reported (Huang et  al., 2001; Zella et  al., 2018). Acholeplasma was also 
reported to be more abundant in the gut microbiome of colon cancer patients (Shoji et al., 2021). The 
stomach cancer specific genus Noviherbaspirillum was reported to be enriched in oral cancer patients 
(Sarkar et al., 2021). Consistently, Orthohepadnavirus and TTVs were again identified as liver cancer 
specific. Erysipelatoclostridium, for which cfRNA is more abundant in the plasma of esophageal cancer 
patients, is related to several human intestinal diseases (Sarkar et al., 2021; Mancabelli et al., 2017).

Discussion
In this study, we sequenced cfRNAs in a cohort of patients with five major types of highly malignant 
cancer. We demonstrated that there are biologically relevant differences between the cfRNAs of HDs 
and cancer patients. Cancer type-specific signals could be identified in both human and microbial 
cfRNAs, and these signals could be utilized to detect and classify multiple cancers, including early-
stage cases.

The existence of microbe-derived plasma nucleic acids in donors without sepsis has been inde-
pendently demonstrated by multiple studies. In typical bioinformatic analysis, reads that cannot 
be aligned to the human genome are discarded. Our work suggests that these data can be further 
exploited and provide useful information for microbial profiling in plasma. Several studies have 
demonstrated that the human virome at different body sites, including plasma, has an unexpected 
diversity (Kowarsky et  al., 2017; Liang and Bushman, 2021), and current knowledge of human-
associated viruses is largely limited to species that could cause severe clinical consequences. Our 
work highlights the feasibility of discovering clinically relevant but understudied viruses from high-
throughput sequencing data.

https://doi.org/10.7554/eLife.75181
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There are complicated interactions between tumor, the tumor microenvironment, human-
associated microbes, and the circulatory system. Tumors with different primary locations have distinct 
transcriptome compositions and can induce tumor type-specific alterations in other cells or cell frag-
ments, such as TEPs (Best et  al., 2015). Tumor cells, microbes, and other cells that carry tumor-
induced transcriptome alterations all contribute to the cfRNA pool and produce detectable cancer 
type-specific signals. It is expected that their relative contributions vary in different cancer types. In 
liver cancer, the identified tumor site-specific features (liver-specific genes and well-known viruses) are 
readily interpretable. The remaining ones can potentially be explained by the greater contribution of 
secondary signals that reflect tumor-induced alterations in certain blood components and uncharac-
terized interactions between humans and microbes. circRNAs have been proposed as exosome-based 
cancer biomarkers (Li et al., 2015). In this study, several plasma circRNAs with cancer type specificity 
for colorectal and stomach cancer were identified. For colorectal and stomach cancer, the enrichment 
of upregulated plasma circRNAs suggests that changes in the abundance of plasma circRNAs mirror 
a subset of circRNA alterations in tumor tissues.

Currently, various cfDNA features (e.g. fragment size, end motif, and methylation) have been well 
applied to liquid biopsy (Lo et al., 2021). Meanwhile, cfRNA provides its own advantages (Dolgin, 
2020). First, compared to DNAs, many RNAs are more actively transported outside of the cell through 
carriers such as exosomes; and some cfRNAs, such as the srpRNA RN7SL2, were reported to play 
regulatory rules in the cancer microenvironment (Nabet et al., 2017; Johnson et al., 2021). As a 
result, cfRNA-based biomarkers may provide more functional insights. In addition, RNA expression is 
tissue-specific; given the dramatic changes in the RNA expression profile in tumors, a fraction of these 
alterations could be reflected in plasma. Furthermore, the long cfRNA sequencing used in this study 
detects mRNA of both DNA and RNA viruses, while neither DNA-seq nor small cfRNA-seq can. It has 
been reported that microbe-derived cfDNA only makes up a small fraction (lower than 0.5% in some 
cases) of plasma cfDNA (Zozaya-Valdés et al., 2021; Kowarsky et al., 2017; Xiao et al., 2021b). 
The genomes of bacteria and viruses are much more compact than the human genome, and a larger 
fraction of their genome sequences are transcribed into RNAs. This indicates that if mixtures of human 
cells and microbes are sequenced by DNA-seq and RNA-seq to the same depth, microbial reads 
should make up a larger fraction (approximately 10% on average in our study) in the RNA-seq library, 
and their signals can be captured more cost-effectively. For these reasons, we believe cfRNA-seq is a 
cost-effective alternative to cfDNA sequencing, which provides complementary information.

The confounding effect is a major obstacle for discovering reliable biomarkers from high-throughput 
data. In our cohort design, samples were collected from different clinical centers, and sex for certain 
cancer types, such as liver cancer, was not well balanced. We attempted to mitigate the problems 
computationally by using RUVg to remove these unwanted variations. Our analysis provided clues for 
the clinical relevance of microbe-derived cfRNAs, but a study with a larger, carefully designed cohort 
is still necessary for clinical application.

Materials and methods
Cohort design and sample collection
The cohort in this study included 295 plasma samples in total. Except for 65 previously published 
samples (GSE142987: 35 liver cancer patients and 30 HDs; Zhu et al., 2021), we sequenced the total 
cfRNAs (>50 nt) in 230 additional plasma samples (54 colorectal cancer, 37 stomach cancer, 27 liver 
cancer, 35 lung cancer, 31 esophageal cancer, and 46 HDs). The criteria for inclusion were patholog-
ically diagnosed colorectal cancer, stomach cancer, liver cancer, lung cancer, and esophageal cancer 
patients before surgery, radiation, and chemotherapy.

Samples were obtained between October 2018 and January 2020 from six clinical centers in China: 
Peking University First Hospital (PKU, Beijing), Peking Union Medical College Hospital (PUMCH, 
Beijing), Department of Epidemiology Navy Medical University (ShH-1, Shanghai), Eastern Hepato-
biliary Surgery Hospital (ShH-2, Shanghai), National Center for Liver Cancer (ShH-3, Shanghai), and 
Southwest Hospital (SWU, Chongqing). The study was approved by the Peking University First Hospital 
Biomedical Research Ethics Committee (2018Y15) complied with the declaration of Helsinki. Written 
informed consent was obtained from all patients prior to the enrollment of this study.

https://doi.org/10.7554/eLife.75181
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Peripheral whole blood samples were collected from participants before therapy using EDTA-
coated vacutainer tubes. The tubes were inverted 8–10 times to mix the blood with anticoagulant. 
Plasma was separated by a standard clinical blood centrifugation protocol within 2 hr after collection. 
All plasma samples were aliquoted and stored at –80°C before cfRNA extraction.

cfRNA-seq library preparation
cfRNAs were extracted from 1 mL of plasma using the Plasma/Serum Circulating RNA and Exosomal 
Purification kit (Norgen). Purification was based on the use of Norgen’s proprietary resin as the sepa-
ration matrix. This kit extracts all sizes of circulating cfRNAs. The concentration of extracted cfRNAs 
was assessed using the Qubit RNA assay (Life Technologies).

The total cfRNA library (>50 nt) was prepared with the SMARTer Stranded Total RNA-Seq Kit–
Pico. This kit removes ribosomal cDNAs after reverse transcription using a CRISPR/DASH method. 
We used recombinant DNase I (TAKARA) to digest circulating DNA. ERCC RNA Spike-In Control 
Mixes (Ambion) were added to the samples before library preparation, with 1 μL per library at an 
appropriate concentration. RNA Clean and Concentrator-5 kit (Zymo) was used to obtain purified 
total RNA. More than 20 million reads of total cfRNA were sequenced on an Illumina platform for 
each library.

Potential contamination in RNA extraction and library preparation was evaluated using two types 
of negative controls. Two RNA samples were extracted from the E. coli DH5α strain, using the same 
kit for plasma cfRNA extraction. RNA-seq libraries of E. coli RNA samples, together with human brain 
RNA provided by SMARTer Stranded Total RNA-Seq Kit, were constructed using the same protocol 
for cfRNA library preparation.

Data processing
For RNA sequencing data, adapters and low-quality sequences in raw sequencing data were trimmed 
using cutadapt (Martin, 2011) (version 2.3). GC oligos introduced in reverse transcription were also 
trimmed off, and reads shorter than 30 nt were discarded. We used STAR (Dobin et al., 2013) (version 
2.5.3 a_modified) for sequence mapping. The trimmed reads were sequentially mapped to ERCC’s 
spike-in sequences, vector sequences in NCBI’s UniVec database, and human rRNA sequences in 
RefSeq annotation.

The remaining reads were mapped to the hg38 genome index built with the GENCODE (Harrow 
et al., 2012) v27 annotation. circRNA annotation was downloaded from circBase (Glažar et al., 2014). 
Upstream 150 bp and downstream 150 bp sequences around the back-spliced sites of circRNAs were 
concatenated to generate junction sequences, and circRNA sequences shorter than 100  bp were 
discarded. Reads unaligned to hg38 were mapped to circRNA junctions. Duplicates in the aligned 
reads were removed using Picard Tools MarkDuplicates (version 2.20.0). An aligned read pair was 
assigned to an RNA type if at least one of the mates overlapped with the corresponding genomic 
regions. In this way, the aligned reads were sequentially assigned to lncRNAs, mRNAs, snoRNAs, 
snRNAs, srpRNAs, and Y RNAs with HTSeq (Anders et al., 2015) package according to the GENCODE 
v27 annotation.

The count matrix for human genes was constructed using featureCounts (Liao et al., 2014) v1.6.2 
with the GENCODE v27 annotation. For downstream analysis, we only considered circRNA junctions 
annotated in both circBase and mioncocirc (Vo et al., 2019). To avoid the impact of potential DNA 
contamination, only intron-spanning reads were considered.

Quality control
We filtered cfRNA-seq samples with multiple quality control criteria (Figure  1—figure supple-
ment 1): (1) raw reads >10 million; (2) clean reads (reads remained after trimming low quality and 
adaptor sequences) >5  million; (3) aligned reads after duplicate removal (aligned to the human 
genome, hg38, and circRNA junctions) >0.5 million; (4) for the clean reads, the fraction of spike-in 
reads <0.5 and ratio of rRNA reads <0.5; (5) for genome aligned reads, the ratio of mRNA and 
lncRNA reads >0.2, the ratio of unclassified reads <0.3, and the number of intron-spanning read 
pairs (defined as a read pair with a CIGAR string in which at least one mate contains ‘N’ in the BAM 
files) >100,000.

https://doi.org/10.7554/eLife.75181
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Differential analysis and functional enrichment analysis
We used the quasi-likelihood method in the edgeR (Robinson et al., 2010) package to identify differ-
entially expressed genes and genera with significant abundance alterations (|log2[fold-change]|>1 and 
FDR <0.05). We used this method to identify differential genes between cancer patients and HDs, as 
well as genes specific to one cancer type. For cancer type-specific genes, previously reported gender-
related genes (Shi et al., 2019) were excluded. KEGG pathway enrichment analysis of deregulated 
genes/RNAs was carried out using clusterProfiler (Yu et al., 2012).

Data normalization
The count matrix of gene expression was normalized using the trimmed mean of M-values (TMM) 
method in edgeR (Figure 4—figure supplement 1). ANOVA was performed among different sample 
groups (HD and five cancer types) using the quasi-likelihood method in edgeR, and the 25% most 
insignificant genes that were stably expressed among different groups were considered as empirical 
control genes. The TMM normalized expression matrix was adjusted by the RUVg function in the 
RUVSeq (Risso et al., 2014) package based on the identified control features.

Microbial data analysis
Unmapped reads (cleaned reads that failed to align to the human genome or circRNA junctions) were 
processed independently using a k-mer-based pipeline and an alignment-based pipeline. In the first 
pipeline, unmapped reads were classified using kraken2 (Wood et al., 2019) with its standard data-
base, which contains bacterial, archaeal, viral, and human sequences. In the alignment-based pipeline, 
using SortMeRNA (Kopylova et al., 2012) (version 4.3.3), unmapped reads were annotated as either 
rRNA or non-rRNA. rRNA reads were mapped to the Silva database with bowtie (Langmead and 
Salzberg, 2012). Non-rRNA reads were aligned to the virus genome curated in kraken2’s standard 
database. In both pipelines, counts at the genus level were used for downstream analysis.

The same preprocessing and downstream analysis pipeline were applied to negative control 
samples (E. coli RNA-seq data were aligned to the reference genome NZ_CP025520.1 with bowtie2, 
instead of map to human rRNA, human genome, and circRNA junctions). For read coverage analysis 
of L. clevelandensis and HBV, reads unmapped to human sequences were mapped to their reference 
genomes (NZ_CP012390.1 and NC_003977.2, respectively).

Potential contaminations in genera detected by both the kraken2 pipeline and bowtie2 pipeline 
(with at least three reads in at least three samples) were filtered prior to downstream analysis. We 
removed bacterial genera detected in at least one control sample (at least three reads) and virus 
genera detected in at least one E. coli control sample (at least three reads). Genera present in a 
previously reported common laboratory contamination list (Salter et al., 2014) or genera that contain 
species with counts per million >10 in a published human skin microbiome dataset (Oh et al., 2016) 
were removed. Virus genera that contain species with nonhuman eukaryotic hosts according to virush-
ostdb (Mihara et al., 2016) were also excluded. The genera with altered abundance were identified 
using edgeR. Counts at the genus level were also normalized with TMM and RUVg, as we did for 
human gene expression.

Classification performance evaluation
We evaluated the discriminative capacity of cfRNA features with bootstrapping. Training instances 
were sampled from the full dataset until the sample size of the training set reached the original 
dataset, and the remaining samples were used for performance evaluation. We used this procedure 
to generate 100 training sets and corresponding testing sets. For each training set, we performed 
feature filtering with a rank-sum test. To mitigate the impact of within-class heterogeneity, we sampled 
a 75% subset of the training instances, performed a rank-sum test (implement withed rank-sums func-
tions in scipy Virtanen et al., 2020), nd recorded 50 most significant features, repeated this process 
10 times, and took the union of all selected features to fit a balanced random forest classifier (imple-
mented in python package imblearn Lemaître et al., 2017). The maximum depths of the trees in the 
random forest were determined by fivefold cross-validation.

For multiclass classification, a similar bootstrapping strategy was applied. For each of the 100 
training-testing pairs, we sampled a 75% subset from the training instances, performed pairwise 
rank-sum tests, recorded the 50 most significant features, took the union of features selected in 
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different comparisons, repeated this process 10 times, and took the union of all selected features for 
model fitting.

Gene set enrichment analysis
GSEA was implemented with the fgsea (Korotkevich et al., 2016) package. For enrichment anal-
ysis of circRNA specifically upregulated in one cancer type, circRNA expression data in tumors and 
normal tissues were downloaded from the mioncocirc (Vo et al., 2019) (https://mioncocirc.github.​
io/) database. For colorectal cancer and esophagus cancer, circRNAs were ranked according to 
their fold change between tumor and normal tissue, up to 300 circRNAs that were upregulated 
in one vs. rest comparison with log2(fold-change) >0.5, and FDR <0.05 were used for enrichment 
analysis.
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