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Traditional uses of herbal medicine have depended mostly on anecdotal evidence 
for much of history. The increasing application of scientific rigor to the study some 
of these traditional therapies in recent years has revealed potent bioactivity, notably 
demonstrated by the 2015 Nobel Prize for the discovery of an antimalarial compound 
from traditional Chinese herbs. Given the recent successes of immunotherapy and 
checkpoint blockade, there is a renewed interest in identifying new drugs with immu-
nomodulatory effects. As an estimated 45–60% of cancer patients worldwide are 
reported to use complementary alternative medicine alongside traditional therapy, this 
review will highlight the literature on the immunomodulatory effects of one of these 
compounds. We report on the induction of a largely pro-inflammatory cytokine pro-
file by the polysaccharopeptide (PSP) isolated from the Coriolus versicolor (Yun zhi) 
mushroom, as well as its effects on various immune subsets, and the clinical data that 
have led to its widespread adoption as an adjunct cancer therapeutic in many Eastern 
cultures. Particular focus is given to the potential mechanisms underlying the bioactivity 
of PSP and reports of its ability to promote antitumor immunity by helping overcome 
tolerogenic tumor microenvironments.

Keywords: immunomodulation, mushroom, Coriolus versicolor, Yun zhi, polysaccharide peptide, 
polysaccharopeptide

iNTRODUCTiON

Herbal remedies have long played a role in human well-being and depend mostly on anecdotal 
and historical reports to support their use. Over the last three decades, the application of scientific 
methodology has partly elucidated the underlying mechanisms of some herbal treatments. Indeed, 
many chemotherapeutic agents currently in use, including topotecan (1), etoposide, teniposide 
(1, 2), docetaxel, and paclitaxel (3), are derived from herbal origins. With the recent and grow-
ing interest in immunotherapy, some investigators have turned to natural products in search of 
immunomodulatory compounds (4).

A particularly interesting source of immunomodulatory agents is the Coriolus versicolor (CV) 
mushroom, also referred to as Yun zhi (China), Kawaratake (Japan), Turkey tail (North America), or 
any of Agaricus/Boletus/Polyporus/Poria/Trametes versicolor plants. Ancient Chinese formulations 
of CV have long been believed to generally promote health, strength, and longevity. Laboratory 
studies suggest it may have antimicrobial, antiviral, and antitumor properties. Products using CV 
extracts are currently approved as adjunct therapy in China and Japan for cancer patients already 
receiving chemotherapy or radiotherapy.
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The bioactive components of CV extracts include two poly-
saccharopeptides (PSPs) derived from two different strains of 
CV: COV-1 (PSP) most commonly used in China and CM101 
(polysaccharide krestin, PSK) used in Japan. Both molecules are 
about 100  kDa with respective polysaccharide-to-peptide bal-
ance of 90–10% in PSP, and 60–40% in PSK. The carbohydrate 
moieties of each compound consist of mannose, xylose, galac-
tose, in addition to fructose in PSP or arabinose and rhamnose 
in PSK. PSP is typically isolated by boiling COV-1 mycelia or 
fruiting bodies in water, followed by precipitation in ethanol.

Numerous studies in vitro, in vivo, and some clinical trials 
have reported immunopotentiation by Yun zhi—leading to its 
adoption as an adjunct therapy for cancer in many Eastern coun-
tries. This review aims to summarize the English literature on 
the immunomodulatory effects of CV extracts, with a particular 
focus on PSP. Reports of its effects on cytokine release, and 
especially on its potential to activate natural killer (NK) cells, 
are followed by examining the activity of PSP on inflammatory 
immune subsets and a brief overview of relevant clinical studies.

Coriolus versicolor extracts are used as adjunct therapy for cancer in 
many Eastern countries.

PSP iNDUCeS A PReDOMiNANTLY PRO-
iNFLAMMATORY CYTOKiNe PROFiLe

The best reported immunomodulatory effect of PSP is its induc-
tion of predominantly pro-inflammatory cytokines. Yun zhi 
has a potent effect on in vivo and in vitro expression of tumor 
necrosis factor (TNF)-α, commonly of interest for its ability to 
induce apoptosis and its potent tumoricidal activity (5). Primary 
mouse peritoneal macrophages treated with PSP in vitro showed 
increased TNF-α release comparable to levels achieved by 
lipopolysaccharide (LPS) stimulation (6). When human periph-
eral blood mononuclear cells (PBMCs) from healthy donors 
were incubated in PSP for 18 h, either in the presence or absence 
of phytohemagglutinin (PHA, a T  cell mitogen), there was a 
more than 3.5-fold increase in TNF-α secretion (7). PBMCs 
from breast cancer patients also exhibited increased TNF-α 
expression and protein production in response to PSP, an effect 
not abrogated by blockade of toll-like receptor 4 (TLR4), sug-
gesting that PSP is independent of TLR4 activation (8). In vivo, 
peritoneal macrophages from healthy mice injected intraperi-
toneally (i.p.) with PSP produced significantly higher amounts 
of TNF-α compared with saline controls (6). A similar increase 
in TNF levels was observed when mice with subcutaneous (s.c.) 
tumors derived from the herpes virus Type 2 transformation of 
a murine fibroblastic origin (the H238 line) received PSP s.c. for 
11  days. Tumor specimens from mice treated with PSP alone 
had higher expression of TNF-α than untreated controls (9). 
Administration of PSP i.p. also resulted in a significant increase 
in serum TNF levels in healthy rats (10, 11).

The ability of PSP to induce cytokines associated with TNF-α 
was also demonstrated through its induction of IL-12, a T helper 
1 (Th1)-related cytokine capable of enhancing NK and CD8+ 
T  cell cytotoxic activities and their expression of TNF-α. The 

incubation of murine splenic lymphocytes with CV extract for 48 
or 72 h resulted in a threefold increase in IL-12 production com-
pared to control samples (12). Similar effects were demonstrated 
in PBMCs from breast cancer patients, showing an increase in 
protein production of IL-12 after treatment with PSP and PHA 
(8). Moreover, IL-12 is a known inducer of interferon (IFN)-γ, a 
potent immunostimulatory cytokine, and PSP consistently leads 
to IFN-γ expression. PBMCs from healthy donors and breast 
cancer patients showed increased production of IFN-γ when 
treated with PSP and PHA, respectively, for 24, 15, or 72 h (7). 
Similarly, 24-h incubation in CV extract resulted in increased 
production of IFN-γ by murine splenic lymphocytes. Incubation 
of these cells was also able to increase IL-2 (almost eightfold) and 
IL-18 (about twofold), both of which are Th1-related cytokines 
able to induce IFN-γ production by NK and T cells (12).

Polysaccharopeptide can also induce the pleiotropic 
cytokine, interleukin-1β (IL-1β). Classically considered a pro-
inflammatory signal, it is typically elicited in response to TLR 
signaling and can serve to enhance lymphocyte proliferation and 
differentiation (13). Primary mouse peritoneal macrophages 
treated with PSP in  vitro induced IL-1β in a time- and dose-
dependent manner up to levels comparable to induction by LPS 
(6). When these healthy mice were injected i.p. with PSP, their 
peritoneal macrophages were capable of producing significantly 
higher amounts of IL-1β compared with saline controls (6). 
Another closely related cytokine affected by PSP is IL-1α. When 
human PBMCs were cultured with PSP for 24 h, IL-1α produc-
tion increased threefold (14). While also pleiotropic in its effects, 
IL-1α can serve to costimulate CD8+ T cells and enhance antigen 
presentation by tumor cells (15). In addition, the increased 
release of granulocyte–macrophage colony-stimulating factor 
(GM-CSF) and granulocyte colony-stimulating factor (G-CSF), 
stimulators of hematopoiesis that tend to be pro-inflammatory 
but also have pleiotropic effects, by PBMCs from healthy donors 
were observed upon culture with PSP and PHA (14). Similar 
effects were observed when healthy mice injected with PSP led to 
increased expression of macrophage colony-stimulating factor 
(M-CSF) (16), a related multifunctional growth factor.

Extracts of CV have in addition been shown to affect the 
expression of other pleiotropic cytokines, including transform-
ing growth factor (TGF)-β, which has pro-inflammatory effects 
on monocytes and Th17 cells, and anti-inflammatory effects on 
B  cells, T  regulatory cells (Tregs), and activated macrophages 
(17, 18). In mice carrying s.c. H238 tumors treated s.c. with 
PSP alone for 11 days, tumor specimens had a slight decrease 
in TGF-β staining (compared with untreated controls), which 
was significantly augmented by IL-2 cotreatment (9). PSP also 
affected levels of IL-6, which has pro-inflammatory activity 
through its enhancement of B cell antibody production and B 
helper activity, inhibition of Treg differentiation, and induction 
of acute phase proteins (19). IL-6 also has anti-inflammatory 
activity via inhibition of TNF-α and IL-1 (20) and plays a role 
in the generation of myeloid-derived suppressor cells (MDSCs) 
(21). Healthy rats with prolonged LPS-induced fever due to PSP 
pre-treatment (i.p.) exhibited elevated blood IL-6 levels and this 
prolongation was abrogated by anti-IL-6 antibody treatment 
(14). Similar results showed that PSP treatment of the acute 
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myeloid leukemia line, HL-60 resulted in a dose-dependent 
increase of IL-6 release (22), while 24-h treatment with PSP and 
PHA of human PBMCs from breast cancer patients also showed 
increased IL-6 expression (8). Similar results were obtained with 
PBMCs from healthy donors (14).

In addition to directly affecting cytokine release by immune 
cells, CV extracts increase the sensitivity of these cells to other 
stimuli and exert a synergistic effect with other factors. For 
example, peritoneal macrophages isolated from healthy mice 
orally administered PSP showed increased TNF-α production 
in response to LPS stimulation (23). Culturing human liver 
carcinoma cells, HepG2, with a non-toxic dose of PSP increased 
their susceptibility to cyclophosphamide cytotoxicity in a syn-
ergistic manner (24). Testing PSP on the herpes-transformed 
H238 murine line in vitro decreased their DNA synthesis in a 
manner that synergized with the supplementation of IL-2 (23). 
Taken together, these studies implicate a stimulatory effect of 
CV extracts on the immune system.

PSP induces production of many pleiotropic cytokines with predominantly a 
pro-inflammatory profile, which act locally and systemically.

Polysaccharopeptide appears to protect against the adverse 
effects of radiation. Intragingival administration of CV extract 
for 10 days reversed decreases in spleen weight and splenocyte 
DNA synthesis after healthy mice received a single dose of 1 Gy 
whole-body irradiation (25). Interestingly, in a s.c. tumor model, 
mice that received radiation alone had the lowest tumor growth 
compared with groups that received PSP with or without radia-
tion. This may be due to PSP’s ability to induce scavenging of 
oxygen radicals (thereby weakening radiation efficacy) and/or 
through enhanced lymphoid infiltration of tumors in the pres-
ence of PSP. In support of the latter, PSP-treated animals (par-
ticularly those not subjected to any radiation) showed increases 
in phagocytic, NK, T, and B cell counts in their blood and spleens 
(26). This systemic increase in immune activation could have 
led to augmented tumor infiltration (and thus apparently larger 
tumor volumes), but this cannot be definitively concluded as the 
immune subsets within the tumor microenvironment were not 
reported in that study.

Antitumor effects
The most commonly used model to study the tumoricidal effects 
of PSP is in vitro culture of human leukemia HL-60 cells, which 
have demonstrated reduced proliferation by disruption of their 
cell cycle (27–30), induction of apoptosis (28, 29, 31), and sen-
sitization to various chemotherapeutics such as camptothecin 
(30), doxorubicin, and etoposide (27). These effects correlate 
with decreases in anti-apoptotic proteins bcl-2 and survivin 
along with increases in bax and cytochrome c (29), as well as 
decreases in various phosphatase and kinase genes (28), and the 
activation of caspase-3, -8, and -9 (31). Treating human PBMCs 
with PSP using conditioned media to grow HL-60 or U937 
showed significant tumoricidal activity that could be inhibited 
by antibody blockade of either of TNF-α or IFN-γ (32). TNF-α 
induction was also observed by administration of PSP in vivo. 

However, despite showing pro-inflammatory effects consistent 
with other studies, PSP can exhibit no direct cytotoxic effects 
on murine lines of hepatoma (33), sarcoma, melanoma (23), 
breast cancer (34), or human lines of placental choriocarcinoma 
(23, 33). In vitro assays of cell migration on 4T1 murine breast 
cancer cells treated with PSP revealed inhibition of migration in 
a time- and dose-dependent manner and significant reduction of 
matrix metalloprotease, MMP-9 production. This was reflected 
in  vivo when mice injected with 4T1 cells showed decreased 
growth of lung but not liver metastases in response to PSP 
treatment (34). While some of the differences in cell types may 
explain inconsistency of the direct cytotoxicity of PSP, there are 
contradictory reports showing apoptosis of even the same cell 
line, HL-60 (28–31). These discrepancies may be due to varia-
tion in the preparation and extraction methods of PSP. Indeed, 
PSP’s ability to inhibit the growth of another human leukemia 
cell line, Molt-4, significantly depended on the fermentation 
duration of CV prior to its harvest (7), demonstrating the need 
for additional rigorous studies to standardize and optimize the 
yield and activity of PSP from CV.

The antitumor effects of PSP should be carefully studied in 
the context of complex networks of cancer-related immune 
response and tumor microenvironment. In a study, mice were 
pretreated (s.c.) with PSP for 5  days prior to, or started on 
PSP on the same day as, s.c. tumor cell implantation, and then 
followed by radiation a week later (26). Both groups showed 
decreased tumor growth compared to non-treated control 
animals, with the pretreated group showing slower growth. 
This may partially be mediated by increases in local or systemic 
IL-1β with PSP pretreatment (13), thus effectively enhancing 
lymphocyte proliferation prior to tumor implantation. Indeed, 
mice that received PSP alone on the day of tumor implantation 
showed only modest effects compared with untreated controls, 
suggesting that PSP alone has insufficient tumoricidal effects in 
this model. Notably, the group that received PSP on the same 
day as radiation (a week after tumor implantation) showed 
no effect compared to untreated controls, highlighting that to 
appropriately sensitize tumors to radiation therapy, PSP may 
need to be administered well in advance of radiation in what 
may be a time-dependent relationship. Similarly, the increase 
in IL-1β production by PSP in the tumor microenvironment 
may have counterproductive effects on tumor growth since 
expression of IL-1β in the tumor milieu promotes tumor 
invasiveness, angiogenesis, and tumorigenesis (15). IL-1 can, 
in some cases, increase tumor immunogenicity and decrease 
invasiveness (15). The risk of deleterious effects holds even in 
the context of significant increases in systemic IL-1β, since it can 
promote the expansion of MDSCs (15). Likewise, PSP-induced 
increase of IL-6 expression, in the context of enhanced IL-1β 
and GM-CSF expression, may lead to increased levels of MDSCs 
or Tregs at the tumor microenvironment. It is important to note 
that reports of IL-6 induction have shown systemic increases, 
while the only in  vivo studies of IL-1β induction have shown 
its increase in a localized setting (i.p.) (6). Because PSP is usu-
ally administered orally in clinical settings, it is important to 
conduct more clinically relevant experiments to study the effects 
of its oral administration on systemic levels of IL-1β in animal 
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models. It may, in fact, be that the typical route of delivery of 
PSP provides beneficial local pro-inflammatory while averting 
the potential detrimental effects of IL-1β expression systemi-
cally or at the tumor site.

In addition, while generation of MDSCs at the tumor site 
depends on TGF-β, PSP seems to moderately decrease its 
expression (9). On the other hand, the increase of GM-CSF 
expression, combined with an IL-6 increase, may lead to MDSC 
formation (21). Thus, while some of the induced cytokines may 
lead to enhanced tumor progression or immune suppression, 
more careful examination of PSP’s effects on immune subsets 
(particularly MDSCs and Tregs) in the tumor environment 
is necessary for a conclusive understanding of PSP’s immu-
nomodulatory effects and how to best put them to use. Much of 
the literature has depended on in vitro or healthy animal in vivo 
experiments and more studies using tumor models that enable 
careful examination of the effects of PSP on cytokine induction. 
For example, along with staining for MDSCs in tumor samples 
after PSP treatment, the administration of PSP could be tested 
alongside MDSC depletion by anti-Gr1 or anti-Ly6G antibod-
ies to test whether a combination therapy further slows tumor 
progression.

Rigorous studies are needed to standardize preparation methods, 
optimize kinetics, biodistribution, and activity of PSP to better establish 
specific immunomodulatory effects.

eFFeCT OF PSP ON iMMUNe CeLL 
POPULATiONS

Polysaccharopeptide has a wide range of mostly stimulatory 
effects on other immune cell types. The proliferation of cultured 
splenocytes was significantly augmented by incubation with CV 
extract in vitro (12). Human PBMCs incubated in PSP and PHA 
showed a time-dependent increase in proliferative responses 
(7), while non-stimulated human lymphocytes treated with PSP 
showed a dose-dependent enhancement of proliferative activity 
(35). A 48-h culture with PSP decreased Fas receptor expression 
of non-stimulated lymphocytes and synergized with cyclosporine 
for a similar effect on PHA-stimulated cells, hinting at a protective 
role of PSP against extrinsic death signals (35). PSP can also affect 
monocytes and macrophages. Healthy human PBMCs treated for 
48 h showed an increase in the number of CD14+CD16−MHCII+ 
monocytes (36), while several studies suggest that PSP increases 
the phagocytic activity of macrophages in culture and in  vivo 
(37). The in  vitro treatment of purified murine splenic B  cells 
with CV extract showed a strong proliferative response, which 
can be inhibited by BCR blocking antibody, implicating its role 
in CV-mediated B cell activation (38).

Similar proliferation and activation responses were observed 
in various animal studies as well. After oral administration of 
PSP to healthy mice for 2 weeks, isolated peritoneal macrophages 
showed increased production of reactive nitrogen intermediates 
and superoxide anions in response to in vitro stimulation (23), 
while macrophages and T cells from healthy mice force-fed CV 
extract for a week showed enhanced nitrite production and 

proliferative mitogenic response, respectively (33). Lymphocytes 
isolated from rats administered PSP orally for 2 weeks showed 
enhanced lymphocyte proliferation and rescue from the nega-
tive effect of cyclophosphamide chemotherapy, while NK cells 
from these healthy animals showed a comparable trend in 
cytolytic function (39). These results are noteworthy, given the 
typical route of administration for PSP in a clinical setting is 
oral. In addition, the treatment of healthy nude mice (i.p.) with 
CV extract for 2 weeks resulted in an increased white blood and 
neutrophil count (37). Mice carrying s.c. H238 tumors injected 
s.c. with PSP exhibited an increase in lymphocyte numbers and, 
when combined with IL-2, in splenocyte stimulation by PHA. 
PSP also slowed the tumor progression of these mice, although 
not as effectively as IL-2 alone (9).

Some of these enhanced proliferative effects on leukocytes 
are likely due to the pro-inflammatory cytokines induced by 
PSP, but that may not be the sole factor in play. When murine 
peritoneal macrophages were isolated after a 5-min i.p. treat-
ment with PSP, they exhibited 1.8-fold heightened release of 
prostaglandin E2 (PGE2) (6). Prostaglandins are a group of 
hormone-like lipid compounds with multiple effects, including 
the regulation of inflammation (40). In particular, PGE2 has 
previously been shown to stimulate Th1 differentiation (41, 42), 
alter dendritic cell (DC) migration and costimulatory molecule 
expression (41, 43), and enhance TNF-α production by NK cells 
(44). The combination of PGE2 with other previously reported 
cytokines induced by PSP (specifically TNF-α, IL-1β, and IL-6) 
can enhance the migratory and immunostimulatory capacity of 
DCs in culture (45). These cells play a crucial role in contact-
dependent activation of NK cytolytic activity and are often acti-
vated by NK-derived IFN-γ and TNF-α (46). While PGE2 has 
also been shown to have anti-inflammatory effects through the 
Th2 axis, many have argued that its activity is pleiotropic and 
largely context dependent. Again, it is important to understand 
that this increased PGE2 expression may inadvertently enhance 
MDSC maturation (21).

PSP has stimulatory effects on many immune cell types, enhancing 
their proliferation and cytokine release.

effects on Adaptive and innate immune 
Responses
Coriolus versicolor-derived compounds have a marked effect 
on humoral immunity. Murine splenocytes enriched for B cell 
populations and treated with CV extract for 6  days in culture 
revealed a potent ability to induce IgM production and, when 
combined with exogenous IL-4, IgG1 secretion (38). The sys-
temic administration of CV extract for 2 weeks to healthy nude 
mice gave an almost twofold increase in serum IgG levels com-
pared with saline-treated controls (37). Similarly, lymphocytes 
isolated from healthy rats fed PSP for 2 weeks showed increased 
IgG production compared to saline control rats, which was only 
slightly hampered by the addition of cyclophosphamide (39). 
Administration of PSP in combination with acacia gum by oral 
gavage to healthy mice for just 4  days showed a significantly 
increased IgG production when compared to those receiving 
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acacia gum alone (47). Taken together, these studies suggest that 
PSP may function as an adjuvant, mediating humoral responses 
via T cell-dependent increases in B cell activity and the genera-
tion of a non-specific polyclonal antibody response (37).

A growing body of evidence suggests the involvement of 
CV ingredients in the activation of various pattern-recognition 
receptors (PRRs)—a crucial step in initiating the innate immune 
response upon encounter with a pathogen-associated molecular 
pattern (PAMP). β-glucan polysaccharides, one of which is 
the carbohydrate moiety of PSP [a β-(1→3)-d-glucan that 
branches at positions 4′ and 6′, Figure  1] (48, 49), can act as 
PAMPs, stimulating an array of murine and human PRRs. For 
example, the complement receptor 3 (CR3) is a PRR highly 
expressed on monocyte and NK cell surfaces and is associated 
with extravasation of these cells toward pathogens, along with 
initiating phagocytosis and degranulation. CR3 has two binding 
sites and is thus activated by pathogens or immune complexes 
containing β-(1→3)-glucans and an opsonin (48, 50). Another 
PRR that is primarily stimulated by β-glucans is Dectin-1, which 
is expressed by monocytes, macrophages, and to a lesser extent, 
DCs and some T cells (48, 51). Indeed, the β-glucans extracted 
from CV were shown to increase phagocytic activity and the 
release of TNF-α and nitric oxide by peritoneal macrophages after 
4 days in culture—effects that were abrogated upon inhibition of 
Dectin-1 signaling (52). Moreover, β-glucans were also shown 
to interact with TLRs. For example, the increase of TNF-α but 
not IL-6 in some cases in vivo, after administration of PSP alone, 
suggests that PSP may act via the TLR-4/p38 MAPK pathway 
(14). This is supported by data showing that splenocytes from 
C3H/HeJ mice (i.e., carrying an inactivating mutation in TLR-4) 
treated with CV extract in culture exhibited lower proliferation 
than their normal counterpart, with cells showing a distinct 
time-dependent increase in p38 MAPK phosphorylation upon 
CV treatment (38). Healthy human PBMCs also treated with 
PSP and PHA for 24 h showed upregulated expression of TLR-
associated genes, including TLR4, TLR5, TLR6, TLR7, and LY64 
(14), while multiple genes, kinase phosphorylation levels, and 
proteins in the TLR4 pathway were significantly upregulated by 
PSP and PHA treatment of PBMCs from breast cancer patients 

(8). However, as mentioned earlier, anti-TLR-4 antibody block-
ade did not abrogate the beneficial effects of PSP on cytokine 
production (8), pointing to the possible involvement of multiple 
signaling pathways in response to PSP. In addition, using neu 
transgenic mice, PSK was also shown to mediate DC and T cell 
activation via TLR-2 signaling (53). Further examination of 
immediate molecular responses by lymphocytes, and tumor 
cells, to PSP will illuminate the underlying mechanisms involved 
in its activity and may enable the maximization of PSP’s benefi-
cial effects.

PSP promotes immune responses via induction of immunoglobulin pro-
duction and engagement of various pattern-recognition molecules.

NK Cells
Natural killer cells have a central role in antitumor immune 
response network. While studies on the immunomodulatory 
effects of CV extract indicate increased NK cells activity, data 
on the effects of PSP on NK cells function are scarce. However, 
similar to other immune cell subsets, many of the changes in 
cytokine release by PSP can affect the function of NK  cells 
and enhance their activity. For example, TNF-α is a known 
inducer of NK  cell cytotoxic activity (54), particularly in the 
presence of IL-2 (55). Activated NK cells additionally produce 
TNF-α upon contact with target cells (56), which, in concert 
with IFN-γ, can upregulate ICAM-1 on target cancer cells to 
enhance killing activity (57). TNF-α also plays a crucial role 
in NK  cell recruitment to peritoneal tumor sites (58) and in 
synergy with IL-1, enhances NK  cell proliferative responses 
to mitogenic cytokines (59, 60). IL-1α and IL-1β enhance 
production of IFN-γ by NK cells (a classic sign of activation) 
after mitogen treatment (61, 62). IL-1β also increases a host of 
activation-related NK markers and favors NK cell maturation 
from umbilical cord blood precursors (63), while the in  vitro 
supplementation of IL-1 can increase the ability of NK cells to 
bind to target cells (64). NK cytotoxic activity is also enhanced 
by culture supplementation with IL-12 (65), acting in synergy 
with IL-2 to enhance IFN-γ production (66). IL-12 alone can 
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increase NK proliferation by induction of IL-2 production (67) 
and plays a crucial role in NK activation by DCs, wherein its 
release by the latter enhances NK production of IFN-γ (68). 
Moreover, IL-12 increases the ability of NK cells to recognize 
tumor cells expressing CD80 or CD86 (69).

Polysaccharopeptide may also increase NK cytotoxic activity 
by increasing FasL expression via IL-18 (70, 71). Similarly, the 
decrease of TGF-β levels by PSP is beneficial for NK cells, as 
the cytokine can inhibit NK cytolytic activity and responses to 
IL-2 stimulation (72, 73), as well as inhibit NK production of 
IFN-γ, TNF-α, and GM-CSF (74), shown to counter the inhibi-
tion of NK cells by monocytes (75). Treatment with M-CSF can 
also increase murine NK cell activation and responsiveness to 
IL-2 (76), and its clinical administration mitigates decreased 
NK counts after chemotherapy (77). The PSP-induced rise in 
IL-6 production may also enhance NK cell proliferation, TNF-α 
secretion, and NK adhesive abilities (78). The collective effects 
of these induced cytokines suggest the possibility of testing PSP 
in concert with cell therapy to improve the antitumor activity 
of NK cells.

• In vitro and in  vivo data on the direct effects of PSP on NK cells are 
scarce.

• The role of PSP on antitumor activity of NK cells remains speculative, 
opening the possibilities for investigating potential synergistic effects 
with cellular immunotherapy.

immune Modulation by Cv extracts via 
induction of Superoxide Dismutase (SOD)
Polysaccharopeptide also seems to modulate immunity by 
regulating the response to oxidative stress, particularly com-
mon in cancer patients after myelotoxic regimens. For example, 
SOD catalyzes the formation of O2 or H2O2 from superoxide 
radicals (O2) and is often downregulated in the tumor micro-
environment (79, 80). Injection of healthy mice with CV extract 
i.p. for 3 days enhanced lymphocyte production of SOD in a 
dose-dependent manner and partially rescued lymphocyte, 
splenic, and thymic SOD activities that were reduced by 
tumor implantation or irradiation of other mice (81). Indeed, 
the common Japanese strain of CV extract mimics the radi-
cal scavenging activity of SOD in vitro (82), and its extent is 
dependent on PSK peptide contents (83). NK cells cultured in 
the presence of reactive oxygen species showed a gradual and 
time-dependent decrease in cytolytic activity and an ability to 
bind target cells, both of which were rescued by PSK (or SOD) 
treatment. Moreover, i.p. treatment of tumor-bearing rats with 
PSK or SOD slowed tumor progression, decreased oxidative 
stress, and restored NK killing and binding activity—effects 
that were abrogated by an NK-depleting antibody (83). Under 
oxidative stress, lymphocyte surfaces are thought to become 
anionic, pointing to a potential mechanism by which SOD 
reverses this surface charge imbalance and rescues their ability 
to bind targets (83). Finally, many of the PSP-induced cytokines 
(TNF-α, IFN-γ, IL-1, and IL-6) have been linked to enhanced 
SOD activity (84, 85). While SOD is often studied for its anti-
inflammatory activity, these data, taken in sum point to the 

capacity of CV to directly or indirectly scavenge superoxide 
radicals—a factor that seems to enhance its immunomodula-
tory abilities.

Coriolus versicolor extracts modulate immune cell activity and control 
tumor progression by reducing superoxide radicals-associated stress in 
the tumor microenvironment.

Cv iN THe CLiNiC: PSP AS ADJUNCT 
THeRAPY

While cell culture and animal models are crucial interrogation 
tools, they are limited—both biologically and technically. Rodent 
immune systems are intrinsically different in their development, 
composition, and extent of response to stimuli. Moreover, many 
of the previously mentioned studies may be unintentionally 
biased, as they did not report endotoxin testing of the PSP/CV 
product before its administration (9–12, 16, 23, 25, 33, 38, 39, 
47, 53, 81, 86, 87). In addition, while most in vivo studies used 
intraperitoneal (6, 10, 11, 81, 83, 87) or s.c. delivery of PSP (9, 26), 
they are less relevant physiologically (at least in a clinical context) 
than models using force-feeding (33), oral delivery (23, 39, 47), or 
even intragingival injections (25).

The success of PSP in preclinical models has nonetheless 
prompted many to investigate CV-derived products as potentially 
adjunctive therapy to standard chemotherapy or radiotherapy 
regimens for various malignancies. To confirm whether its 
immunostimulatory effects carry forth from animal models to 
humans in homeostatic conditions, a double-blind, crossover 
study recruited healthy volunteers for a 10-month study period. 
The participants were randomized to receive capsules of PSP 
(plus another herbal derivative, Danshen) or a placebo, with 
those receiving PSP showing increased T helper cell counts and 
percentage, and their PBMCs showing elevated expression of 
IL-2R, as well as increased production of IFN-γ upon stimulation 
(88). Another randomized trial compared the effects of PSP and 
amoxicillin on gut microbiome composition and showed effects 
similar to prebiotic treatment (89), which suggest a benefit on 
gut/mucosal immunology when delivered orally. Indeed, of the 
patients positive for oral human papilloma virus treated with 
CV extract (plus another herbal extract, ganoderma lucidum), 
almost 90% cleared the virus after 2 months of treatment (90). 
The impact of patient gut microbiota on the success of PSP’s 
immunomodulatory effects is a surprisingly underinvestigated 
area that will likely shed light on the mechanisms involved in 
responses to orally delivered PSP.

It is also of interest to test whether the stimulatory effects of 
PSP may alleviate the immunoinhibitory environment in cancer 
patients, particularly after chemotherapy or radiotherapy. In a 
dose-escalation trial with nine breast cancer patients, CV extract 
was administered after the completion of radiotherapy and was 
shown to increase NK cytotoxic function and lymphocyte counts, 
with CD8+ T cells and CD19+ B cells increasing dose depend-
ently (91). Similarly, more than 80 previously treated breast 
cancer patients were given PSP/Danshen capsules for 6 months, 
leading to increased T-helper and B cell counts and proportions. 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FiGURe 2 | Potential mechanisms of immuostimulatory effects of Coriolus versicolor. (A) Detection of polysaccharopeptide (PSP) by TLR(s) (and perhaps other 
receptors) on T lymphocytes initiates signaling cascades, such as the p38 MAPK pathway, leading to enhanced T cell proliferation and the release of largely 
pro-inflammatory cytokines such as IL-2 and IFN-γ. (B) Binding of PSP to any/all of Dectin-1, CR3, or TLRs on macrophages leads to the activation of genetic 
events that increase phagocytic activity and induces the production of oxidative radicals and cytokines such as tumor necrosis factor-α. (C) Recognition of PSP by 
the BCR leads to B cell activation, clonal proliferation, and eventual differentiation into IgM+ or IgG+ plasma and memory B cells. Alternatively, PSP may be acting on 
B cells in a similar fashion to T cells, non-specifically activating them through TLR(s) and leading to a general increase in polyclonal IgM and IgG levels (data not 
shown).
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However, these patients showed significant decreases in serum 
IL-2R (92), which could indicate that previously reported 
increases in IL-2R gene expression lead to increased surface, and 
not secretory, levels (88). Increases in leukocyte and neutrophil 
counts, as well as serum IgG and IgM levels, were observed in 
non-small cell lung cancer patients randomized to PSP treat-
ment. While no improvements were observed for disease-related 

parameters, less PSP-treated patients were withdrawn from the 
study due to disease progression (93). In addition, these patients 
also showed improvements in their body fat measures, further 
implicating PSP in affecting the microbiota and/or the mucosal 
immune system (94, 95). Radiation-induced lymphopenia 
(particularly T cells) was also alleviated following PSP/Danshen 
treatment in a randomized, double-blind, placebo-controlled 
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TABLe 1 | Summary of immuostimulatory effects of Coriolus versicolor (CV).

Affected phenotype In vitro (murine) In vivo In vitro (Human) Clinical

Cytokine profile IFN-γ: Lym (12)
IL-1β: P.Mφ (6)
IL-2: Lym (12)
IL-12: Lym (12)
IL-18: Lym (12)
TNFα: P.Mφ (6, 52)

IL-1β: P.Mφ (6)
IL-6: Ser (10)
M-CSF: P.Mφ (16)
Spln (16)
TGF-β: CC (9)
TNFα: CC (9)
P.Mφ (6, 23), Ser (10, 11)

G-CSF: PBMC (14)
GM-CSF: PBMC (14)
IFN-γ: PBMC (7)
IL-1β: CC (22)
IL-1α: PBMC (14)
IL-6: CC (22), PBMC (8, 14)
IL-12: PBMC (8)
TNFα: PBMC (7, 8)

IFN-γ: PBMC (88)
IL-2 (98)
IL-2R: PBMC (88), Ser (92)

Humoral immunity Spln IgG1 (38)
Spln IgM (38)

Lym IgG (39)
Ser IgG (46, 88)
Ser IgM (37)

– LC-Ser IgG (93)
LC-Ser IgM (93)

Cell function Cyto: NK (83)a

NO: P.Mφ (52)
Phag: Mφ (37), P.Mφ51

Prolif: Spln (12), B cell (38)
TLR: Spln (38)

Act: Spln (9)
Cyto: NK (39)
NO: P.Mφ/Mφ (23, 34)
PGE2: P.Mφ (6)
Phag: Mφ (37)
Pop #: WBC (46)
Neut (46), TC (27, 34)
Lym (9), Spln (26)
Mφ (27), B cell (27)
NK (27, 83)a

Prolif: Lym (39)
ROS: RBC (83)
SO: P.Mφ (23)
SOD: Lym (81), Spln (81)
TLR: DC (52), TC (52)

FasR: Lym (35)
Pop #: Mono (36)
Prolif: Lym (35), PBMC (7)
TLR: PBMC (8, 14)

Cyto: BrCa-NK (91), NK (98)
Pop #: BrCa-Lym (91)
BrCa-CD8TC (91)
BrCa-CD19 B cell (91, 92)
BrCa-Th (92)
CD4TC (98)
LC-Leuk (93)
LC-Neut (93), Lym (98)
NPC-TC (96), Th (88)

Tumor growth – BrCa (34), s.c. (9, 26, 83)a AL (7, 27–32), LvC (24) LvC (90)

Microbiome – – – Pre-biotic (89)

Viral clearance – – – HPV (90)

Survival/slower disease 
progression

– – – ECa (97, 98)
LC (93, 98)
GCa (98)

Cancer associated symptoms – – – BF (93)
Pain and Immunity (CvC, ECa, LC, OvCa, 
GCa) (97)

Top row indicates application context of CV product.
Act, activation/stimulation; AL, acute leukemia; BrCa, breast cancer; BF, body fat; CC, cancer cells; CvC, cervical cancer; CrC, colorectal cancer; Cyto, cytolytic function; DC, 
dendritic cells; ECa, esophageal cancer; GCa, stomach or gastric cancer; GI, gastrointestinal cancer; HPV, human papilloma virus; LC, lung cancer; LvC, liver carcinoma; Leuk, 
leukocytes; Lym, lymphocytes; TGF, transforming growth factor; (P.)Mφ, (peritoneal) macrophages; Mono, monocytes; NK, natural killer; Neut, neutrophil; NO, nitrogen oxide/
associated molecules; NPC, nasopharyngeal carcinoma; OvCa, ovarian cancer; PGE2, prostoglandin E2; Phag, phagocytic activity; Pop #, population count; Prolif, proliferation; RBC, 
red blood cells; ROS, reactive oxygen species/oxidative stress; s.c., subcutaneous tumor model; Ser, serum; Spln, splenocytes; SO(D), superoxide (dismutase); TC, T cells; Th, 
T-helper cells; TLR, dependence on/activation of toll-like receptor pathways; WBC, white blood cells.
aPSK, otherwise PSP or CV extract.
Red text, decreased phenotype—otherwise increased.
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study in nasopharyngeal carcinoma patients (96). Indeed, PSP 
has been shown to significantly extend the 5-year survival 
of esophageal cancer patients in a double-blind trial and was 
reported to relieve pain and enhance immunity in a majority 
of esophageal, lung, stomach, ovarian, and cervical cancer 
patients reviewed by Kidd (97). In lung, gastric and esophageal 
carcinoma, PSP was also associated (to varying degrees) with 
alleviated symptoms, improved NK activity, increased IL-2 
production and CD4 T  cell levels, protective effects against 
radiation-induced lymphopenia, and improved survival rates 
when combined with radiotherapy. It was also reported to lead 
to tumor regression in liver carcinoma patients (98). Overall, the 

clinical application of PSP adjunct therapy for various malig-
nancies suggests disease-related improvement: amelioration of 
tumor-associated symptoms, reduction in disease progression, 
and increased survival rates. Rigorous randomized controlled 
trials are needed to confirm these observations.

SUMMARY

Preclinical in vitro and in vivo data suggest that PSP has immu-
nomodulatory (largely immunostimulatory) effects that may be 
beneficial (summarized in Figure 2; Table 1), particularly when 
combined with anticancer treatment. The immediate effect of 

http://www.frontiersin.org/Immunology/
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a PSP-mediated cytokine profile on the tumor microenviron-
ment requires further study to determine whether changes 
operate locally at the tumor site or act systemically to boost 
the immune system via paracrine mechanisms. Most cytokine 
changes induced by PSP may particularly affect NK cells, acting 
to enhance cytotoxic activity, trafficking and adhesion to target 
cells and promote NK cell proliferation. However, it remains 
to be determined how much of the induced cytokine profile 
in  vivo is an indirect effect in response to the tumoricidal 
activity by PSP, given that it can interrupt the cell cycle, induce 
apoptosis, and sensitize tumor cells to other chemotherapeutic 
agents.

Polysaccharopeptide also has notable effects on various other 
immune subsets. Separate studies on CV extracts or PSP show 
increased proliferation of rodent splenocytes, T and B  cells, 
NK cells and neutrophils, as well as human PBMCs, lymphocytes. 
A reduction in lymphocyte Fas receptor levels, and increased 
monocyte counts can also occur. PSP appears to sensitize tumors 
to, and alleviate the symptoms of radiation and chemotherapy, 
but more careful examination of underlying mechanisms is 
lacking and urgently needed, especially given the increasingly 
common use of CV extracts as adjunct therapy in some medical 
communities.

Clinical studies with PSP may be easier to interpret than some 
of the preclinical data. Although the data may be encouraging, 
a mechanistic understanding of how PSP induces its immu-
nomodulatory effects remains lacking. Additional data at the 
cellular and molecular levels after oral administration of PSP are 
likely to provide impetus for the design and initiation of rigorous 
prospective trials of adjunct therapy.

CONCLUSiON

Reports focusing on the mostly positive immunomodulatory 
effects of CV indicate the need to conduct rigorous studies to 
identify underlying mechanisms of action. Future work must 
focus on better defining the specific molecular targets of PSP 
using transgenic mouse models and loss of function strategies of 
likely targets. More stringent characterization of the components 
of PSP to better define the peptide moiety of the molecule is 
required. Currently, the Protein Data Bank contains only one 
entry of a protein derived from CV, a polyphenol oxidase (PDB: 
1GYC). While the structure of the polysaccharide moiety is 
informative, identifying the peptide portion of PSP will provide 
clues to relevant cell surface receptors. The use of established 
techniques in analytical and medicinal chemistry holds potential 
for generating more potent drugs based on PSP structure and 
mechanisms of action and an opportunity to optimize efficacy 
and mitigate off-target effects.
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