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Abstract

INTRODUCTION: Brain insulin resistance and deficiency is a consistent feature of

Alzheimer’s disease (AD). Insulin resistance can bemediated by the surface expression

of the insulin receptor (IR). Cleavage of the IR generates the soluble IR (sIR).

METHODS: We measured the levels of sIR present in cerebrospinal fluid (CSF) from

individuals along the AD diagnostic spectrum from two cohorts: Seattle (n = 58) and

the Consortium for the Early Identification of Alzheimer’s Disease-Quebec (CIMA-Q;

n=61).We further investigated the brain cellular contribution for sIR using human cell

lines.

RESULTS: CSF sIR levels were not statistically different in AD. CSF sIR and amyloid

beta (Aβ)42 and Aβ40 levels significantly correlated as well as CSF sIR and cogni-

tion in the CIMA-Q cohort. Human neurons expressing the amyloid precursor protein

“Swedish” mutation generated significantly greater sIR and human astrocytes were

also able to release sIR in response to both an inflammatory and insulin stimulus.
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DISCUSSION: These data support further investigation into the generation and role of

sIR in AD.
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Highlights

∙ Cerebrospinal fluid (CSF) soluble insulin receptor (sIR) levels positively correlate

with amyloid beta (Aβ)42 and Aβ40.
∙ CSF sIR levels negatively correlate with cognitive performance (Montreal Cognitive

Assessment score).

∙ CSF sIR levels in humans remain similar across Alzheimer’s disease diagnostic

groups.

∙ Neurons derived from humans with the “Swedish” mutation in which Aβ42 is

increased generate increased levels of sIR.

∙ Human astrocytes can also produce sIR and generation is stimulated by tumor

necrosis factor α and insulin.

1 BACKGROUND

Brain insulin resistance and deficiency is now considered a consis-

tent feature of Alzheimer’s disease (AD).1 Patients with AD have

a decreased insulin cerebrospinal fluid (CSF)/serum ratio (indicating

decreased availability), impaired brain insulin receptor (IR) signaling

(indicating insulin resistance), andwhen insulin is delivered to thebrain,

cognition is improved.1,2 Brain insulin resistance and deficiency is also

being pursued as a therapeutic target for pre-clinical AD by multiple

mechanisms including intranasal insulin administration3−5 or incretin

receptor agonist (IRA) treatment,6 based on cognitive improvement

after treatment. However, the cause of brain insulin resistance and

deficiency is largely unknown.

The IR is the primary mediator of insulin signaling and thus, can

contribute to insulin resistance. The IR consists of two subunits

linked by disulfide bonds. The α subunit is completely present on

the extracellular side of the cell membrane. The β subunit is primar-

ily comprised of the transmembrane and intracellular tyrosine kinase

signaling domains. This receptor is expressed in all major cell types,

including those within the brain (neurons, astrocytes, endothelial cells,

microglia). The ectodomain of the receptor, which encompasses the

entire α subunit and the extracellular portion of the β subunit, can be

shed to generate the soluble insulin receptor (sIR). Shedding of cell sur-

face proteins has been postulated to serve multiple functions. First, it

canbe away to regulate expressionof a cell surface receptor, thus elim-

inating the intracellular signaling events. Second, the soluble protein

can bind to the ligand, which not only prevents the ligand from inter-

acting with the full-length cell surface protein but can also extend the

lifespan of the ligand. The cleavage of sIR is known to occur through

common enzymes implicated in AD, including β-secretase amyloid pre-

cursor protein (APP) cleaving enzyme 1 (BACE1), γ-secretase, and
calpain-2.7−10 andmost recently bymatrix metalloproteinases.11

The sIR was first described in 1972 as a protein secreted from

human lymphocytes.12 Twenty years later, it was identified and

characterized in human plasma and found to competitively bind

insulin.13 Twenty years after that, it was investigated in human CSF in

patientswith human immunodeficiency virus (HIV).14 Despite the slow

progress that has been made regarding this protein, it has been shown

to be negatively implicated in multiple diseases or conditions including

diabetes,15 HIV-associated neurocognitive disorders (HAND),14 and

most recently in aging.11 In the CSF of patients with HAND who are

symptomatic, such as those with cognitive impairment, sIR levels are

increased compared to patients without HAND.14

To investigate possible mechanisms for brain insulin resistance and

deficiency in AD, we determined whether sIR levels are increased in

the CSF of patients with AD or pre-diagnostic stages, whether CSF

sIR levels correlate with dementia status or CSF amyloid beta (Aβ)
biomarkers, and whether sIR is released from human induced pluripo-

tent stemcells (hiPSC) neurons containing theAPP “Swedish”mutation

or human astrocytes.

2 METHODS

2.1 Human CSF samples

CSF sampleswere obtained fromparticipants from three separate cen-

ters: University of Washington (UW) Alzheimer’s Disease Research

Center (ADRC) Clinical Core; the Veterans Affairs (VA) Northwest

Mental Illness Research, Education, and Clinical Center (MIRECC)
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RESEARCH INCONTEXT

1. Systematic Review: The authors reviewed the litera-

ture using traditional (e.g., PubMed) sources and online

content provided by reputable organizations (e.g.,

Alzheimer’s Association) to evaluate the accumulated

knowledge relevant to the role of the soluble insulin

receptor in disease and cognitive impairment.

2. Interpretation: Our findings identified that while insulin

receptor signaling, especially in the brain, in Alzheimer’s

disease (AD) is an important component, the levels of

cerebrospinal fluid (CSF) soluble insulin receptor havenot

been assessed, nor the brain cell type that can produce

this protein.

3. Future Directions: This pilot study provides evidence the

CSF soluble insulin receptor is relevant in the context of

AD and cognitive impairment. The mechanisms involved

in the generation of the soluble insulin receptor warrant

further investigation.

Behavioral Neurosciences Group (BNG) Sample and Data Reposi-

tory; and the Consortium for the Early Identification of Alzheimer’s

Disease-Quebec (CIMA-Q) 16. Samples were provided with clinical

data including sex, age of CSF draw, education, Clinical Dementia Rat-

ing (CDR; in some cases), Mini-Mental State Examination (MMSE)

score (in some cases), Montreal Cognitive Assessment (MoCA) score

(in some cases), apolipoprotein E (APOE) ε4 allele carriage,17,18 body

mass index (BMI), and CSF Aβ42 or Aβ40 (in some cases) levels. Due

to the nature of this pilot study and small sample size, we do not report

race or ethnicity.

UW ADRC and VA MIRECC BNG samples were combined and

identified as the Seattle cohort (Table 1). Data collection was similar

between the UWADRC and the VAMIRECC BNG. Samples used were

from individuals with a clinical diagnosis of probable AD or cognitively

intact controls. All participants in the Seattle cohort undergo physi-

cal exam, neuropsychological battery, CDR scale and participant and

co-participant interviews per national ADRC standardized protocols,

the Uniform Data Set (UDS). After the ADRC visit UDS the diagno-

sis was adjudicated by consensus among clinicians, neuropsychologist,

and raters.19,20 VA MIRECC BNG samples were provided with MMSE

scores andwere converted toMoCAscores using the conversionmeth-

ods of Fasnacht et al.21 (see Table 1 for mean). In the Seattle cohort,

individuals with a history of diabetes and males were excluded based

on published data investigating a role for sIR in cognition.14 and to gain

the most insight from this pilot study. Inclusion criteria for the cur-

rent study were clinical or research diagnosis of AD and age-matched

cognitively intact controls. For the Seattle cohort CSF collections, indi-

viduals fasted the morning of collection. CSF was immediately frozen

on dry ice. Aβ42 levels were previously measured by the Lumipulse

assay (Fujirebio) in the UW ADRC samples and by the Luminex (Inno-

Genetics) multiplex according to the manufacturer’s instructions as

previously described.22 in the VA MIRECC BNG samples. Aβ40 levels

were not measured in this cohort.

CIMA-Q samples were analyzed separately and split into four

groups: no cognitive impairment (Control), subjective cognitive disor-

der (SCD), mild cognitive impairment (MCI), and early probable AD

(Table 2). CIMA-Q is a multi-center collaborative research infrastruc-

ture that examines longitudinal AD progression in older adults at risk

for the disease.16 The main objective of CIMA-Q is the longitudinal

characterization of an observational cohort of elderly women andmen

aged ≥ 65, cognitively healthy, with SCD, suffering frommild cognitive

disorders, or suffering fromdementia due toprobableAD.CIMA-Qcol-

lects clinical, cognitive, biological, neuroimaging, and pathological data

from these participants to (1) establish an early diagnosis of AD, (2)

to provide the scientific community with a well-characterized cohort,

(3) identify new therapeutic targets to prevent or slow down cogni-

tive decline and AD, and (4) to support new clinical studies on these

targets.16 Further details on recruitmentmethods, exclusion and inclu-

sion criteria (detailed in SupplementaryMaterial B inBelleville et al.16),

testing materials, and general methodology for the CIMA-Q project

can be found in Belleville et al.16 Diagnostic criteria for AD and MCI

was based on the National Institute on Aging–Alzheimer’s Association

and were described in detail in Belleville et al.16 Participants who had

agreed toundergo lumbar puncture (LP,Visit 4) forCSF collection came

for a last visit at which a neurologist or anesthesiologist obtained 10 to

15mL of CSF. The CSFwas aliquoted rapidly into 50 × 0.1mL fractions

rapidly frozen and stored at −80◦ C. Fasting was not required prior to
the lumbar puncture. The levels of Aβ40 andAβ42were determined by

enzyme-linked immunosorbent assays (ELISA, #K15200E, MesoScale

Discovery).16 CIMA-Q CSF was spun at 20,000 × g for 10 minutes at

4◦C prior to sIR assay. APOE genotype was assessed by the restriction

digest method.16,17

The study was approved by the institutional review board at VA

Puget Sound Health Care System. All participants signed an informed

consent for CSF donation and a repository consent allowing their data

and biospecimens to be shared.

2.2 Human neuronal cultures

Human iPSC lines with the APP “Swedish” mutation

(APPKM670/671NL) introduced using CRISPR/Cas9 gene editing

have been previously published and characterized.23,24 Briefly, cells

were cultured in feeder-free conditions on Matrigel with mTESR

media. Neural progenitor cells (NPCs) were generated and fur-

ther differentiated to cortical neurons using previously described

protocols.25 Cells used include those homozygous for the Swedish

mutation, APPSwe/Swe, heterozygous for the mutation, APPSwe/WT,

and isogenic wild-type (WT) controls, APPWT/WT. After 21 days

of differentiation, neurons from each line were selected for the

CD184/CD44 negative population by magnetic-activated cell sorting

and cultured as previously described in Shin et al.24 Cells were plated

in Matrigel (#356231)–coated 96-well plates at a density of 200,000
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TABLE 1 Seattle cohort characteristics. Demographics, performance on neuropsychological measures, APOE ε4 data, and CSF Aβ biomarker
levels in cognitively health controls and participants with AD.

Characteristics Control AD Stats P value

N (with CSF) 43 15

Sex (% female) 100 100

Age 73.67 ± 8.13 72.73 ± 8.82 T 0.707

Education (years)a 15.93 ± 2.64 15 ± 2.66 T 0.258

Mean CDRa 0.0465 ± 0.15 1.07 ± 0.55* T <0.0001

MeanMMSEb 29.36 ± 0.92 22.10 ± 4.56* T <0.0001

MeanMoCA (converted)c 26.27 ± 2.284 15.5 ± 4.99* MW <0.0001

MeanMoCAd 27.44 ± 1.90 14.00 ± 6.68* MW <0.0001

MeanMoCA (combined)e 27.14 ± 2.042 15.07 ± 5.30* MW <0.0001

APOE ε4 allele carriage (%) 32.6 53.3 FC 0.153

BMIf 24.96 ± 3.23 24.25 ± 4.46 T 0.526

CSF Aβ42g 699.5 ± 359.4 223.8 ± 132.6* T <0.0001

Notes: Means ± SD are reported. VAMIRECC BNG Control n = 11, AD n = 11; UWADRC Control n = 32, AD n = 4. Statistical tests used are as indicated: T:

unpaired t test, two tailed;MW:Mann−Whitney test, two tailed; FC: contingency, Fisher exact test. P values refer to the significant analysis of variance.
Abbreviations: Aβ, amyloid beta; AD, Alzheimer’s disease; APOE, apolipoprotein E; Age, age at draw; BMI, body mass index; CDR, Clinical Dementia Rating;

CSF, cerebrospinal fluid; MMSE, Mini-Mental State Examination; MoCA,Montreal Cognitive Assessment; UWADRC, University ofWashington Alzheimer’s

Disease Research Center; VAMIRECC BNG, Veterans Affairs Northwest Mental Illness Research, Education, and Clinical Center Behavioral Neurosciences

Group.
aDatamissing for one subject.
bVAMIRECCBNG only (n= 21; datamissing for one subject).
cVAMIRECCBNGMMSE convertedMoCA score (n= 21; datamissing for one subject).
dUWADRCMoCA only (n= 36).
eVAMIRECCBNG converted andUWADRCMoCA combined (n= 57; datamissing for one subject).
fDatamissing for two subjects.
gDatamissing for six subjects.

*P< 0.0001 vs. control.

TABLE 2 CIMA-Q cohort characteristics demographics, performance on neuropsychological measures, APOE ε4 data, and CSF Aβ biomarker
levels in cognitively health controls and participants with SCD,MCI, AD.

Characteristics Control SCD MCI AD Stats P value

N (with CSF) 14 21 18 8 −

Sex (% female) 57 57 45 13.0 PC 0.151

Age 72.6 ± 6.7 73.9 ± 6.4 75.2 ± 5.3 74.8 ± 6.8 A 0.6846

Education (years)e 14.5 ± 4.1 14.2 ± 3.1 14.6 ± 2.5 15 ± 4.6 A 0.9381

MeanMMSE 24.9 ± 1.9 24 ± 1.7 24.2 ± 1.9 22.3 ± 3.2a A 0.0389

MeanMoCA 28.4 ± 1.9 28 ± 1.2 24.2 ± 2.0b 18.9 ± 4.3c W 0.0001

APOE ε4 allele carriage (%) 21 ± 21 19 ± 19 39 ± 39 50 ± 50 PC 0.2702

BMI 25.2 ± 2.6 26.6 ± 3.7 27.5 ± 3.6 24.5 ± 3.9 A 0.1505

CSF Aβ40 5864 ± 1688 6103 ± 1699 5828 ± 1313 4468 ± 1172 A 0.0888

CSF Aβ42 415.6 ± 156.2 488.8 ± 217.2 363 ± 172.5 210.4 ± 131.0d A 0.0045

CSF Aβ42/40 0.07 ± 0.02 0.08 ± 0.02 0.06 ± 0.03 0.05 ± 0.02dA 0.0083

Notes: Means ± SD are reported. Statistical tests used are as indicated: PC: Contingency, Pearson test; A: one-way analysis of variance followed by a Tukey

post hoc test,W: Kruskal−Wallis followed byWilcoxon post hoc test. P values refer to the significant analysis of variance.
Abbreviations: Aβ, amyloid beta; AD, Alzheimer’s disease;APOE, apolipoprotein E; Age, age at draw; BMI, bodymass index; CSF, cerebrospinal fluid;MCI,mild

cognitive impairment;MMSE,Mini-Mental State Examination;MoCA,Montreal Cognitive Assessment; SCD, subjective cognitive disorder.
aP< 0.05 vs. control.
bP< 0.0001 vs. SCD and control.
cP< 0.05 vs. all.
dP< 0.01 vs. SCD.
eDatamissing for two subjects.



THOMAS ET AL. 5 of 11

cells per well. Media was collected 72 hours after seeding and was

pooled from multiple wells. Four biological replicates were used.

Conditioned media was collected and stored at −80◦C. After thawing,
conditioned media was centrifuged at 10,000 × g for 15 minutes at

4◦C.

2.3 Human astrocyte cultures

Human astrocytes were purchased from Sciencell (#1800) and cul-

tured according to the manufacturer’s recommendations using the

manufacturer’s complete media (#1801). Cells were plated on poly-

L-lysine coated 24-well plates and allowed to grow to confluence at

37◦C with media changes every 2 to 3 days. For tumor necrosis factor

alpha (TNF-α)–stimulated conditions, cells were treated with increas-

ing doses of human TNF-α (R&D Systems; vehicle, 5, 10, 20 ng/mL)

in complete media for 24 hours. The study was performed on 1 to

2 separate days with two technical replicates per treatment group.

For insulin-stimulated conditions, media was replacedwith either base

media or base media containing 100 nM human insulin for 24 hours.

Basemediawas used as the completemedia contains insulin. The study

was performed on a single day with three technical replicates per

treatment group.Media were collected and stored at−80◦C.

2.4 sIR assay

CSF and conditioned media samples were thawed on ice. A commer-

cially available kit (Biovendor, LLC) was used to measure sIR levels

per the manufacturer’s recommendations. This kit was previously val-

idated with intra-assay coefficient of variations (CVs) < 5% and inter-

assay reliability (intra-class correlation coefficients, ICC> 0.75).26 CSF

samples were diluted 1:2 with kit diluent based on previous studies.26

and conditioned media was diluted 2:1 (150 µL media in 75 µL diluent)

for the neurons and 1:2 (75 µL media in 150 µL diluent) for the astro-

cytes. Samples were run in duplicate on each plate and the average

value reported after subtracting for background. The Seattle cohort

samples were assayed on separate days so our final analysis adjusts for

this while the CIMA-Q samples were assayed all on the same day.

2.5 Statistical analysis

Prism 8.0 (GraphPad Inc.) and JMP 17.0 (SAS Institute Inc.) were used

for statistical analysis. For the Seattle cohort, an unpaired t test (two

tailed) was used to assess differences between the two groups (Con-

trol vs. AD) in the cohort characteristics in Table 1. A Fisher exact

test was used to assess APOE ε4 carrier status. AMann−Whitney non-

parametric test, two sided, was used to analyze differences in MoCA

scores. For the CIMA-Q cohort, a Kruskal−Wallis non-parametric test,

followed by a Wilcoxon post hoc test, was used to assess differences

among the four groups (Control, SCD, MCI, AD) in Table 2. The asso-

ciation of disease status with sIR levels was compared using linear

regression models adjusted for sex and age. In the Seattle cohort, we

also adjusted for sIR assay run and in CIMA-Q, for sex. Model assump-

tions were tested and found to be tenable. Pearson correlations were

used to assess associations between two continuous variables (sIR and

Aβ). SpearmancorrelationswereusedwithMoCAscores asoneordinal

variable. Results in the tables are presented asmean± standard devia-

tion while figure results are expressed as mean ± standard error. Data

Availability: Individual data points are presented in each figure.

3 RESULTS

3.1 Cohort characteristics

Table 1 shows the demographics for the Seattle cohort, including per-

formance on neuropsychological measures,APOE ε4 carrier status, and
CSF Aβ42 levels. We included 43 control samples and 15 AD samples

in our analysis. In the Seattle cohort, all were female, with significant

differences in the CDR (P < 0.0001), MMSE (P < 0.001), MoCA score

(P < 0.0001), and CSF Aβ42 concentrations (P < 0.0001) between the

control and AD groups. Age of CSF draw, education, and BMI were not

statistically different between the groups. APOE ε4 carrier status was

also not statistically different (32.6% in the Control group vs. 53.3% in

the AD group).

Table 2 shows the demographics for the CIMA-Q cohort. We

included 14 Control, 21 SCD, 18 MCI, and 8 AD samples in our anal-

ysis. In all groups except the AD group, 45% to 57% were female. The

AD group consisted of one female. There were significant differences

in the MoCA score (P < 0.0001), MMSE (P = 0.0431), CSF Aβ42 con-

centrations (P = 0.0085), and the CSF Aβ42/40 ratio within the four

groups. Age of CSF draw, education, and BMI were not statistically dif-

ferent. APOE ε4 carrier status was enriched in the AD population but

not significantly.

3.2 CSF sIR concentration

In this pilot study, CSF sIR levels were not statistically significant

between the groups in either the Seattle or CIMA-Q cohort (Figure 1).

People with AD in the Seattle cohort had−0.18 ng/mL lower sIR levels,

adjusting for age and assay run, but this difference was not statistically

significant (P = 0.70; Figure 1A). Differences in CIMA-Q were also not

statistically significant, compared to controls, adjusting for age and sex

(Figure 1B).

3.3 CSF sIR correlations with CSF Aβ biomarkers

Levels of CSF sIR positively correlated with CSF Aβ species (Figure 2).
In the Seattle cohort, there was a significant association between CSF

sIR levels and Aβ42 levels (Figure 2A). As Aβ42 levels were measured

using different assays between the two Seattle centers, we separately

analyzed whether there was a significant association within each cen-
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F IGURE 1 Levels of sIR in the CSF. There were no statistical
differences in the levels of CSF sIR in the (A) Seattle or (B) CIMA-Q
cohort. Linear regressionmodeling was used to assess statistical
differences, adjusting for age in both cohorts, assay in Seattle, and sex
in CIMA-Q. Data represent mean± standard error of themean. AD,
Alzheimer’s disease; CIMA-Q, Consortium for the Early Identification
of Alzheimer’s Disease-Quebec; CON, control; CSF, cerebrospinal
fluid; MCI, mild cognitive impairment; SCD, subjective cognitive
disorder; sIR, soluble insulin receptor

ter (UW ADRC: open symbols; VA MIRECC: closed symbols). In both

centers, there was a significant association between CSF sIR and Aβ42
(UW ADRC: F[1,30] = 5.777; r = 0.4018; P = 0.0226 and VA MIRECC:

F[1,18] = 5.848; r = 0.4952; P = 0.0264). In the CIMA-Q cohort, there

was a significant association (F[1,59] = 4.830; r = 0.2751; P = 0.0319)

between CSF sIR and Aβ42 (Figure 2B). As the CIMA-Q cohort also had

Aβ40 levels available, we were able to identify a significant association
between CSF Aβ40 and sIR (F[1,59] = 8.881; r = 0.3617; P = 0.0042;

Figure 2C). There was no association between CSF sIR and the Aβ42/40
ratio (F[1,59]= 0.0758; r= 0.0358; P= 0.7841; Figure 2D).

3.4 CSF sIR correlations with cognitive
performance

Because brain insulin resistance correlates with cognition,27 we

assessed whether CSF sIR levels associated with cognitive perfor-

mance (Figure 3). In the Seattle cohort, MoCA scores were not

significantly associated with CSF sIR levels when groups were com-

bined (Spearman r=−0.0204;P=0.8801; Figure 3A).When diagnostic

groups were split, there were still no associations between CSF sIR

and MoCA score (Control: Spearman r = −0.2074; P = 0.1821; AD:

Spearman r = −0.2746; P = 0.3390; Figure 3B). Alternatively, there

was a significant association between CSF sIR and MoCA score in

the CIMA-Q cohort (Spearman r = −0.2758; P = 0.0329; Figure 3C).

There was one sample, a female, in the AD group that was removed

from this analysis (red). When this sample was included in the analy-

sis, the association trends toward significance (Spearman r =−0.2223;
P = 0.085). This association was largely driven by the AD group as

when the groups were split, with the same sample excluded, the AD

group remained the only one with the significant association (Spear-

man r = −0.8524; P = 0.0238; Figure 3D). The association between

MoCAand sIR remained significant after adjusting for age and/or years

of education.When the sample was included, the association in the AD

groupwas not significant (Spearman r=−0.3904; P= 0.3440).

3.5 Neuronal AD production of sIR

Due to the positive association of sIR levels with Aβ42 and to further

understand the central nervous system (CNS) cell type production of

sIR in AD, we wanted to identify whether levels of sIR were increased

in hiPSC-derived neurons with the “Swedish” (Swe) mutation in the

human APP gene. In neurons expressing a double mutation in the

APP gene (APPSwe/Swe), Aβ42 levels in the media are significantly

increased compared to the other two lines.24 In APPSwe/Swe cells, sIR

was increased in the culture media compared to the isogenic control

(F[2,9]= 48.49; P< 0.0001; Figure 4).

3.6 Astrocyte production of sIR

To further identify which brain cell types could produce sIR, we

assessed the ability for human astrocytes to generate sIR. Based on

previous published results suggesting an inflammatory stimulus could

generate sIR in a neuronal cell line,28 we cultured human astrocytes

with increasing amounts of human TNF-α for 24 hours. The level of

sIR present in the conditioned media was dose-dependently increased

and significantly increased with 20 ng/mL stimulation (F[3,9] = 8.195;

P = 0.0061; Figure 5A). We additionally tested whether insulin could

self-regulate levels of sIR and found that 100 nM insulin was able to

increase sIR significantly in the culturemedia (P= 0.0269; Figure 5B).

4 DISCUSSION

In this small pilot study, despiteCSFsIR levels inhumans remaining sim-

ilar across diagnostic groups, we are reporting for the first time that

CSF sIR levels positively correlated with CSF Aβ42 and Aβ40 and is ele-
vated in the culture media of neurons derived from humans with the

“Swedish” mutation where Aβ42 is increased. In one cohort (CIMA-Q),

CSF sIR levels negatively correlated withMoCA scores, again support-

ing a relationship between brain insulin resistance and deficiency and

cognition.We found that in addition to neurons, human astrocytes can

also produce sIR and generation is stimulated by TNF-α and insulin.
Several circulating forms of receptor molecules and their fragments

have been identified, including the growth hormone receptor,29 lep-

tin receptor,30 transferrin receptor,31 and the receptor for advanced

glycation end products (RAGE).32 Studies have found these soluble

receptors are normal constituents of body fluids that can extend the

half-life of a ligand, interact with G-protein coupled receptors on the

cell membrane to induce intracellular signaling, sequester the ligand

from acting on the full-length receptor, or allow the intramembrane

portion of the receptor to translocate to the nucleus, where it can act

as a transcription factor.33
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F IGURE 2 Association between CSF Aβ species and sIR. A, There was a significant association between Aβ42 and sIR in the Seattle cohort
when samples were split between the two centers due to the differences in Aβ42measurementmethods (UWADRC [solid line, P= 0.023]:
Lumipulse; VAMIRECC [dotted line, p= 0.026]: Luminex). B, There was a significant association (P= 0.032) in the CIMA-Q cohort. C, There was a
significant association between Aβ40 and sIR in the CIMA-Q cohort (P= 0.004). D, There was no association between the Aβ42/40 ratio and sIR in
the CIMA-Q cohort (P= 0.78). Pearson correlations were used to assess univariate associations. Aβ, amyloid beta; CIMA-Q, Consortium for the
Early Identification of Alzheimer’s Disease-Quebec; CSF, cerebrospinal fluid; sIR, soluble insulin receptor; UWADRC, University ofWashington
Alzheimer’s Disease Research Center; VAMIRECC, Veterans Affairs NorthwestMental Illness Research, Education, and Clinical Center

While the exact function of the sIR cleaved protein is unknown, one

possibility is that sIR can act as a reservoir for insulin. This can serve

two functions, one potentiating insulin’s effects and one reducing it.

Positively, it can extend the lifespan of short-lived substrates, such as

insulin. Indeed, ≈ 80% of the total circulating insulin is bound to the

liver membrane-bound IR, contributing to the measurable half-life for

insulin.34 In states in which CSF insulin is decreased, as occurs in AD,

an increase in CSF sIR could be a compensatory mechanism, extending

the signaling capabilities of insulin present in the CSF. Given the indi-

cation that insulin blood–brain barrier transport, the primary source of

brain insulin, is reduced inAD, extending the lifespanof the insulin once

in the brain would prolong its ability to signal. Alternatively, and more

likely, sIR binding insulin would not only reduce the amount of free,

or unbound, insulin, which is the fraction of insulin that best interacts

with the membrane-bound IR, but also generation of sIR would elimi-

nate membrane-bound IR reducing intracellular signaling. This is more

likely thedominant functionof the sIR in this case, as inAD,brain insulin

signaling is reduced.1,27

In our study, we observed cohort differences between some of the

associationswith sIR. Specifically,weobserved a significant association

betweenMoCA score andCSF sIR levels in theCIMA-Q cohort.We did

not find this in the Seattle cohort. These cohorts display considerable

differences, particularly in the proportion of samples present in each

diagnostic group represented. The CIMA-Q cohort was more evenly

distributed between the groups while the Seattle cohort was heavily

weighted in the controls. The Seattle cohort has more people at the

MoCA ceiling to likely find an association andwewould need a broader

distribution of scores, as was the case in the CIMA-Q cohort. These

observations in the CIMA-Q cohort could be due to the spread in the

disease progression, rather than heavily weighting the control group,

whichwas the case for theSeattle cohort. Last, fastingwasnot required

in the CIMA-Q cohort. As fasting is known to affect IR signaling and

increase insulin binding in peripheral tissues, it is possible fasting may

affect generation of the sIR, which requires further investigation.

As the AD diagnosis for each individual was defined clinically, and

not neuropathologically, there could be an undetermined number of

participants with cognitive impairment due to other etiologies. How-

ever, the presence of APOE ε4 carriers in both cohorts (53% carriage

in the Seattle cohort and 50% carriage in the CIMA-Q cohort) is in line

with those typically neuropathologically classified asAD,35 indicating a

high likelihood of the clinical diagnosis matching with neuropathology.

Indeed, CSF sIR levels have been shown to correlate in non-AD cases

of cognitive impairment.14 and our findings in the CIMA-Q cohort sup-

port this relationshipwith cognition.While this etiologic heterogeneity

may have impacted our results, we observed significant correlations

between CSF sIR and Aβ peptides, indicating an association with this

critical, pathological AD hallmark.

Although the IR is expressed in various organs in the periphery

such as the muscle and liver, it is expected that a significant fraction

of sIR detected in the CSF comes from the brain. Previous work has
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F IGURE 3 Association between CSF sIR and cognitive performance. A, In the Seattle cohort, there was not a significant association between
CSF sIR levels andMoCA score (P= 0.8801) or (B) in the AD groupwhen the diagnostic groups were split (P= 0.339). C, There was a significant
association in the CIMA-Q cohort when groups were combined (P= 0.0329) and (D) in the AD groupwhen the diagnostic groups were split
(P= 0.024). The sample in red was removed from the reported results. Spearman correlations were used to assess univariate associations. AD,
Alzheimer’s disease; CIMA-Q, Consortium for the Early Identification of Alzheimer’s Disease-Quebec; CON, control; CSF, cerebrospinal fluid;MCI,
mild cognitive impairment; MoCA,Montreal Cognitive Assessment; SCD, subjective cognitive disorder; sIR, soluble insulin receptor

F IGURE 4 Levels of sIR in conditionedmedia from hiPSC-neurons
containing the “Swedish” mutation. There was a significant increase in
sIR levels in themedia fromAPPSwe/Swe neurons compared to
hiPSC-neurons derived fromwild-type (APPWT/WT) and
heterozygous (APPSwe/WT) for the APP Swedishmutation as
identified by a one-way analysis of variance followed by a Tukey post
hoc test (***P< 0.0001). Data represent mean± standard error of the
mean. hiPSC, human induced pluripotent stem cells; sIR, soluble
insulin receptor

shown lower levels of IR in the brain of AD patients, particularly IRα-
B in endothelial cells.1,36−39 Indications of reduced IR signaling have

been reported.1,27 A significant correlation between lower IRα-B and

lower cognitive scores.36 is particularly interesting and supports the

F IGURE 5 Levels of sIR in conditionedmedia from human
astrocytes. There was a significant increase in sIR levels in themedia
from (A) TNF-α–treated astrocytes (one-way analysis of variance,
Tukey post hoc; *P< 0.05) and (B) insulin-stimulated astrocytes
(Student t test; *P< 0.05). Data represent mean± standard error of
themean. sIR, soluble insulin receptor; TNF-α, tumor necrosis factor
alpha

presently observed association of sIR with MoCA scores. Lower levels

of IRα-B have also been shown in the 3xTg-AD model, which express

theAPPSwe/PS1mutation.36 BACE1 activity in the liver has been impli-

cated in a rise in plasma sIR.40 Brain cells also express BACE1 and



THOMAS ET AL. 9 of 11

enzymes that cleave IR. For instance, higher BACE1 activity has been

repeatedly reported in the brain of AD patients, without mutation

(including Leclerc et al.36 but many others). Hence, the logical scenario

is that a cleavage of IR in the brain, possibly by BACE1, would then lead

to an enhanced release of sIR into the CSF, coinciding with increased

Aβ42 and Aβ40 levels as we observed in our current study. These find-

ings help explain why CSF sIR positively correlates with Aβ42 but does
not explain why sIR levels negatively correlate with cognition, as lower

CSF Aβ42 levels are often indicative of cognitive impairment. There-

fore, we sought to further define the relationship between Aβ42 and

sIR generation using in vitromodels.

In neurons derived from isogenic hiPSCs with different gene doses

of the APP “Swedish mutation,” we found significant differences

in the levels of sIR in the conditioned media. In the APPSwe/Swe

neuronal cultures, there was significantly more sIR. This mutation

increases Aβ secretion by enhancing amyloidogenic APP cleavage by

BACE1.24,41 Inhibition of BACE1 results in decreased Aβ42 levels.24

Aβ42 levels secreted by APPSwe/Swe neurons are approximately 5-fold

greater than levels secreted by APPSwe/WT neurons.24 While our stud-

ies do not reveal the mechanism for increased shedding of sIR in the

APPSwe/Swe, the increases in Aβ42 and sIR in the conditioned media

support a similar relationship to that observed in our CSF samples.

There is no increase in cytokine secretion from APPSwe/Swe neurons.24

Inourunpublished studies, RNAsequencingof these cells suggests that

matrixmetalloproteinase (MMP) 14 is increased in the SweWT/WT cells.

As MMP14 has recently been shown to generate sIR,11 MMP14 could

be the mechanism for increased sIR present in the conditioned media

from these cells. It is also possible Aβ42 could act on the cells to indi-

rectly increase the amount of sIR cleavage. Future studies can assess

proteomics in the conditioned media and cell lysates to identify pro-

teins that may be altered to induce cleavage of the IR. Additionally,

other iPSC derived neurons that contain mutations in the presenilin

1 (PS1) gene could be used to assess the impact on sIR generation,

because these enzymes are also the enzymes shown to generate

sIR.7−10

Neurons, astrocytes, and even brain endothelial cells express many

of the enzymes found to cleave IR to generate sIR. Previous studies

have found neurons can specifically generate sIR, with changes linked

to inflammatory cytokines present in CSF.28 Specifically, it was iden-

tified that TNF-α regulates secretion of sIR from the SH-SY5Y human

neuronal cell line.28 Astrocytes are important regulators of IR signaling

and are highly implicated in AD pathology.42 Genetic deletion of the

astrocytic IR impairs Aβ42 uptake, indicating a causal relationship.42

CSF TNF-α is an inflammatory marker most consistently implicated in

AD and is associatedwith conversion in individualswho are cognitively

normal at baseline.43 TNF-α is known to increase Aβ burden through

upregulation of BACE1.44 Therefore, we investigatedwhether another

brain cell type, astrocytes, could generate sIRandwhetherTNF-α could
induce secretion of sIR, similar to what had been observed in neurons.

We found 20 ng/mL TNF-α was able to increase sIR levels > 3-fold.

While we did not test brain endothelial cell generation of sIR, these

cells express the greatest amount of the IR of brain cell types.45 and

thus, could also be a source of sIR. These data support sIR can arise

from brain cell types other than neurons and the CSF AD milieu may

contribute to generation of sIR.

While sIR levels are increased in the plasma of individuals with type

2 diabetes, a condition in which insulin levels are often elevated,15 a

direct effect of insulin on sIR generation has not been tested. In our

study, insulin incubationwith human astrocytes was shown to increase

sIR in the media 24 hours later. There is direct evidence showing

PS1 is functionally modulated by insulin signaling.46 Insulin signaling

decreases phosphorylation of PS1, enhancing the interaction with N-

cadherin and β-catenin, re-localizing PS1 to the cell surface. Future

studies could be designed to investigate PS1 activity after insulin stim-

ulation in human astrocyte cultures using a novel biosensor.47 Insulin

has been shown to induce cleavage of other surface proteins, including

Klotho, an antiaging transmembrane protein, likely through stimulat-

ingproteolytic activity ofADAM10andADAM17.48 Finally,CSF insulin

levels are decreased in AD.49 and we have shown loss of brain IR sig-

naling slows insulin transport into the brain in mice.50 Therefore, it is

possible the dysregulated processing of the sIR by insulin could perpet-

uate a vicious cycle, leading ultimately to brain insulin resistance and

deficiency.

Other groups have shown sIR levels are increased in the plasma of

individuals with diabetes.15 or throughout aging.11 While we focused

our current investigations on the CSF levels of sIR and CNS cell type

contribution of sIR, it would be worth identifying whether there are

relationships between the plasma andCSF sIR level in subjectswithAD

ormore importantly pre-clinical AD. Correlations between plasma and

CSF levels of sIR may provide insight into brain insulin resistance and

deficiency, a feature that has, so far, proven to be difficult to assess in

living subjects1.

Limitations to our pilot study not only include the small sample size,

but also the exclusion ofmales and thosewith clinically diagnosed type

2 diabetes in the Seattle cohort. TheCIMA-Qcohort did not have these

same exclusion criteria, but also had limited numbers of samples due to

the increased separation by diagnostic group. Future studies are war-

ranted to not only investigate sex differences in the levels of CSF sIR

and relationship with AD pathology but also the effect of type 2 dia-

betes. As type 2diabetes is a clear risk factor forAD, and circulating sIR

levels are increased in individuals with type 2 diabetes15 it is possible

levels of sIR, both in the circulation and the CSF, may help explain the

relationship between type 2 diabetes and AD. Additionally, due to the

lack of standardization in sample repositories around the world, our

different findings between the US-based cohort and Canadian cohort

highlight the need to repeat the study in other cohorts to fully under-

stand the link between MoCA scores and CSF sIR levels. Last, as we

have focused on the levels of sIR in the CSF, follow-up studies should

be conducted to identify any associations with systemically circulating

sIR.

The data presented here for the first time investigate the levels of

sIR present in the CSF in cognitively intact individuals compared to

those that have been clinically diagnosed with AD, or the spectrum

of prodromal to probable AD. Although there are not overall statis-

tical differences in CSF sIR levels between the groups, there was a

significant association with global cognitive score via the MoCA and
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CSF Aβ42 or Aβ40 levels. Neurons and astrocytes can contribute to the
generation of sIR and astrocyte sIR production can be simulated by

inflammation or insulin. Further understanding about the regulation of

sIR is alsoneededandwhether there are cell-specific processes. Finally,

the biological mechanism for sIR in AD and whether increased levels

directly contribute to brain insulin resistance and deficiency remain to

be elucidated.
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