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A paternal bias in germline mutation is 
widespread in amniotes and can arise 
independently of cell division numbers
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Abstract In humans and other mammals, germline mutations are more likely to arise in fathers 
than in mothers. Although this sex bias has long been attributed to DNA replication errors in sper-
matogenesis, recent evidence from humans points to the importance of mutagenic processes that 
do not depend on cell division, calling into question our understanding of this basic phenomenon. 
Here, we infer the ratio of paternal-to-maternal mutations, α, in 42 species of amniotes, from puta-
tively neutral substitution rates of sex chromosomes and autosomes. Despite marked differences 
in gametogenesis, physiologies and environments across species, fathers consistently contribute 
more mutations than mothers in all the species examined, including mammals, birds, and reptiles. In 
mammals, α is as high as 4 and correlates with generation times; in birds and snakes, α appears more 
stable around 2. These observations are consistent with a simple model, in which mutations accrue 
at equal rates in both sexes during early development and at a higher rate in the male germline after 
sexual differentiation, with a conserved paternal-to-maternal ratio across species. Thus, α may reflect 
the relative contributions of two or more developmental phases to total germline mutations, and is 
expected to depend on generation time even if mutations do not track cell divisions.

Editor's evaluation
This paper challenges a fundamental view concerning why males of most animals have a higher 
germline mutation rate than females. Evidence is provided to show that it is not simply the fact 
that males have more cell divisions in the germline, but instead, most of the mutations arise from 
a different balance of DNA damage vs. DNA repair. The case is supported by data from multiple 
species, from de novo mutation rate estimates from pedigrees, and from fits to a simple heuristic 
model. This work will be of interest to the broad field of DNA mutations and DNA repair, as well as 
evolutionary and phylogenomics researchers.

Introduction
Humans tend to inherit more de novo mutations (DNMs) from their fathers than from their mothers. 
This phenomenon was first noted over 70 years ago, when JBS Haldane relied on the population 
frequency of hemophilia in order to infer that the DNM rate at the disease locus is substantially higher 
in fathers (Haldane, 1946). Work since then, particularly in molecular evolution, has confirmed a ‘male 
bias’ in mutation (henceforth paternal bias) (Makova and Li, 2002; Wolfe and Li, 2003; Li et al., 
1996; Presgraves and Yi, 2009; Nachman and Crowell, 2000; Huang et al., 1997; Shimmin et al., 
1993b; Chang et al., 1994), with estimates from human pedigrees indicating that, genome-wide, 
DNMs occur roughly four times more often on the paternal genome than on the maternal one (Kong 
et al., 2012; Francioli et al., 2015).
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The textbook explanation for the paternal mutation bias is that it arises as a consequence of the 
vastly different numbers of cell divisions – and hence DNA replication cycles – necessary to produce 
sperm compared to oocytes (Crow, 2000; Drost and Lee, 1995; Penrose, 1955; Strachan and Read, 
2018). In humans as in other mammals, oocytes are arrested in meiotic prophase I at birth, with no 
subsequent DNA replication in the mother’s life, whereas spermatogonia start dividing shortly before 
puberty and divide continuously throughout the reproductive life of the father (Drost and Lee, 1995; 
Guo et al., 2020). The observation that the number of DNMs increases with paternal age has been 
widely interpreted in this light, as evidence for DNA replication errors being the predominant source 
of germline mutation (Kong et al., 2012; Francioli et al., 2015; Goldmann et al., 2019; Jónsson 
et al., 2017).

A number of recent findings have called this view into question, however. First, analyses of large 
numbers of human pedigrees revealed an effect of maternal age on the number of maternal DNMs 
(Wong et al., 2016; Goldmann et al., 2016), with an additional ∼0.4 mutations accrued per year. 
Given the lack of mitotic cell division in oocytes after birth, this observation indicates that by typical 
reproductive ages, at least half of maternal DNMs arise from DNA damage (Jónsson et al., 2017). 
Second, despite highly variable rates of germ cell division over human ontogenesis, germline muta-
tions appear to accumulate with absolute time in both sexes, resulting in a ratio of paternal-to-
maternal germline mutation, α, of around 3.5 at puberty and very little increase with parental ages 
(Gao et al., 2019). Third, studies in a dozen other mammals suggest that α ranges from 2 to 4 whether 
the species reproduces months, years, or decades after birth (Wu et al., 2020; Wilson Sayres et al., 
2011; Wang et al., 2022a), when estimates of germ cell division numbers at time of reproduction 
would predict a much wider range in α (Drost and Lee, 1995; Lindsay et al., 2019; Harland et al., 
2017; Wu et al., 2020).

Explaining the observations in humans under a model in which most mutations are due to repli-
cation errors, and thus track cell divisions, would call for an exquisite balance of cell division and 
mutation rates across developmental stages in both sexes (Gao et al., 2016). In males, the constant 
accumulation of mutations with absolute time would require varying rates of germ cell divisions over 
ontogenesis to be precisely countered by reciprocal differences in the per cell division mutation rates. 
In females, it would necessitate that the mutation rate per unit of time be identical whether mutations 
arise from replication errors or damage. In turn, the similarity of α across mammals that differ dras-
tically in their reproductive ages would entail two distinct sources of mutation – replication error in 
males and damage in females – covarying in tight concert with generation times.

A more parsimonious alternative is that most germline mutations arise from the interplay between 
damage and repair rather than from replication errors (Seplyarskiy et al., 2021), and that the balance 
results in more mutations on the paternal than the maternal genome (Gao et al., 2016). Assuming 
repair is inefficient relative to the length of the cell cycle or, perhaps more plausibly, that repair is 
efficient but inaccurate (Vilenchik and Knudson, 2003; Abascal et al., 2021), mutations that arise 
from damage will not track cell divisions (Gao et al., 2016). Damage-induced mutations must underlie 
the observed maternal age effect on DNMs in humans; they could also account for the accumulation 
of germline mutations in proportion to absolute time in males, assuming fixed rates of damage and 
repair machinery errors in germ cells.

Multiple lines of evidence have emerged in support of damage-induced mutations being 
predominant in the human germline. Analyses of the mutation spectrum in humans indicate that 
75% of DNMs and 80% of mutations in adult seminiferous tubules are due to mutation ‘signatures’ 
SBS5/40 (Rahbari et al., 2016; Moore et al., 2021), which are clock-like, uncorrelated with cell divi-
sion rates in the soma (Alexandrov et al., 2015; Alexandrov et al., 2020), and also predominant 
in post-mitotic cell types such as neurons (Lodato et al., 2018; Abascal et al., 2021). In addition, 
most substitutions in post-pubertal germ cell tumors are attributed to SBS5/40, in both females 
and males (Oliver et al., 2022). More generally, cell division rates do not appear to be a major 
determinant of mutation rates across somatic tissues (Blokzijl et al., 2016): notably, post-mitotic 
neurons accumulate mutations at a similar rate as mitotic somatic cell types that are the product 
of ongoing cell divisions (Abascal et al., 2021). A decoupling between cell division numbers and 
mutation burden has also been described in colonic crypts across mammals (Cagan et al., 2022), 
and in yeast, up to 90% of mutations have been estimated to be non-replicative in origin (Zhou 
et al., 2021). Altogether, these results suggest an important role, for both germline and soma, of 
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mutagenic processes that accumulate with absolute time, as expected from damage-induced muta-
tions (Gao et al., 2016).

In undermining the prevailing understanding of the paternal bias in human germline mutations, 
these observations revive the question of how the bias arises, as well as of the influences of life history 
traits and exogenous or endogenous environments. To investigate them, we took a broad taxonomic 
view, characterizing the paternal mutation bias across amniotes, including mammals but also birds 
and snakes, which differ in potentially salient dimensions. As two examples, in birds as in mammals, 
oogenesis is arrested by birth in females, while spermatogenesis is ongoing throughout male repro-
ductive life (Guraya, 1989; Deviche et al., 2011), but birds have internal testes whereas mammals 
usually have external testes. In addition, mammals and birds are endotherms, in contrast to ecto-
thermic reptiles such as snakes. More generally, the taxa considered vary widely in their life histories, 
physiologies, and natural habitats.

Results
Estimating sex differences in germline mutation rates across amniotes
To estimate α in each lineage, we based ourselves on the evolutionary rates at putatively neutrally 
evolving sites of sex chromosomes compared to the autosomes (Miyata et al., 1987). The more direct 
approach of detecting DNMs in pedigrees requires them to be available for each species, and in large 
numbers for the estimates to be precise. In contrast, the evolutionary method is in principle applicable 
to any set of species with high-quality genome assemblies and a stable sex karyotype. It takes advan-
tage of the fact that at the population level, sex chromosomes spend different numbers of genera-
tions in each sex (e.g., the X chromosome spends twice as many generations in females as in males), 
whereas autosomes spend an equal number in both (Figure 1A). Thus, all else being equal, if there is 
a paternal mutation bias, an autosome with greater exposure to the more mutagenic male germline 
will accumulate more neutral substitutions than the X over evolutionary timescales (Figure 1A); the 
inverse will be true for the autosomes compared to the Z chromosome (Miyata et al., 1987).

Such evolutionary approaches have been widely applied, but until recently they were limited in 
the number of loci or species (e.g., Shimmin et al., 1993b; Huang et al., 1997; Pecon Slattery and 
O’Brien, 1998; Ellegren and Fridolfsson, 1997; Carmichael et al., 2000; Nachman and Crowell, 
2000) and did not take into account the influence of sex differences in generation times on the esti-
mation of α (Wilson Sayres et al., 2011). An additional complication to consider is that X (Z) and auto-
somes differ not only in their exposures to male and female germlines but in a number of technical and 
biological features (notably, GC content) that may need to be controlled for (Shimmin et al., 1993a; 
Pink and Hurst, 2010; Agarwal and Przeworski, 2019). Moreover, analyses involving closely related 
species can be confounded by the effects of ancestral polymorphism: for example, lower ancestral 
diversity in the X chromosome relative to the autosomes reduces the X-to-autosome divergence ratio, 
leading to overestimation of α (Presgraves and Yi, 2009; Figure 1B). In birds, unresolved branches 
within the phylogeny present an additional difficulty in estimating substitution rates (Jarvis et al., 
2014; Reddy et al., 2017).

Here, we designed a pipeline for estimating the paternal mutation bias systematically across a 
wide range of species, mindful of these issues. To these ends, we employed existing whole genome 
alignments (Zoonomia Consortium, 2020; Feng et al., 2020) or produced our own (for snakes, see 
Sequence alignments in Materials and methods), focusing on assemblies with high quality and conti-
guity and, where possible, those based on a homogametic individual. To handle the confounding 
effects of ancestral polymorphism on divergence, we thinned species in the phylogeny to ensure a 
minimum level of divergence between them, relative to polymorphism levels (see Species selection 
criteria in Materials and methods). This stringent filtering procedure resulted in three whole genome 
alignments including 20 mammals, 17 birds, and 5 snake species, respectively (Supplementary file 2).

In order to estimate neutral substitution rates from the alignments and compare X (Z) and auto-
somes while minimizing confounding factors, we focused on non-repetitive, non-exonic regions that 
were orthologous across all species in an alignment and did not overlap with pseudo-autosomal 
regions (PARs) with orthologs on the Y (W) chromosome (see Selecting non-repetitive and putatively 
neutral sequences in Materials and methods; see Figure 2—figure supplement 1F for a more strin-
gent masking of all conserved regions). To account for differences between X (Z) and autosomes in 
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features other than their exposure to each sex, we regressed putatively neutral substitution rates in 
the 1 Mb genomic windows against GC content and GC content squared (Figure 1B). We took this 
approach because GC content is readily obtained from any genome sequence and is highly correlated 
with known modifiers of the mutation rate such as replication timing and the fraction of CpG dinu-
cleotides (Koren et al., 2012; Agarwal and Przeworski, 2019). In principle, X chromosome inacti-
vation could also influence relative substitution rates on X versus autosomes, but in the germline, it 
is short-lived: limited in mice and humans to early embryogenesis in females and brief meiotic and 
post-meiotic periods in males (Chuva de Sousa Lopes et al., 2008; Guo et al., 2015). We obtained 
substitution rate estimates for the X (Z) chromosome and autosomes from the regression fit. Finally, 
we inferred α for the terminal branches leading to the 42 amniote species from the ratio of the substi-
tution rate estimates for the X (Z) versus the autosomes (Figure 2), taking into account sampling error 
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Figure 1. Estimating the paternal bias in mutation from neutral substitution rates of sex chromosomes and autosomes. (A) On average, the lineage 
of an X chromosome spends fewer generations in males than females. Given a higher mutation rate in males than in females and all else being equal, 
this leads to lower rates of neutral substitutions on the X chromosome compared to autosomes (Miyata et al., 1987). (B) Procedure for estimating the 
ratio of paternal-to-maternal mutation rates, α, from substitution rates in sex chromosomes and autosomes. The autosomes and the X chromosome are 
partitioned into 1 Mb windows, depicted in purple and orange, respectively. Each window is filtered to focus on putatively neutrally evolving sequences 
(see Selecting non-repetitive and putatively neutral sequences in Materials and methods), and its GC content is calculated (represented by shading). 
The putatively neutral substitution rates per window are then regressed against the GC content (center panel, see Estimating α from X-to-autosome 
substitution rate ratios in Materials and methods). Substitution rate estimates for the X chromosome and autosomes are obtained from the regression fit 
(red points). Finally, the ratio of the point estimates is converted to an estimate of α (right panel). An analogous procedure applies to comparisons of the 
Z chromosome and autosomes in a ZW sex determination system.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Identification of pseudo-autosomal regions in Thamnophis.

https://doi.org/10.7554/eLife.80008
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Figure 2. Estimates of the paternal bias in mutation across 42 amniote lineages. Colored points denote estimates 
of α from X (Z)-to-autosome substitution rate ratios (‍̂αevo‍) in mammals (top, orange), birds (middle, blue), and 
snakes (bottom, green). Vertical colored lines denote the mean ‍̂αevo‍ for each group, while the vertical gray 
dashed line denotes ‍α = 1‍ (i.e., no sex bias in mutation). Species in each group are plotted by their phylogenetic 
relationships and branch lengths are scaled by the neutral substitution rate estimated from autosomes (see 
Estimating putatively neutral substitution rates in Materials and methods). Note that branch lengths are 
comparable within the phylogeny of each taxon but not across taxa, as the scaling differs (see the legend for each 
group). In mammals, ‍̂αevo‍ was estimated from neutral substitutions along the lineage from the tip to the most 
recent common ancestor indicated in the phylogeny. In birds, where phylogenetic relationships are more tenuous, 
we divided species into six subgroups (Supplementary file 5) to avoid highly uncertain ancestral nodes in 
Neoaves; thus, some ‍̂αevo‍ estimates in Neoaves average over deeper splits than suggested by the full phylogeny, 
which we plot for clarity. Asterisks indicate species with chromosome-level assemblies. Darker colored horizontal 
lines behind the points represent 95% CIs, which were computed by bootstrap resampling of the 1 Mb genomic 

Figure 2 continued on next page
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as well as uncertainty in the ratio of paternal-to-maternal generation times (Amster and Sella, 2016) 
(see Estimating α from X-to-autosome substitution rate ratios in Materials and methods).

Overall, our evolutionary-based estimates, ‍̂αevo‍, are consistent with estimates from pedigree 
sequencing studies, ‍̂αdnm‍ (Figure 2). Notably, and reassuringly, the point estimates for species with 
the largest amount of available DNM data (e.g., humans, mice, and cattle) are in very close agree-
ment. Even in the absence of estimation error, this concordance is not necessarily expected, as ‍̂αevo‍ 
is an average over many thousands of generations of evolution, whereas estimates from DNMs are 
based on small numbers of families at present. In principle, differences between the estimates could 
therefore arise if α evolves rapidly (as may have happened in the lineage leading to macaque), or if 
the ages of the parents in the pedigree are quite unrepresentative of average paternal-to-maternal 
generation times in evolution (Figure 2; Amster and Sella, 2016). The general concordance between 
‍̂αevo‍ and ‍̂αdnm‍ therefore suggests that the evolutionary approach is providing reliable estimates and 
the paternal bias in mutation is not rapidly evolving.

Nonetheless, it is unlikely that our regression model perfectly accounts for all the genomic features 
that differ between sex chromosomes and autosomes other than exposure to sex. Remaining disagree-
ment between ‍̂αevo‍ and ‍̂αdnm‍ could therefore also arise from mutation rate modifiers that differentially 
affect sex chromosomes and autosomes. For example, in cats, the low ‍̂αevo‍ compared to ‍̂αdnm‍ (Wang 
et al., 2022b) could be due to unusual features of the X chromosome: the feline X chromosome is 
known to harbor a large recombination coldspot spanning over 50 Mb (Li et al., 2016), visible in 
its effects on GC substitution rates (Figure 2—figure supplement 2; Meunier and Duret, 2004), 
and these features may have influenced the rate of substitution of the X chromosome relative to the 
autosomes.

A paternal bias in mutation is widespread in amniotes
A paternal bias in mutation is seen across amniotes, with a range of 1–4 in the species considered 
(Figure 2). The ‍̂αevo‍ estimates remain similar if we exclude hypermutable CpG sites (Figure 2—figure 
supplement 1B), or focus only on mutation types that are not subject to the effects of GC-biased 
gene conversion (gBGC) (Figure 2—figure supplement 1F and Figure 2—figure supplement 3). 
Although the absolute magnitude of ‍̂αevo‍ exhibits some sensitivity to different choices of conserva-
tion filters (e.g., excluding all conserved regions, not just exons) and different substitution types, ‍̂αevo‍ 
are robustly above 1 and their ranking across species remains similar across different filtering criteria 
(see Figure 2—figure supplement 1 for details). The robustness of ‍̂αevo‍ across conditions and filters 
confirms that, while our pipeline may not account for all the differences between autosomes and X 
(Z) chromosomes unrelated to sex differences in mutation, the qualitative patterns are reliable. These 
results therefore establish that the paternal bias in mutation is not a feature of long-lived humans 
or of mammals, but is instead ubiquitous across species that vary markedly in their gametogenesis, 
physiology, and life history.

The effects of gBGC track recombination rates and result in greater selection for GC in regions 
of higher recombination. Therefore, if α is similar for different types of DNMs, as has been found 
in humans (Jónsson et al., 2017; Gao et al., 2019), the greater population recombination rate of 
autosomes relative to the sex chromosomes should lead the the X-to-autosome substitution rate ratio 
of gBGC-favored mutation types (T>C and T>G) to be somewhat lower than that of mutation types 

windows across 500 replicates; the central 95% interval across bootstrap replicates is shown. Lighter colored 
horizontal lines include uncertainty in the ratio of paternal-to-maternal generation times, allowing the ratio to 
range between 0.9 and 1.1 (Amster and Sella, 2016). Short vertical red lines denote point estimates of ‍̂αdnm‍ from 
published pedigree mutation studies of de novo mutations, and the surrounding horizontal gray boxes represent 
the 95% binomial CI for those estimates.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. ‍̂αevo‍ for each species, obtained under variants of the pipeline presented in the main text.

Figure supplement 2. Expected equilibrium GC content (GC*) in the mammalian X chromosomes.

Figure supplement 3. Estimation of ‍̂αevo‍ for mutation types affected or unaffected by GC-biased gene 
conversion (gBGC).

Figure 2 continued

https://doi.org/10.7554/eLife.80008
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unaffected by gBGC (C>G and T>A). Consistent with expectation, ‍̂αevo‍ estimates in mammals using 
only gBGC-favored mutation types are inflated relative to estimates from mutation types unaffected 
by gBGC (Figure 2—figure supplement 3). Also as expected, bird and snake species with ZW sex 
determination exhibit the opposite pattern (i.e., a deflated ratio of Z-to-autosome substitution rate 
leads to a decreased estimate of ‍̂αevo‍; Figure 2—figure supplement 3). The behavior of the different 
mutation types therefore provides a further sanity check on our estimates. While the estimation of 

‍̂αevo‍ could be further partitioned into single mutation classes, such estimates are noisier and – given 
the lack of ground truth – harder to interpret; we therefore focused on α for all substitution types 
combined.

Within mammals, the mean value of ‍̂αevo‍ is 2.7, with a range 1.0–4.1 and a coefficient of variation of 
0.29. In birds, ‍̂αevo‍ is lower on average but also seemingly more stable, ranging from 1.5 to 2.7 (mean 

Figure 3. Relationship between ‍̂αevo‍ and generation time estimates in mammals and birds. Estimates of α from 
X (Z)-to-autosome comparisons are plotted against generation times from the literature (see Supplementary file 
2), on a log scale. Lines denote the phylogenetic generalized least squares regression fits in mammals (orange) 
and birds (blue). λ refers to Pagel’s λ (Pagel, 1999), a measure of the strength of phylogenetic signal, which 
was inferred via maximum likelihood (see Testing relationships between α and life history traits in Materials and 
methods). Fixing λ to 1 in birds, as estimated for mammals, did not meaningfully improve the fit (p-value =0.282, 
‍r2 = 0.08‍).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Relationship between mammalian ‍̂αevo‍ and various life history traits.

Figure supplement 2. Principal component (PC) analysis of four life history traits.

https://doi.org/10.7554/eLife.80008
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= 1.8, coefficient of variation = 0.19). In the handful of snake species sampled, the mean is similar to 
that of birds and ‍̂αevo‍ ranges from 1.3 to 2.2 (mean = 1.7, coefficient of variation = 0.23), in agreement 
with a previous evolutionary estimate for rattlesnake (α=2.0; Schield et al., 2019).

In mammals, variation in α has long been known to be associated with generation times, and 
has been consistently interpreted as resulting from greater numbers of replication errors in species 
with longer-lived fathers (e.g., Wilson Sayres et al., 2011; Chang et al., 1994; Li et al., 1996; Li 
et al., 2002). We confirmed the observation here: after accounting for the phylogenetic relationship 
between species, mammals reproducing at older ages show a stronger paternal bias in mutation 
(p-value = 0.01, ‍r2 = 29%‍; Figure 3). Statistically significant relationships also exist between ‍̂αevo‍ and 
other life history traits (Figure 3—figure supplement 1), but these traits are strongly correlated with 
one another (Figure 3—figure supplement 2) and generation time is the strongest single predictor 
(Figure 3—figure supplement 1; see Testing relationships between α and life history traits in Mate-
rials and methods). In contrast, a significant relationship between generation time and ‍̂αevo‍ is not seen 
in birds (p-value = 0.30, ‍r2 = 7%‍; Figure 3; Wang et al., 2014), despite similar numbers of species 
and a comparable range of generation times to mammals. Moreover, we could reject the null model 
of a slope in birds equal to or greater than that of mammals (p-value = ‍10−5‍). (Given the paucity of 
generation time and α estimates for snakes, we could not test the relationship in reptiles.) Given 
recent evidence that most mutations depend on absolute time and not cell division rates, the standard 
explanation for this generation time effect no longer holds. These observations therefore raise the 
question of how else the relationship between generation times and α in mammals can be explained.

A cell-division-independent explanation for the correlation between α 
and generation time
In eutherian mammals, embryo development is likely independent of sex until primordial germ cell 
(PGC) specification and subsequent development of the gonads (Lin and Capel, 2015). As a result, 
mutations arising during early embryogenesis (Early) are expected to occur at a similar rate in males and 
females (‍αEarly = 1‍), as has been inferred in the few pedigree studies in which DNMs during parental 
early embryogenesis are distinguished from mutations later in development, namely in humans (Sasani 
et al., 2019), cattle (Harland et al., 2017), and mice (Lindsay et al., 2019; Figure 4A). While sex 
differences in early development may exist (Engel, 2018), differences in male and female mutation 
rates at such an early stage are likely modest in mammals (Spiller et al., 2017; Hancock et al., 2021). 
At some point after sexual differentiation of the germline, however (in what we term the Late stage) 
mutation rates in the two sexes need no longer be the same: sources and rates of DNA damage could 
differ between germ cells, as could the efficiency and accuracy of repair. Indeed, human fathers that 
recently reached puberty contribute over three times more mutations than similarly aged mothers 
(Gao et al., 2019). Intriguingly, the magnitude of paternal bias for mutations that occurred long after 
sexual differentiation of the PGCs appears to be similar in mice, cattle, and humans, at approximately 
4:1 (Lindsay et al., 2019; Harland et al., 2017; Sasani et al., 2019; Figure 4A).

In light of these observations, we considered a simple model in which α in mammals is the outcome 
of two developmental stages with distinct ratios of paternal-to-maternal mutations. In the Early stage 
until germline sex differentiation, we assumed a paternal-to-maternal mutation ratio of 1 and an 
expected number of mutations (‍Me‍) on par with what is observed in humans (i.e., 5 mutations per 
haploid genome; Sasani et al., 2019; Jonsson et al., 2021; Ju et al., 2017; Figure 4B). In the Late 
developmental stage after germline sex differentiation, which varies in length among species, we 
assumed mutations arise at a constant rate per year, ‍µs‍ in sex ‍s‍ (‍s ∈ {f, m}‍). If we assume the length 
of Early to be negligible relative to the generation time, ‍Gs‍ in sex ‍s‍, then the expectation of α can be 
written as:

	﻿‍
α = Me + µmGm

Me + µfGf
.
‍�

(1)

If the ratio ‍µm/µf ‍ is 4 across species, as suggested by DNM data (Lindsay et al., 2019; Harland 
et al., 2017; Sasani et al., 2019; Figure 4A and Supplementary file 3), this model yields a relation-
ship between α and generation time bounded below by 1 and with a plateau at 4, assuming the same 
generation times in the two sexes (Figure 4C); more generally, the height of the plateau depends 
on the ratio of paternal-to-maternal generation times (Figure 4—figure supplement 1). The rapidity 

https://doi.org/10.7554/eLife.80008
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Figure 4. Variation in α among mammals may reflect varying exposures to different developmental stages. (A) Ratio of paternal-to-maternal de novo 
mutations (DNMs) occurring in early embryogenesis (Early, white points), after the sexual differentiation of the germline (Late, gray points) and in both 
of these stages combined (Total, red line), for the three mammalian species in which this classification is available (mouse Lindsay et al., 2019, cattle 
Harland et al., 2017, and human Sasani et al., 2019). For each species, the percentage of DNMs occurring at each stage are indicated and used to 
scale the size of points. Vertical lines show the 95% binomial CIs. Since the phasing rate is not equal across developmental stages, point estimates for 
α in Total were computed by extrapolating the proportion of paternally and maternally phased DNMs in each stage to all the DNMs in that stage (i.e., 
assuming full phasing) (see Estimating α from pedigree studies in vertebrates in Materials and methods). (B) Schematic representation of a model in 
which α is the outcome of mutation in two developmental stages (see Modeling the effects of germline developmental stages on α in Materials and 
methods). (C) Expected relationship between α and generation time under the model outlined in B, assuming generation times are the same in both 
sexes. The increase of α with generation time depends on the paternal mutation rate per year in Late, ‍µm‍, as illustrated by the purple gradient. (D) Fits 
of predicted α values to ‍̂αevo‍ (orange) and ‍̂αdnm‍ (gray). In each species, α is predicted with Equation 1 assuming ‍Me = 1.66 × 10−9

‍ and using ‍µf ‍ 
and ‍µm‍, the latter estimated from autosomal branch-specific substitution rates per year (‍̂αevo‍) or as estimated from pedigree sequencing data (‍̂αdnm‍) 
(see Modeling the effects of germline developmental stages on α in Materials and methods). The orange and gray lines denote the regression fit using 
phylogenetic generalized least squares (PGLS). PGLS statistics are shown for the two models (see Figure 3 legend for details).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The maximal value of α depends on the ratio of paternal-to-maternal generation times.

Figure supplement 2. Ratio of crypt-to-sperm mutation rate per unit of time in four mammals.

https://doi.org/10.7554/eLife.80008
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with which α reaches this asymptote is determined by the magnitude of ‍µm‍ (and ‍µf ‍) in the Late stage 
(Figure 4C). Most pertinent, a positive relationship between α and the sex-averaged generation time 
is expected as long as ‍µmGm > µfGf ‍.

Using this model, we then predicted α for the terminal branches in the mammalian tree. To esti-
mate the number of mutations occurring in Late for each branch, we used the evolutionary rates in 
Figure 2A. Specifically, we calculated a sex-averaged substitution rate per generation by multiplying 
the autosomal yearly substitution rate in each branch (‍µy‍) by a generation time estimate for its tip 
(Supplementary file 2). Given a fixed ratio of paternal-to-maternal mutation rates of 4 in the Late 
stage, the mutation rate for each sex can be calculated for any given ratio of paternal-to-maternal 
generation times:

	﻿‍
µf =

µy
(
Gf + Gm

)
− 2Me

Gf + 4Gm
.
‍�

(2)

From the parental mutation rates and assuming a fixed ‍Me‍, we obtained an estimate of α that we 
can use to predict ‍̂αevo‍ using Equation 1 (see Modeling the effects of germline developmental stages 
on α in Materials and methods). This model explains a significant proportion of the variance in ‍̂αevo‍ 
in mammals (‍r2 = 37%‍; p-value = 0.005; Figure 4D). After taking into account sampling error in our 
‍̂αevo‍ estimates (see Modeling the effects of germline developmental stages on α in Materials and 
methods), it explains 42% of the variance in α across species. Moreover, the fit of the model remains 
good regardless of the precise number of Early mutations assumed (see Modeling the effects of germ-
line developmental stages on α in Materials and methods). The two clear outliers are carnivores, for 
which ‍̂αevo‍ may be an underestimate, given the higher estimate from DNMs in cats (Figure 2).

These predictions rely on evolutionary estimates that are uncertain, due for instance to inaccuracies 
in split time estimates and the use of contemporary generation times as proxies for past ones. If we 
instead predict α using parameters derived from pedigree data in the nine mammalian species for 
which at least 30 DNMs have been phased and more than one trio has been studied (Modeling the 
effects of germline developmental stages on α in Materials and methods), the model explains 86% 
of the variance in ‍̂αdnm‍ (p-value = ‍3 × 10−4‍; Figure 4D). We caution that this assessment is based on 
few phylogenetically independent contrasts, however, and so while the fit of the model again appears 
quite good, the variance explained may be deceivingly high.

In any case, this phenomenological model clarifies that the increased α seen in long-lived mammals 
may simply reflect a reduction in the fraction of early embryonic mutations relative to total number 
of mutations per generation – consistent with the higher proportion of Early mutations in mice and 
cattle compared to humans (Figure 4A). This model can also explain the only modest increase in α 
with parental ages observed in humans (Gao et al., 2019).

Given this explanation for the effect of generation times on α in mammals, why is a relationship 
not seen in birds (Figure 2)? One interpretation is simply a lack of statistical power: since the ratio 
of paternal-to-maternal age effects in the Late stage is lower in birds than in mammals (around 2 
instead of 4), under our model, bird generation times would influence α within a narrower range (i.e., 
between 1 and 2). Alternatively, the lack of a relationship between α and generation times in birds 
could reflect their distinct germ cell development: Unlike mammals, avian sexual phenotype is directly 
determined by the sex chromosome content of individual cells (Zhao et al., 2010; Ioannidis et al., 
2021) and PGCs are determined by inheritance of maternally derived gene products (Extavour and 
Akam, 2003). Given these features, it seems plausible that sex differences in mutation rates appear 
earlier in ontogenesis in birds than in mammals, consistent with reported sex differences in the cellular 
phenotypes of PGCs prior to gonad development (Soler et al., 2021). If indeed the mutation rate in 
the two bird sexes differs from very early on in development (i.e., if term ‍Me ≈ 0‍ in Equation 1), then 
assuming a fixed ratio of paternal-to-maternal generation times, our model predicts the sex-averaged 
age of reproduction will have little to no influence on α.

Discussion
Analyzing diverse species with the same pipeline, we found that, far from being a feature of species 
with long-lived males, a paternal bias in germline mutation is ubiquitous across amniotes that differ 
markedly in their life history, physiology, and gametogenesis. Moreover, by considering the different 

https://doi.org/10.7554/eLife.80008
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development stages over which germline mutations arise, we provide a new and simple explanation 
for variation in the degree of sex bias across mammals that does not require dependence on the 
number of cell divisions.

These findings do not explain why male germ cells accumulate more mutations than female ones, 
however. Given that the paternal bias varies little across species exposed to disparate physical environ-
ments, and presumably distinct exogenous mutagens, the proximate causes of the paternal bias are 
likely sex differences in endogenous sources of DNA damage or in repair mechanisms. For instance, 
the effects of reactive oxygen species, a major source of DNA damage, may be greater in male germ 
cells than in oocytes (Smith et al., 2013; Rodríguez-Nuevo et al., 2022). In turn, the evolutionary 
cause of the paternal bias could be related to the different evolutionary pressures acting on each sex 
of anisogamous species, for example due to greater competition among sperm than among oocytes.

Another question raised by our findings is why, after sexual differentiation of the germline, muta-
tion appears to be more paternally biased in mammals (∼4:1) than in birds and snakes (∼2:1). In that 
regard, it will be of interest to collect pedigree data from these taxa, with which to compare mutation 
signatures to those typically seen in mammals.

Beyond these questions, our findings suggest a change of focus, reframing sex differences in germ-
line mutation rate as part of a broader puzzle: why certain cell types accrue more mutations than others. 
In that regard, it is intriguing that the relative mutation rates of different cell types seem similar across 
mammals. The balance of damage and repair results in an approximately fourfold higher mutation rate 
in spermatogonia compared to oocytes across mammalian species (Figure 4A). Similarly, comparing 
yearly mutation rates in colonic crypts (Cagan et al., 2022) to estimates for spermatogonia, the ratio 
of crypt-to-sperm mutation rates appears relatively stable across four mammalian species (Figure 4—
figure supplement 2). This observation suggests that, beyond spermatogonia and oocytes, the rela-
tive mutagenicity of different cell types may be conserved across mammals. Mutation rates in different 
cell types could be coupled over time either because of natural selection to maintain specific rates in 
each cell type or because changes to the repair machinery in some cell types (potentially, germ cells) 
have pleiotropic consequences on mutation rates in others. Regardless, our observations point to a 
role of natural selection in maintaining the relative rates at which mutations accumulate in different 
cell types over long evolutionary timescales.

Materials and methods
Sequence alignments
In mammals, we obtained sequence alignments from the 241-way multi-alignment generated by the 
Zoonomia Project (https://zoonomiaproject.org/) (Zoonomia Consortium, 2020). To assess the effect 
of reference sequence selection on our α estimates, we considered two alignments, one using the 
Homo sapiens genome as reference sequence and the other using the Mus musculus genome as 
reference (Figure 2—figure supplement 1A).

In birds, we subdivided the 363-way alignment generated by the B10K project (https://b10k.​
genomics.cn/) (Feng et al., 2020) into six subgroups, avoiding the inclusion of ancestral nodes with 
high uncertainty within Neoaves (Feng et al., 2020; Jarvis et al., 2014; Prum et al., 2015). Since 
a species topology is required to accurately infer branch-specific substitution rates, we built species 
sets by combining monophyletic groups that are well supported across data types and studies (Reddy 
et al., 2017; Supplementary file 4). In all cases, we used the Gallus gallus genome as the reference 
sequence.

In snakes, we built our own multiple genome alignments using whole genome assemblies down-
loaded from the National Center for Biotechnology Information (NCBI) database (Supplementary file 
1). To speed up computation, we removed repetitive regions – which are ignored in all downstream 
analyses – from the whole genome FASTA files prior to alignment by converting lowercase bases (i.e., 
a, t, c, g) to N bases. We ran the Cactus program (v1.2.5, https://github.com/ComparativeGenom​
icsToolkit/cactus, Hickey, 2022a) to align the genomes in each clade using topologies generated by 
TimeTree as our guide trees (see trees/​Snakes.​TimeTree.​nwk at https://github.com/flw88/mut_sex_​
bias_amniotes/; de Manuel, 2022). For subsequent analyses, we used Thamnophis elegans as the 
reference sequence in snakes.

https://doi.org/10.7554/eLife.80008
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For each taxon, we converted the HAL file into a Multiple Alignment Format (MAF) file and split the 
alignment into non-overlapping windows of 1 Mb using the hal2maf tool in halTools (https://github.​
com/ComparativeGenomicsToolkit/hal/; Hickey, 2022b):

hal2maf $hal $maf --targetGenomes $species_list --refGenome \
$reference --refSequence $reference_chrom --start $start \
--length $end-$start --onlyOrthologs --noDupes --noAncestors.

Species selection criteria
To estimate α, we aimed to measure differences in the rates of neutral substitution in X (Z) versus auto-
somes that are directly attributable to differences in the mutation rate of males and females. However, 
X (Z) and autosomes also differ in a number of other technical and biological features that must first 
be taken into account.

One important source of technical bias is the unequal sequence coverage of the X (Z) and auto-
somes in heterogametic individuals. To minimize any potential issues due to systematic differences 
in assembly quality between X (Z) and autosomes, we excluded non-chromosome level genomes 
known to be assembled exclusively from DNA of the heterogametic sex. In addition, we discarded any 
species belonging to a genus in which a complex system of chromosomal sex determination has been 
identified (annotated as ‘complex XY’ or ‘complex ZW’ in the Tree of Sex database https://coleoguy.​
github.io/tos/data.vert.csv, with the exception of the Mus genus). In mammals, out of a total of 241 
genomes, this approach led us to exclude 50 male-based assemblies and nine species with at least 
one case of complex XY in the same genus. In birds, out of a total 363 genomes, we excluded 186 
female-based assemblies and two species with at least one species with a complex ZW in the same 
genus.

The quality of the genome assembly is an additional potential confounder. Given that we relied 
on higher quality, chromosome-level assemblies to categorize alignments as X (Z) or autosomal, we 
would be more likely to miscategorize alignments (i.e., as X/Z or autosomal) in species with lower 
quality genome assemblies that are highly diverged from the nearest chromosome-level assembly. 
To address this issue, in mammals, we removed species if their genomes were >15% diverged from 
the nearest chromosome-level assembly. We relaxed the divergence threshold to 30% in birds, in 
which fewer genomes are assembled at chromosome-level and across which karyotypes are believed 
to be relatively stable (Ellegren, 2010). In both mammals and birds, we relied on published diver-
gence estimates inferred from the same multi-alignments used in this study (see mammals Zoonomia 
Consortium, 2020 and birds Feng et al., 2020). We also discarded species with low-quality scaffold-
level assemblies, that is, where scaffold N50 < 350 kb and contig N50 < 25 kb. These filters led to the 
removal of 120 and 76 species in mammals and birds, respectively.

Given the paucity of genomes in snakes, we relaxed our filtering criteria to allow the inclusion of a 
larger number of species. Specifically, we allowed scaffold-level assemblies from the heterogametic 
sex and reduced the scaffold and contig N50 thresholds to 100 and 10 kb, respectively. These changes 
allowed the inclusion of Vipera berus and Pantherophis obsoletus. We estimated divergence between 
species using phyloFit (see Estimating putatively neutral substitution rates) in the largest chromo-
some in Thamnophis elegans (NC 045541.1). As in mammals, we removed any species with distance 
to nearest chromosome-level assembly > 15% and confirmed that none of the species belong to a 
genus with a complex ZW system in the Tree of Sex database. This procedure excluded one of the 
nine snake species (Laticauda laticaudata).

Another important consideration comes from the differing evolutionary histories of sex chromo-
somes and autosomes. Under neutrality and assuming equal variances in reproductive success, the 
X (Z) chromosome is expected to have a lower effective population size, ‍Ne‍, than the autosomes 
(Amster and Sella, 2020). For closely related species, this implies a deeper coalescence time of 
autosomes than X (Z) in their ancestral population and therefore an unequal contribution of ancestral 
polymorphisms to the substitution rates; for example, if ‍NX

e < NA
e ‍, then the X-to-autosome substi-

tution rate ratio will be deflated relative to the expectation under mutational male bias alone, and 
consequently α will be overestimated (Presgraves and Yi, 2009). To minimize this problem, we sought 
to keep a subset of species that were sufficiently distantly related such that the contribution of ances-
tral polymorphism to divergence is small and the bias in α estimates is negligible. Specifically, we 
proceeded as follows: under simplifying assumptions, the expected neutral divergence attributable 
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to ancestral polymorphisms is given by the heterozygosity, π, in the ancestral species. Since π in the 
ancestral population of a species pair is unknown, we used estimates for π from present-day species 
as a proxy. We pruned the phylogeny of each taxon so to retain only species pairs with a combined 
(summed) substitution rate of at least ‍15π‍, where π is the higher value of the pair.

We collected mammalian π estimates from the individual heterozygosities in the Zoonomia Project 
(‘Overall heterozygosity’ in Table S3 in Zoonomia Consortium, 2020), complemented with the 
nucleotide diversities in Buffalo, 2021a (‘log10_diversity’ in data/​combined_​data.​tsv at https://​
github.com/vsbuffalo/paradox_variation/; Buffalo, 2021b) obtaining π values for 16 of the remaining 
mammalian species. For any species lacking a value in both databases, we assigned the π of the 
closest species in the mammalian phylogeny as inferred with PHAST (45 species). Finally, in one case in 
which π from both databases were available (Daubentonia madagascariensis), we took the average π.

In birds, we used π estimates in Brüniche-Olsen et al., 2021, obtaining direct estimates for 13 
of the remaining species. For species not present in the database, we assigned the π of the closest 
species in the bird phylogeny (85 species). In snakes, we collected π values from the literature (Supple-
mentary file 1).

Because initiatives like the Zoonomia Project or B10K may preferentially select species at risk of 
extinction (Zoonomia Consortium, 2020), some of the present-day π values may underestimate the 
diversity levels in the ancestor. We thus set an extra requirement of at least a combined 2% substi-
tution rate between any pair of species. In species pairs where the rate was below either of these 
two thresholds (‍15π‍ or 2%), we preferentially retained the species that met the following criteria, 
considered in this order: (1) more phased DNM count data from pedigree sequencing (count of 0 if 
not available), (2) a chromosome-level assembly, and (3) a higher scaffold N50. Altogether, 20 out of 
241 mammalian species, 17 out of 363 bird species, and 5 out of 9 snakes species remained after the 
complete filtering procedure.

A list of the species kept after filtering, together with other genome statistics and results from 
our analyses, can be found in Supplementary file 2. The code to reproduce the filtering procedure 
described above can be found in notebooks/​Filter_​species.​ipynb at https://github.com/​
flw88/mut_sex_bias_amniotes; de Manuel, 2022.

Selecting non-repetitive and putatively neutral sequences
In the absence of natural selection and/or gBGC, the substitution rate is equal to the mutation rate 
(Kimura, 1983). To minimize the effects of selection, we limited our analyses to non-coding regions 
by removing all exons annotated in the given reference sequence as well as the 1 kb of sequence 
flanking each exon. As a check, we also estimated α in mammals and birds after masking conserved 
elements identified by phastCons (Siepel et al., 2005) (mammals and birds, respectively). Since the 
‍̂αevo‍ are similar, we based our analyses on the larger dataset based on masking only exons and their 
1 kb flanking sequences.

The effect of gBGC mutation on the substitution process is analogous to that of selection for 
specific base pairs, in that the process increases the probability of fixation of strong (G/C) over weak 
(A/T) alleles (Duret and Galtier, 2009). To explore the effects of gBGC, we estimated specific rates 
for each single-nucleotide substitution type (see Estimating putatively neutral substitution rates for 
details). To remove the effects of gBGC, we estimated α for the subset of mutation types that are not 
subject to gBGC (i.e., substitutions from strong to strong and weak to weak nucleotides) (Figure 2—
figure supplement 3 and Figure 2—figure supplement 1G).

In addition, to ensure the high quality of the alignment data for analysis, we removed repetitive 
regions, keeping only those genomic positions at which the reference sequence in a given analysis 
group (mammals, birds, and snakes) carries an uppercase nucleotide.

Filtering idiosyncratic genomic regions
We excluded sequences aligned to known PARs in the sex chromosomes, which have homologs 
on both X and Y (or both Z and W) and thus behave like autosomes in terms of their ploidy (see 
Supplementary file 5 for PAR definitions). For snakes, we aligned sequenced reads from a female 
Thamnophis sirtalis individual (NCBI accession SAMN02402779) to the Thamnophis elegans reference 
genome using BWA-MEM v0.7.17-r1188 (http://bio-bwa.sourceforge.net/), with default parameters. 
We removed PCR duplicates with the markdup tool in samtools v1.10 (http://www.htslib.org/) and 
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calculated the mean depth of coverage along the Z and the largest autosome in 1 Mb windows using 
mosdepth (https://github.com/brentp/mosdepth, Pedersen, 2022). We then determined regions of 
the Z chromosome in which the depth of coverage was significantly different to that in the autosomes, 
assuming depth is Poisson distributed with λ equal to the mean depth in the autosome,potentially 
indicative of the region being in a PAR and having homologs on the W chromosome (Figure 1—figure 
supplement 1).

The genome of birds and snakes are organized into two types of autosomes, macro- and micro-
chromosomes, which differ in their length, gene content, density of hypomethylated CpG islands, 
recombination rates, and replication timing (Waters et al., 2021). Given the idiosyncrasies of micro-
chromosomes, which may affect the substitution rate estimates (Wang et al., 2014), we excluded 
sequences aligned to microchromosomes in birds and snakes (chromosomes 10–28 in Gallus gallus 
and chromosomes 13–18 in Crotalus viridis). The fraction of base pairs in microchromosomes is rela-
tively small, comprising 20% and 5.1% of the autosomal genome in Gallus and Crotalus, respectively. 
We checked that ‍̂αevo‍ are similar whether or not microchromosomes are excluded (‍r > 0.9‍ between 
‍̂αevo‍ estimates obtained after excluding or including microchromosomes, in both birds and snakes, 
Figure 2—figure supplement 1E).

An additional concern is that genomic translocations between X (Z) and the autosomes could 
lead to sequence misclassification in species without a chromosome-level assembly. To alleviate this 
potential issue, we only kept sequences that exclusively mapped to chromosomes of the same kind 
(i.e., X or Z versus autosome) in all species for which chromosome-level assemblies were available. In 
other words, we removed all alignments in which chromosome-level assemblies indicated a mapping 
between an X (Z) sequence of one species with an autosomal or Y (W) sequence of another.

To summarize, each 1 Mb MAF file in each taxon was first filtered with the maf_parse tool in PHAST 
(http://compgen.cshl.edu/phast/), using a thinned set of species obtained as described in Species 
selection criteria and a BED file with the regions to be excluded as indicated by the reference genome 
(i.e., exons ±1 kb and the PARs, if known). The python scripts ​filter_​PARs_​micros_​CpGs.​py and ​
keep_​species_​XYA-​synteny.​py (available at https://github.com/flw88/mut_sex_bias_amniotes, 
copy archived at swh:1:rev:37da9bdbc2c7cb839de15aadb554cf6c98128add; de Manuel, 2022) were 
then used to filter any gaps, annotated PARs, as well as regions that mapped to known chromosomes 
of a different kind:

maf_parse --features $regions_to_exclude_bed -M $reference \
--seqs $(cat $species_list_thinned) $maf |
python filter_PARs_micros_CpGs -p data/​Species_​to_​PARs.​tsv |
python ​filter_​species_​gaps_​maf_​XYA.​py \
-l $species_list_thinned -c data/​Species_​to_​chromosomes.​txt \
-b $filtered_regions_bed -a > $filtered_maf

GC content and replication timing estimates
The framework provided by Miyata et al., 1987, to infer α assumes that the generation time is the 
same for both sexes, as well as that the substitution rates on autosomes versus X (Z) are solely deter-
mined by the sex-specific mutation rates and the ploidy difference between sexes. However, other 
genomic features, such as GC content and replication timing, are known to differentially influence the 
mutation rate of sex-linked and autosomal chromosomes (Agarwal and Przeworski, 2019; Koren 
et al., 2012). To account for these differences, we collected measures of species-specific GC content. 
Specifically, for every filtered 1 Mb MAF in each taxon, we calculated the fraction of G/C base pairs 
in each genome with:

cat $filtered_maf | \
python ​gc_​content_​from_​maf.​py -s $species_list_thinned

We additionally obtained replication timing data in human embryonic stem cells from the UCSC 
genome browser. We converted the data from bigWig format to BED using bigWigToBedGraph and 
lifted the coordinates from the hg19 reference genome to hg38 using the liftOver tool.

To explore the relationship between replication timing and substitution rates in humans, we calcu-
lated an average replication timing value across the unfiltered bases in each 1 Mb window of the 
mammalian alignment (H. sapiens as reference). Specifically, we used the mean replication timing 
value weighted by the number of bases associated with each replication timing datum.

https://doi.org/10.7554/eLife.80008
https://github.com/brentp/mosdepth
http://compgen.cshl.edu/phast/
https://github.com/flw88/mut_sex_bias_amniotes
https://archive.softwareheritage.org/swh:1:dir:f7fe3a7dd980fe1199df3de3708f778745ca116d;origin=https://github.com/flw88/mut_sex_bias_amniotes;visit=swh:1:snp:2597b175cff38ce9069514d5ee1b73428c514288;anchor=swh:1:rev:37da9bdbc2c7cb839de15aadb554cf6c98128add
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeFsuRepliChip/wgEncodeFsuRepliChipH1hescWaveSignalRep1.bigWig
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeFsuRepliChip/wgEncodeFsuRepliChipH1hescWaveSignalRep1.bigWig
https://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/bigWigToBedGraph
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Estimating putatively neutral substitution rates
To estimate putatively neutral substitution rates on X (Z) and autosomes, we used phyloFit a program 
within the PHAST software suite (Hubisz et al., 2011; Siepel and Haussler, 2004) (http://compgen.​
cshl.edu/phast/). For every 1 Mb window of aligned sequence in each taxon with ≥10 kb of sequence 
remaining after filtering, we estimated substitution rates using the general, unrestricted single nucleo-
tide model (--subst-mod UNREST) with the expectation maximization algorithm with medium preci-
sion for convergence (--EM --precision MED). We also obtained the number of expected counts 
at each node for each substitution type (option -Z). For mammals and birds, we used the relevant 
tree topology defined in the Newick files in http://cgl.gi.ucsc.edu/data/cactus/; for snakes, we used 
a topology from TimeTree (http://timetree.org/). To avoid local maxima in the likelihood surface, we 
ran six independent phyloFit runs with random initialization of the parameters (option -r) and kept 
the replicate with the highest likelihood. We note that phyloFit estimates the expected substitution 
counts for type A1 > A2 by inferring the expected number of times allele A1 is found at the internal 
node of a branch in the tree and allele A2 is observed at the terminal node. However, the overall 
branch lengths are maximum likelihood estimates of the expected rate of substitution in continuous 
time along the branches. Thus, the rate of substitution estimated by summing substitution counts and 
dividing by the genome size is slightly smaller than the maximum likelihood branch-length estimate 
(as the latter allows back-mutation but the former does not include them).

phyloFit -r --EM --precision MED --subst-mod UNREST -Z \
--msa-format MAF $filtered_maf --tree $newick \
-e $phylofit_errors -o $phylofit_output.

Estimating α from X-to-autosome substitution rate ratios
We took a regression approach to estimate α from ratios of X (Z)-to-autosome substitution rates. This 
approach allowed us to control for the effect of GC content ‍g‍ on the substitution rates (see Estimating 
putatively neutral substitution rates). For each species, we performed a Poisson regression with a log 
link function on the number of substitutions ‍Yi‍ in the terminal branch (as inferred from phyloFit):

	﻿‍ log
[
E
(
Yi
��ni, xi, gi

)]
= log(ni) + β0 + β1xi + β2gi + β3g2

i ‍� (3)

where the subscript denotes the ith window, ‍n‍ denotes the number of bases at which a substitution 
could have occurred, ‍x‍ is an indicator variable denoting whether the window is on the X (Z) or the 
autosomes, and the β variables denote the regression coefficients (Supplementary file 6). Modeling 
the relationship between substitution rate and GC content as a quadratic function captures effects 
of hypermutable CpG sites via the squared term (Hardison et  al., 2003; Hellmann et  al., 2005). 
Note that for the overall substitution count, the number of substitution opportunities ‍n‍ is the total 
number of sites left in the window after filtering; however, when applying the regression model to a 
specific substitution type ‍A1 > A2‍, we only considered sites where the ancestral allele was inferred by 
phyloFit to be A1 (or its complementary base, see Estimating putatively neutral substitution rates).

We used the fitted regression models to estimate α in each species. To this end, we first obtained 
point estimates of the substitution rates on the X (Z) and autosomes calculated at the mean GC 
content values of the X (Z) windows. We then converted the resulting X (Z)-to-autosome substitution 
rate ratio to an estimate of α using Miyata’s equations (Miyata et al., 1987). This approach implicitly 
assumes that mutation rates in X (Z) and autosomes differ only with regard to their exposure to sex, 
once differences in pertinent genomic features are taken into account.

We note that this approach infers α from the ratio of the expectations of the X (Z) and autosomal 
substitution rates rather than the expectation of the ratios. To check whether that makes a difference, 
we re-estimated α in each species using a modified procedure in which we repeatedly sampled a pair 
of X (Z) and autosome windows with GC content values in a narrow range (mean GC content value 
of the X (Z) chromosome ‍±1.5%‍) and calculated a X (Z)-autosome substitution rate ratio. Estimating α 
from the mean ratio across 1000 resamples yielded highly similar estimates to those obtained from our 
regression approach (‍r = 0.93‍ across species, Figure 2—figure supplement 1).

To understand whether controlling for replication timing in addition to GC content might affect our 
α estimates, we modified Equation 3 to include an extra term for the average replication timing of 
each window ti (see GC content and replication timing estimates). We applied this modified regres-
sion framework to mammals and obtained X-autosome substitution rate ratios for each species at the 

https://doi.org/10.7554/eLife.80008
http://compgen.cshl.edu/phast/)
http://compgen.cshl.edu/phast/)
http://cgl.gi.ucsc.edu/data/cactus/
http://timetree.org/
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mean GC content and replication timing values of the X windows. Converting the X-autosome substi-
tution rate ratios to α estimates using Miyata’s equations (Miyata et al., 1987) yielded values that 
were highly similar to those obtained when controlling for GC content only (‍r > 0.99‍, see Figure 2—
figure supplement 1B). Given the observed agreement and the lack of replication timing data for 
most species, in subsequent analyses, we relied on evolutionary estimates obtained from the regres-
sion model described in Equation 3.

To assess the uncertainty in our α estimates, we bootstrap resampled windows on the X (Z) and auto-
somes 500 times. For each replicate, we fit the regression model and calculated the X (Z)-to-autosome 
ratio as described above to obtain an empirical distribution from which we could compute the central 
95% interval. We note that because of the functional form describing the relationship between α and 
the X (Z)-to-autosome substitution rate ratio (Figure 1A), confidence intervals on α tend to be wider at 
larger values of α. In other words, in the regime of large α, a small shift in the X (Z)-to-autosome substi-
tution rate ratio will have a larger impact on the inferred α estimate. We implemented our regression 
and α estimation framework in the R script, alpha_from_unrest.regression.R.

Although ignored in the original Miyata et al. approach and subsequent applications (e.g., Wilson 
Sayres et al., 2011; Wang et al., 2014; Schield et al., 2021), recent modeling work shows that sex 
differences in generation times can also affect the relative ratio of substitution rates on the X (Z) and 
autosome by altering the amount of time that a sex chromosome lineage spends in males versus 
females compared to autosomes (Amster and Sella, 2016). Thus, sex differences in generation times 
modulate how sex biases in mutations are reflected in substitution rates of X (Z) versus autosomes. 
Unfortunately, sex-specific generation time estimates are rarely available for extant species, let alone 
ancestral lineages, and likely evolve over time. To incorporate uncertainty in sex differences in gener-
ation times, we re-computed our uncertainty intervals on α under the assumption that the male-to-
female ratio of the generation times for any particular lineage lies between 0.9 and 1.1, using formulas 
derived by Amster and Sella, 2016.

Estimating α from pedigree studies in vertebrates
In order to obtain estimates of α from extant vertebrate species, we identified 14 DNM studies with 
published counts of parentally phased DNMs (Bergeron et  al., 2021; Besenbacher et  al., 2019; 
Campbell et al., 2021; Harland et al., 2017; Jónsson et al., 2017; Lindsay et al., 2019; Smeds 
et al., 2016; Tatsumoto et al., 2017; Thomas et al., 2018; Wang et al., 2020; Wang et al., 2022a; 
Wang et al., 2022b; Wu et al., 2020; Yang et al., 2021). For each species in each study, we calcu-
lated point estimates of α by dividing the number of DNMs phased to the paternal chromosome by 
the number phased to the maternal chromosome (Supplementary file 2). We measured uncertainty 
by computing binomial confidence intervals on the proportion of all phased DNMs that were paternal 
and then converting the resulting interval bounds back to a paternal-to-maternal ratio.

From this list, we excluded one study from mouse lemur (Microcebus murinus), which reported 
an anomalously high mutation rate per year for a primate species (‍> 3.5 × 10−9‍ per site) and unusu-
ally low rates of transitions at CpG sites (Campbell et  al., 2021). The authors suggested C-to-T 
substitutions in the branch leading to mouse lemur occurred at a similar rate irrespective of their 
dinucleotide context (CpG or non-CpG), in contrast to what is seen in other primates (Moorjani 
et al., 2016). However, analyzing our substitution data, we find the C>T substitution rate in mouse 
lemur to be over fivefold higher at CpG sites compared to non-CpG sites. Specifically, we estimated 
substitution rates from our filtered autosomal mammalian alignments as described in Estimating 
putatively neutral substitution rates with the following modifications: (I) CpG islands, as defined here, 
were masked following Campbell et al., 2021; (II) CpG dinucleotide substitution rates were esti-
mated using a context-dependent model (--subst-mod U2S). This study also reports the weakest 
mammalian paternal bias in mutation described to date (α = 1.18). This value is out of sync with 
reports for other primates and far from what we estimate from substitution rates, ‍̂αevo‍ (Figure 2 and 
Supplementary file 2). One possibility is that a substantial rate of false positive DNMs biased ‍̂αdnm‍ 
toward 1 (since errors are likely placed with equal probability on the maternal or paternal haplotype). 
Given the uncertainty surrounding how to interpret these DNM data, we do not include this ‍̂αdnm‍ in 
our analyses.

https://doi.org/10.7554/eLife.80008
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/database/cpgIslandExtUnmasked.txt.gz
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Estimating α for different developmental stages
DNM studies typically quantify the number of mutations in the offspring that are not found in some 
somatic tissue (usually blood) of the parents. This approach can mistakenly include DNMs that occurred 
in the early development of the offspring, as well as mistakenly exclude DNMs that occurred early in 
the development of the parents (Gao et al., 2016). DNMs that occurred in early development of the 
parents can be distinguished by patterns of ‘incomplete linkage’ with nearby informative constitutive 
heterozygous positions, as well as incomplete transmission to the offspring (Harland et al., 2017; 
Sasani et al., 2019). Moreover, DNMs that occurred right after or during primordial germ cell spec-
ification (PGCS) will not be present in the soma of the parents but may be transmitted to multiple 
offspring (Sasani et al., 2019; Lindsay et al., 2019).

To examine if α varies across developmental stages, we considered studies that distinguish between 
DNMs in the early development of the parent (i.e., mutations detectable in the parental soma but 
showing patterns of ‘incomplete linkage’, as well as DNMs transmitted to multiple offspring), versus 
DNMs that occurred in later stages after PGCS (i.e., not present in the parental soma and transmitted 
to a single offspring). Counts for early DNMs were obtained: in mice (Lindsay et al., 2019), where 
we counted the number of mutations phased to each parental haplotype in ‘Early Embryonic’ and 
‘Peri-PGC’ categories (Supplementary Data 1 at https://doi.org/10.1038/s41467-019-12023-w); in 
cattle (Harland et al., 2017), where we counted mutations classified as ‘Sire Mosaic’ or ‘Dam Mosaic’ 
(Supplementary Table 1 at https://doi.org/10.1101/079863); and in humans (Sasani et  al., 2019), 
where we counted the number of mutations phased to each parental haplotype in ‘Gonosomal muta-
tions’ and ‘Post-PGCS’ (Tables in https://github.com/quinlan-lab/ceph-dnm-manuscript/tree/master/​
data). DNM counts for phases later in development were obtained from the same publications, under 
the categories ‘Late post-PGCS’, ‘Sire/Dam non Mosaic’, and ‘Third-generation’ in mice, cattle, and 
humans, respectively. All three studies also employed strategies to discard DNMs in the early devel-
opment of the offspring. The combined counts for each species and mutation timings can be found 
in Supplementary file 3.

Since the paternal bias in mutation varies among developmental stages, as does the fraction of 
mutations that were successfully phased (Supplementary file 3), simply summing over DNM counts 
from different stages would result in a biased point estimates of the overall α. We therefore computed 
α by extrapolating the proportion of paternally and maternally phased DNMs in each stage to all 
the DNMs identified in that stage (i.e., extrapolating to what would be expected given complete 
phasing). Given this extrapolation, the measures of uncertainty associated with ‘Total’ are not shown 
in Figure 4A. For DNMs within a single developmental stage, we calculated binomial confidence 
intervals, as described above.

Testing relationships between α and life history traits
In mammals, we collected life history traits from the AnAge database (https://genomics.senescence.​
info/species/dataset.zip), including maximum longevity, gestation time, adult weight, and birth weight. 
We also obtained generation time estimates from the literature (Supplementary file 2). Thus, in total, 
we collected data on five traits. Four species were not represented in the AnAge dataset; in these 
cases, we substituted the trait values of closely related species of the same genus (see Supplemen-
tary file 2 for species substitutions). We additionally performed principal component analysis (PCA) 
on the four traits, generation time, gestation time, adult weight, and birth weight (Figure 3—figure 
supplement 2), and treated PC1 and PC2 as meta-traits to be tested alongside the others. Only the 
17 mammalian species annotated for all four traits were included in the PCA procedure. The first prin-
cipal component captured 90% of the variance in the traits and was highly correlated with generation 
time (‍r2 = 86%‍). In birds, we focused on the life history trait of generation time, taking estimates from 
the literature (Supplementary file 2).

To test for relationships between life history traits and α while accounting for phylogenetic non-
independence in our data, we used phylogenetic generalized least squares (PGLS) (Grafen, 1989). 
Ordinary least squares is unsuitable for species trait comparisons, because shared phylogenetic 
history can create correlation structure in the residuals (Felsenstein, 1985). PGLS addresses this issue 
by considering the covariance structure of the residuals as a covariate, assuming that the traits evolve 
under Brownian motion on the phylogeny (Grafen, 1989; Pagel, 1999). We implemented the anal-
ysis using the pgls function in the caper R package, which provides the option of fitting Pagel’s λ 

https://doi.org/10.7554/eLife.80008
https://doi.org/10.1038/s41467-019-12023-w
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https://github.com/quinlan-lab/ceph-dnm-manuscript/tree/master/data
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(Pagel, 1999), a scalar multiplier of the off-diagonal elements of the expected covariance matrix of 
the residuals. Briefly, λ denotes the amount of phylogenetic ‘signal’ in the data. If λ is 0, there is no 
phylogenetic signal; when λ is 1, the regression model is equivalent to the method of phylogenetic 
independent contrasts (PIC) (Blomberg et al., 2012; Felsenstein, 1985; Pagel, 1999). In practice, we 
found that the pgls R function would occasionally fail to converge or converge on a local maximum 
during maximum likelihood estimation of λ; to address this issue, we initialized the likelihood optimi-
zation algorithm with a variety of starting values for λ and retained the model with the highest overall 
likelihood, which required a minor modification of the base pgls function from the caper package.

For each predictive trait (Figure 3—figure supplement 1), we used our ‍̂αevo‍ estimates from X 
(Z)-to-autosome comparisons as the response variable and a time-calibrated phylogeny from Time-
Tree to estimate the covariance matrix (http://timetree.org/). Following what had been done previ-
ously to analyze these relationships (Wilson Sayres et  al., 2011), we log10-transformed each life 
history trait prior to performing PGLS. Canis lupus familiaris, Ceratotherium simum cottoni, and Pter-
ocles burchelli were not named in the TimeTree database and so we used split times for Canis lupus, 
Ceratotherium simum, and Pterocles gutturalis instead, respectively (Supplementary file 2). In all 
comparisons, we calculated p-values under a model in which λ was set to its maximum likelihood esti-
mate and used default values for the remaining arguments of the pgls program. In birds, in which the 
MLE for λ was 0, we also considered a model in which λ was fixed at 1. To test whether the slope of the 
‍̂αevo‍ versus generation time relationship is the same in birds as in mammals, we performed a modified 
PGLS regression on the bird data with the slope fixed to the maximum likelihood value obtained for 
mammals (i.e., slope = 1.20) and the intercept (and λ) as the free parameter. After fitting this model 
with PGLS, we performed a likelihood ratio test (df = 1) to compare it to an alternative model in which 
the slope was not fixed (i.e., including intercept, slope, and λ parameters).

Modeling the effects of germline developmental stages on α
To model variation in α among species, we considered the expected number of mutations that arise 
in two developmental stages: an early embryonic period, Early, which loosely encompasses the time 
between the zygote and the sexual differentiation of the germline, and a second period, Late, that 
refers to the remaining time until reproduction (Figure 4B). In mammals, the expected number of 
mutations in the Early stage, ‍Me‍, is approximately the same in both sexes, as observed in the three 
cases in which there are data (Figure 4A). In the Late stage, we assume mutations arise at a constant 
rate per year, ‍µs‍ in sex ‍s‍ (‍s ∈ {f, m}‍). If we assume the length of Early to be negligible relative to the 
generation time, ‍Gs‍ in sex ‍s‍, then the expected number of mutations in sex ‍s‍ equals ‍µsGs‍. Therefore, 
the expectation of the ratio of paternal-to-maternal mutations at reproduction, α, can be obtained 
using Equation 1.

To predict α in species lacking estimates of the sex-specific mutation rates for the Late stage (i.e., 

‍µm‍ and ‍µf ‍), we made two further assumptions, namely that:

•	 The expected number of mutations per base pair ‍Me‍ in the Early stage is constant across species 
and the same in the two sexes. We used an ‍Me‍ of  ‍1.66 × 10−9‍ per base pair, which equates to 
five early embryonic mutations in an haploid genome of 3 Gb. This value was chosen based on 
observations in humans, notably a study showing that monozygotic twins differ on average by 
5.2 mutations that arose between the twinning event and PGCS (1.3 mutations per haploid set 
of chromosomes) (Jonsson et al., 2021). Given that 75–80% twinning events occur around the 
8–16 cell stage (Hall, 2003), approximately four mutations are expected to have arisen during 
the first few divisions in the embryo (assuming ∼1 extra mutation per cell division; Ju et al., 
2017). This rate is also in rough agreement with a pedigree study in humans, which estimated 
that ∼5% of DNMs arise during early development (Sasani et al., 2019). Varying the expected 
number from 3 to 7 yielded similar results (see below for more details).

•	 The ratio ‍µm/µf ‍ is fixed across species. We assumed a ratio of 4, consistent with the ratio of 
paternal-to-maternal DNMs occurring post-PGCS in humans (Sasani et al., 2019), mice (Lindsay 
et al., 2019), and cattle (Harland et al., 2017) ( Figure 4A).

Using derivations from Amster and Sella, 2016, the yearly substitution rate ‍µY ‍ for a given lineage 
is:

	﻿‍
µY =

2Me + µfGf + µmGm

Gf + Gm
.
‍�
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If ‍µm/µf = 4‍ and ‍Me‍ is known, we can solve for ‍µf ‍ using Equation 2 and α can be estimated using 
Equation 1.

We used the PGLS method described in ‘Testing relationships between α and life history traits’ 
to assess the fit of α values predicted by our model to the α values estimated from X-to-autosome 
comparisons (‍̂αevo‍) and from DNM studies (‍̂αdnm‍) (Figure 4C). We applied the model to mammals 
using estimates of ‍G‍ from the literature (Supplementary file 2). When testing the fit of the model to 

‍̂αevo‍, we estimated ‍µY ‍ by dividing the autosomal substitution rates in a lineage (see Estimating puta-
tively neutral substitution rates) by the split time for that lineage reported in the TimeTree database 
(http://timetree.org/). When testing the fit to ‍̂αdnm‍, we obtained α from yearly mutation rates obtained 
from pedigree sequencing studies, given the parental ages in the study (see Supplementary file 2). 
We note that ‍̂αdnm‍ can be noisy if not based on a large amount of DNMs and trios. To overcome this 
limitation, we focused on species with at least 30 phased DNMs and more than one trio sequenced 
(which excluded three species out of 14, namely Pongo abelii, Callithrix jacchus, and Ursus arctos, see 
Supplementary file 2).

We note the model remains a significant predictor for a range of ‍Me‍ values. As examples, using a λ 
of 1, as inferred by maximum likelihood in Figure 4D, for an ‍Me = 1 × 10−9‍, the model for ‍̂αevo‍ explains 
‍r2 = 0.33‍ (p-value ‍= 0.008‍) and for ‍̂αdnm‍, ‍r2 = 0.90‍ (p-value ‍= 1 × 10−4‍). Instead using ‍Me = 2.33 × 10−9‍, 
the model for ‍̂αevo‍ accounts for ‍r2 = 0.35‍ (p-value ‍= 0.006‍) and for ‍̂αdnm‍, ‍r2 = 0.79‍ (p-value ‍= 0.001‍).

Following (Kong et al., 2012), we sought to determine the extent to which variation in ‍̂αevo‍ in 
mammals is attributable to sampling error. To that end, we made use of the empirical distribution 
of ‍̂αevo‍, which we obtained by bootstrap resampling genomic windows (see Estimating α from X-to-
autosome substitution rate ratios). For each bootstrap replicate, we regressed the α estimates against 
our original ‍̂αevo‍ using ordinary least squares and obtained the ‍r2‍ value. Across the 500 bootstrap 
replicates, the median ‍r2‍ value was 89%, suggesting that 11% of the variance in ‍̂αevo‍ is due to sampling 
error. Combining this value with the estimated proportion of variance in ‍̂αevo‍ explained by our model 
yielded an estimate of ‍37%/89% = 42%‍ of the variance explained after accounting for sampling error.

The code to reproduce the modelling described above can be found in the scripts/​2expo-
sure_​model.​ipynb Jupyter notebook.
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