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In the last decade there has been a surge in the number of big science projects

interested in achieving a comprehensive understanding of the functions of the brain,

using Spiking Neuronal Network (SNN) simulations to aid discovery and experimentation.

Such an approach increases the computational demands on SNN simulators: if natural

scale brain-size simulations are to be realized, it is necessary to use parallel and

distributed models of computing. Communication is recognized as the dominant part

of distributed SNN simulations. As the number of computational nodes increases,

the proportion of time the simulation spends in useful computing (computational

efficiency) is reduced and therefore applies a limit to scalability. This work targets

the three phases of communication to improve overall computational efficiency in

distributed simulations: implicit synchronization, process handshake and data exchange.

We introduce a connectivity-aware allocation of neurons to compute nodes by

modeling the SNN as a hypergraph. Partitioning the hypergraph to reduce interprocess

communication increases the sparsity of the communication graph. We propose

dynamic sparse exchange as an improvement over simple point-to-point exchange on

sparse communications. Results show a combined gain when using hypergraph-based

allocation and dynamic sparse communication, increasing computational efficiency by

up to 40.8 percentage points and reducing simulation time by up to 73%. The findings

are applicable to other distributed complex system simulations in which communication

is modeled as a graph network.

Keywords: Spiking Neural Networks, distributed simulation, hypergraph partitioning, dynamic sparse data

exchange, HPC

1. INTRODUCTION

1.1. Need for Distributed Computing
In recent years, there has been a growing scientific focus on computational neuroscience as a means
to understand the brain and its functions, particularly at large, brain-size scale (Alivisatos et al.,
2012; Koch, 2012; Markram, 2012; Amunts et al., 2016; Poo et al., 2016). Commonly accepted as
the third pillar of science after theory and experimentation, simulation plays a central role in these
projects. Thus, there is a need to run larger and more complex simulations.

Simulating brain-size models is computationally challenging due to the number and variety
of elements involved and the high level of interconnectivity between them (Ananthanarayanan
et al., 2009). The computing resources required at the brain scale far surpass the capabilities
of personal computers today and will require compute power at the exascale (Markram, 2012).
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FIGURE 1 | Evidence of the communication problem in large-scale distributed SNN simulations. The graphs show strong scaling results for a simulation with the

same communication and computation time step , δsyn (synaptic delay) and τstep (time step) both set to the same value (0.1 ms), which is known to be the worse

case scenario in communication. (A) Simulation time as the number of processes is increased. (B) The time the simulation spends in computing. (C) Proportion of

time the simulation spent in each phase, with communication (data exchange and implicit synchronization) becoming the dominant part.

The slow down in the speed gains of individual cores due to
physical limitations (Asanovic et al., 2006; Hasler and Marr,
2013; Marr et al., 2013) has made parallel and distributed
computing the path to increased computational power.
Although highly parallel devices such as GPUs have brought
increased performance, to achieve the best computational power
researchers resort to distributed computing, interconnecting
computing nodes to escape the limitations of single devices.

This work focuses on distributed Spiking Neuronal Network
(SNN) simulations and the challenges that arise from them, to
make efficient use of available High Performance Computing.

Throughout the paper the term process will be used to denote
an independent computation thread running exclusively on a
physical core—and for our purposes, synonym of computing
node. In the context of distributed communication, using the
widely accepted standard MPI, a process is equivalent to an
MPI rank.

1.2. Time Step-Driven SNN Simulations
Simulations of Spiking Neuronal Networks consist of discrete
time-steps at which the membrane potential of the neurons
involved is recalculated. When the potential reaches a certain
threshold, neurons fire, producing a spike that is transmitted to
connecting neurons. This spike in turn affects the membrane
potential of receiving neurons. Thus, the simulation is divided
in two phases: computation phase, at which neuron and synaptic
models are updated based on partial differential equations; and
exchange phase, where the spikes are propagated from firing
neurons to post-synaptic targets.

In distributed systems, the exchange phase involves
interprocess communication when pre- and post-synaptic
neurons are hosted in different processes. In such cases,
interprocess dependencies are introduced that force them to
be implicitly synchronized (at the same step in the simulation)
before starting data exchange (sending and receiving spiking
information).

1.3. Bottleneck in Distributed Simulation
Past approaches to parallel and distributed neuronal simulators
have focused their efforts on load balancing (Gewaltig and
Diesmann, 2007; Kunkel et al., 2014), and not on the

communication overhead of increased parallelism. However, in
large scale SNN distributed simulations, propagation of spikes
between processes has been suggested as the bottleneck for
scalability (Brette and Goodman, 2012; Zenke and Gerstner,
2014). To demonstrate this, Figure 1 shows a strong scaling
experiment of the Cortical Microcircuit (Potjans and Diesmann,
2014) distributed simulation with frequent communication
(at every time step) and random allocation of workload, i.e.
neurons to processes1. Whilst computation shows near-perfect
scaling (Figure 1B), the proportion of time the simulation
spends in communication scales poorly (both shades of blue
in Figure 1C), becoming the dominant part as the number of
processes is increased.

We define computational efficiency as the proportion of
time a distributed simulation spends in the computation
phase. Figure 1A shows overall simulation time stagnation in
strong scaling experiments, as a result of poor communication
scalability. Even though the computation part of the simulation
scales well (Figure 1B), the benefits of increased parallelism are
limited by communication—as shown by the shift in time spent
in communication and computation in Figure 1C.

1.4. Key Contributions
State-of-the-art SNN distributed simulators have demonstrated
the effectiveness of the use of point-to-point (P2P)
communications (Hammarlund and Ekeberg, 1998; Kumar
et al., 2010; Minkovich et al., 2014; Jordan et al., 2018). Using P2P
introduces a necessary handshake protocol between processes
to know which processes each one has to listen to. Thus, each
communication stage consists of three phases (Figure 2):

1. Implicit synchronization, in which processes must wait until
every other process is ready for communication. Computation
and communication imbalance contribute to this phase.

2. Communication handshake (informing target processes of the
intent to communicate). In naive P2P communication this
operation has O(P) complexity (Hoefler et al., 2010b), with P
number of processes, a problem for scalability.

1The details of the 77 k neurons model are described in section 2.3.1.
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FIGURE 2 | Diagram showing synchronization phases in point-to-point (P2P) communication. Implicit synchronization (light blue): processes waiting for each other to

start communication. Communication handshake (white): explicit notification to other processes of the intention to send data (receiver processes must prepare

buffers). Send-receive data (dark blue): processes send spiking data to each other. The cost of the send-receive data is determined by the number of neurons on two

communicating processes (Na and Nb), how densely connected those populations are (d_conna_b and d_connb_a) and the frequency at which those populations

communicate (Fab and Fba ).

3. Data exchange (actual send and receive of spiking data). The
cost of the send-receive data is determined by the number
of neurons hosted on two communicating processes, their
interconnection density and the frequency of communication,
i.e., the firing rate.

The key contribution of this paper is to exploit network
communication sparsity in SNN graphs to improve the three
phases of point-to-point communication in distributed SNN
simulations. Two proposed strategies contribute to those
phases: connectivity-aware neuron allocation to processes
with hypergraph partitioning improves workload balance
(implicit synchronization), increases communication sparsity by
reducing the number of neighboring processes (communication
handshake) and decreases the density of communication
between process neighbors (send-receive data); dynamic sparse
data exchange as an interprocess communication pattern
improves communication balance (implicit synchronization)
and reduces data exchange by overlapping communication
handshake and send-receive data. Furthermore, there is a
synergy between the effects of connectivity-aware allocation and
sparse communication to increase computational efficiency in
distributed SNN simulations.

1.5. Previous Work
1.5.1. Optimization of Spike Propagation
In a continuous SNN simulation run in distributed processes,
after updating the states of neurons and synapses, each
process needs to broadcast spike data so target postsynaptic
neurons are notified of the activity of presynaptic neurons.
This synchronization event occurs at defined time intervals,
with communication overhead at every step. One method of
reducing the overhead is to pack event-messages together by
using the intrinsic synaptic delay property of the neuronal
connection (Morrison et al., 2005; Gewaltig and Diesmann,
2007). The global minimum synaptic delay (smallest synaptic

delay in the simulation) is used to set the frequency at which
processes need to communicate. Hammarlund and Ekeberg
(1998) take this idea further and use a different frequency
of communication per process pair, defined by the minimum
synaptic delay in synapses across those processes, with a reduced
overall communication overhead.

Most distributed SNN simulators use the Address Event
Representation (AER) to compress the spike data exchanged
between parallel processes. In software simulators, the AER
approach by Morrison et al. (2005) is commonly used, where
synapse objects are stored where the post-synaptic neuron is
placed. Thus, processes containing firing neurons need only send
the neuron ID and time stamp information to other processes.
HRLsim (Minkovich et al., 2014) dynamically switches to an
alternative bit representation (Boahen, 2000) when the activity
of the network is high. The bit representation describes the state
(fired or not fired) of an ensemble of 32 neurons with a bit in
a 4 bytes integer, allowing to represent the entire network more
efficiently. Nageswaran et al. (2009) targets the time stamp data to
reduce the size of event messages. Instead of sending neuron id-
timing pairs, they employ timing tables at which processes attach
spike data, removing the need to include time data. Similarly,
Morrison et al. (2005) avoid having to send individual spiking
timestamp by adding markers to the spike buffers (one per
time interval between communication events), thus receiving
processes are able to determine when the remote spike occurred.

After compressing and packing spiking data, parallel
simulators must broadcast the messages to any and all processes
that require it. Main software simulators (Carnevale and Hines,
2006; Gewaltig and Diesmann, 2007; Hoang et al., 2013; Zenke
and Gerstner, 2014) take the simple approach of sending every
message to all other processes (all gather). Although this design
scales poorly, it is easy to implement and for lower processes
counts the hardware optimizations made for such a collective
function call may hide this cost. To support the all gather
approach, Lytton et al. (2016) suggest that it may perform
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better than a discerning point-to-point, provided the number of
processes involved is significantly lower than the average number
of connections per neuron. In this situations, the probability
that any neuron has post-synaptic targets in any other process is
high, hence most spiking messages need to be sent to all other
processes. In large scale simulations, however, with the order of
thousands of processes, this may not be the case, as the average
neuron connectivity will quickly be outnumbered by the number
of processes, making all gather communication inefficient.
The point at which average neuron connectivity outweighs the
number of processes is dependent on the model in question;
for human brain models it can reach tens of thousands, but for
specific microcircuits it is significantly below that, such as the
cortical microcircuit (3.8 k, Potjans and Diesmann, 2014) and
the multi-area macaque visual cortex (5.8 k, Schmidt et al., 2018).
This relationship between average neuron connectivity and
number of processes is behind the performance demonstrated
by Kumar et al. (2010) in their extension to NEURON, which
showed higher gains in communication efficiency in low
connectivity density models.

Previous works (Migliore et al., 2006; Jordan et al., 2018)
acknowledge that the communication overhead using all gather
becomes a problem for scalable parallel simulations and better
broadcasting efficiency is needed. SPLIT (Hammarlund and
Ekeberg, 1998) and HRLSim (Minkovich et al., 2014) both
implement point-to-point communication with reported gains
over all gather. Jordan et al. (2018) propose using all to all as an
alternative collective communication in large scale NEST parallel
simulations. Although they are more interested on reducing
the memory footprint of communication at large scale, this
collective method minimizes the redundancy of data sent across
the simulation, with each process sending unique data to all other
processes.

In large scale simulations performed to date, communication
overhead is dealt with in several ways for each case. Kunkel
et al. (2014) and Jordan et al. (2018) rely on message packing
to reduce the communication overhead problem (communicate
only every 15 time steps). In their custom cortical simulator
Ananthanarayanan and Modha (2007a,b); Ananthanarayanan
et al. (2009) use a point to point communication pattern to
reduce communication volume. Their work includes strong
scaling experiments showing that as the number of processors is
increased, the simulation becomes communication bound. Other
large scale simulations do not explicitly optimize communication
as they do not study scalability (Izhikevich and Edelman, 2008;
Eliasmith et al., 2012).

1.5.2. Allocation of Neurons to Processes
Most SNN parallel simulators use round-robin allocation of
neurons to computing nodes (Migliore et al., 2006; Gewaltig and
Diesmann, 2007; Pecevski et al., 2009; Yavuz et al., 2016). This can
be seen as a simple form of static load balancing (Kunkel et al.,
2014). Although authors have proposed models to account for
heterogeneous workload balancing (Hoang et al., 2013), very little
work has focused on the impact that neuron allocation has over
simulation communication (i.e., spike propagation). HRLSim
(Minkovich et al., 2014) suggests assigning neurons based on

how tightly connected they are but without implementation
details. Urgese et al. (2016) present an improvement to the
default division of workload policy PACMAN in SpiNNaker
(Galluppi et al., 2012). They use spectral clustering to group
neurons into sub-populations, where tightly connected groups
are kept in the same computational node (process). A similar
approach, but based on graph partitioning is employed in
the complex system simulator InsilicoSim (Heien et al., 2010),
demonstrating the potential benefits of graph partitioning to
distribute computation.

1.5.3. Communication in Large Scale Distributed

Applications
Thakur et al. (2010) argue that at the peta and exascale
computing, current communication patterns in MPI (the
standard library for distributed computing) struggle to scale. The
main two challenges are memory footprint of irregular collective
operations and poor scaling of collective communications (Balaji
et al., 2009). The former is due to the requirement to define
buffers the size of the number of processes as function arguments
in every irregular collective call. The latter is a consequence of
the nature of all to all communications, each process sending
data to all others, with little opportunity for optimization—
although work has been done to improve performance on specific
hardware (Mamidala et al., 2008; Adachi et al., 2012). Since brain
scale simulations will require large scale distributed architectures,
SNN simulations will have to deal with those issues too.

Neighborhood collective methods introduced in MPI 3.0
(Hoefler and Träff, 2009) are an improvement over normal
collective methods but they require a predefined communication
graph to know process neighborhood. This static exchange
requirement makes it hardly applicable for SNN simulation
where infrequent communication and plasticity are involved.
Furthermore, neighbor messaging is only advantageous if the
average size of a process neighborhood (i.e., the number of
neighbors it communicates with) is significantly lower than
the total number of processes. Due to their high level of
interconnectivity this is unlikely to be the case in biologically
plausible SNNs.

In other complex system simulations (such as molecular
interactions, fluid dynamics, etc.), computation is divided based
on position and communication tends to happen primarily
(or exclusively) in the overlapping or adjacent locations.
Communication in parallel SNN simulations is very different
since neurons can communicate (i.e., spike) with potentially
any other neuron in the model, irrespective of their location.
The format of the communication is also unique, as it takes
the form of low frequency, discrete messages (spikes) from
one neuron to all of its post-synaptic targets. These two
facts make communication in SNNs very dynamic (target
neighbors change across the simulation) and sparse (target
neighbors at each communication step are a subset of the
total). Hoefler et al. (2010b) proposes Dynamic Sparse Data
Exchange (DSDE) algorithms for scalable sparse communication
in large neighborhoods with good scalability. This work
explores the benefits of DSDE as a communication pattern in
SNN simulations.

Frontiers in Neuroinformatics | www.frontiersin.org 4 April 2019 | Volume 13 | Article 19

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Fernandez-Musoles et al. Communication Sparsity for Distributed SNN Simulations

1.6. Summary of the Paper
The remainder of the paper is organized as follows. Section
2 details the proposed methods to allocate neurons to
processes using hypergraph partitioning and dynamic sparse
point-to-point communications. Section 2.3 outlines the
details of the experiment setup, including the neuronal
model developed for this work. Sections 3 and 4 present
and discuss the results obtained from scalability analysis
on the proposed approaches, comparing them with
baseline implementations.

2. MATERIALS AND METHODS

Communication in parallel SNN happens due to pre- and post-
synaptic neurons being hosted by different processes. Figure 3
shows the Process Communication Graph (PCG) resulting from
a mapping of neurons to 8 processes. In the PCG, edges are
shown only if there are any synapses between neurons of
both populations. As a consequence, during simulation, each
process has to synchronize (i.e., receive information) with every
neighboring process it has in the PCG.

FIGURE 3 | Process Communication Graph (PCG) that represents parallel

SNN simulation communication. (Left) The graph with blue nodes represents

the SNN synaptic connectivity and the red circles are processes to which the

neurons are mapped. (Right) Resulting process graph in which edges

represent processes that need to synchronize during simulation, i.e., have an

inter-process synaptic connection between themselves. The PCG describes

the process neighborhood for each computing node.

This work tackles the communication overhead issues that
limit distributed scalability in large scale SNN simulations. Our
goal is to increase computational efficiency by reducing the time
simulations spend on communication between processes. We
focus on reducing the overhead of communication by: (1) using a
connectivity-aware allocation of neurons to compute nodes; and
(2) employing scalable sparse parallel communication patterns.
These two strategies are complementary and address the sparsity
of communication in the PCG.

2.1. Hypergraph to Represent Connectivity
in a SNN
Since communication in distributed SNN simulations only
happens when there is interprocess connectivity in the
PCG, minimizing this connectivity directly reduces the
communication requirements. The topology of biological
plausible complex neuronal networks is found to show presence
of clusters, where local connectivity is expected to outnumber
remote connectivity (Bullmore and Sporns, 2009). Hence, there
is an opportunity to optimize communication by considering
this clustering when assigning neurons to compute nodes.

We propose to model the SNN as a hypergraph. A hypergraph
has been shown to successfully model total communication in
parallel applications (Devine et al., 2005; Deveci et al., 2015).
Formally, a hypergraph H = (V ,E) consists of a set of vertices
V and a set of hyperedges E, where each hyperedge is a subset
of V that defines the connectivity pattern. Note that a graph is
a specific case of a hypergraph in which the cardinality (size) of
each hyperedge is equal to 2—hence each edge connects a pair
of vertices. In hypergraphs, however, hyperedges can have any
cardinality, i.e., one hyperedge connects multiple vertices.

A SNN can be thought of as graphs with neurons as nodes
and synaptic connections as edges. To better model the cost of
communication, instead of using edges (one to one connectivity)
we use hyperedges. Each hyperedge contains a pre-synaptic
neuron and all of its post-synaptic targets—see Figure 4A.
This captures the all-or-nothing communication behavior of
neurons, where when a neuron spikes, a message is sent to all
its post-synaptic targets (and not a subset of targets). Thus, a

FIGURE 4 | Representing the SNN as a hypergraph (A): Three hyperedges (black, red, and green) shown, where a hyperedge includes a pre-synaptic neuron and all

its post-synaptic neurons (the numbers describe neuron IDs). This representation corresponds to the manner neurons communicate, i.e., when a neuron fires all its

post-synaptic targets need to be notified. (B) The hypergraph nodes are weighed by the number of dendritic inputs to a neuron as an estimate of the workload

located at each process. In this example, edges represent synaptic connections between neurons (nodes), with the thicker end indicating direction. The number on

the node represents the weight associated to each neuron, equal to the sum of its input plus one.
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hyperedge adequately models the unit of communication in a
SNN. To model workload, hypergraph nodes are weighed by the
number of dendritic inputs —Figure 4B. The number of inputs
is a good estimate of the workload associated with hosting a
neuron; synaptic objects handling dendritic input computation
are located on the post-synaptic side, therefore more dendritic
input requires more computation during the synaptic
update phase.

2.1.1. Hypergraph Partitioning for Neuron Allocation
When neurons within the same hyperedge are assigned
to different nodes of the PCG, communication between
them is required during simulation. Note that interprocess
communication is therefore not required if there are no
hyperedges spanning more than one process. Hence, the
allocation of neurons to processes can be formulated as an
optimization problem where the goal is to reduce the number
of hyperedges cut between processes. Multilevel hypergraph
partitioning, generally understood to produce better partitions
faster than other alternatives (Hendrickson and Leland, 1995),
is used. Multilevel partitioning algorithms are a family of
procedures that divide the input graph in three distinct phases:
coarsening or simplification of the graph by merging nodes
together; partitioning, where the simplified graph is divided
into portions; and expansion, where the graph is uncoarsened
to its original form and the partitions are refined. This work
makes use of the Zoltan library (Boman et al., 2012), with
the agglomerative inner product matching coarsening method
(Catalyurek et al., 2009), and FM refinement method (Fiduccia
and Mattheyses, 1982). To better represent the communication
costs, each hyperedge cut is weighed based on the number of
participant parts minus one. Formally, the total cost of a partition

scheme is
∑|E|

i=0 P(ei), where ei = {p1, p2..., pn} represents the set
of partitions that contain any node in hyperedge ei, and E is the
set of all hyperedges. The cost P(e) of hyperedge e is defined as
P(e) = |e| − 1.

To avoid trivial solutions that minimize the hyperedge cut
(such as assigning all vertices to one partition) partitioning
algorithms maintain load balancing by only allowing solutions
that have a total imbalance factor that is below a specified
value. The total imbalance is calculated dividing the maximum
imbalanced partition in the scheme by the average imbalance
across partitions. Formally:

maxp∈P(L(p))

(
∑|P|

i=0 L(pi))/|P|

where P is the set of partitions and L(p) is the load cost for
partition p defined as the sum of the weights of all its nodes,
L(p) =

∑N
i=0W(ni) where N is the number of nodes in partition

p and n ∈ p. The total imbalance must be lower or equal than
an arbitrary tolerance value (in our experiments, 1.001). The
workload of each node in the hypergraph (neuron) is estimated
by the number of incoming post-synaptic connections, and using
that as the weight of the node (see Figure 4). The computation
in the simulation is dominated by synaptic updates, based on
experimental validation. Post-synaptic objects live in the same
partition local to the post-synaptic neuron, hence those partitions

with more incoming synapses will have more computation to
perform during updates.

2.2. Scalable Dynamic Sparse
Communication Patterns
Communication in SNN simulations falls into the category of
census, a common parallel programming function in which a
process receives a piece of data from each of all other processes.
Each process knows to whom it needs to send data (any process
hosting post-synaptic targets of spiking local neurons), but
has no information as from whom it is going to receive data
(non-local firing neurons). Personalized census or personalized
exchange (PEX) is the most basic implementation of census
(Hoefler et al., 2010b) in which communication occurs in two
steps: (1) interprocess handshake and (2) send and receive data.
During handshake, processes inform their targets that they will
be sending data to them. In the second phase, each process post
data and listens to messages only from those processes.

With respect to scalability, there are two issues with PEX: on
the one hand, due to the dependency between phases, they occur
sequentially, i.e., each process must wait until it has completed
the handshake before sending data. This adds waiting time that
is dependent on the total number of processes (messages will
take longer to propagate in larger topologies). On the other hand,
during handshake, each process sendsmetadata to all others, even
if they do not need to send spiking data to them (they still need to
inform others that they will not be receiving data). This causes an
overhead of metadata with a quadratic growth with the number
of processes (Figure 5) and quickly becomes the dominant part
of the exchange.

FIGURE 5 | Theoretical data volume exchanged in the two phases of

communication by PEX on an artificial network with constant spiking activity

(20 spikes/s for low activity, 80 spikes/s for medium activity, and 160 spikes/s

for high activity). During spiking data exchange, processes send data to each

other in two phases: handshake (coordinating intention to send information) in

solid red line; and send-receive spiking data, in dashed lines. The send-receive

exchange volume is dependent on the activity density (spiking average) per

process. The communication profile of the simulation and the number of

processes used determines which phase is dominant.
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FIGURE 6 | Point-to-point communication strategies compared. Personalized Exchange (PEX ) involves an explicit handshake to coordinate communication intention

amongst processes before exchanging data. First, processes share metadata in an all to all manner; in a second round, processes send data only to those that need

to receive spiking data. Neighbor Exchange (NBX ) overlaps both phases with the use of asynchronous barrier, which allows processes to send and receive spiking

data while waiting for notification that other processes have completed sending data, minimizing synchronization time.

Neighborhood Exchange (NBX) belongs to the class of
Dynamic Sparse Data Exchange algorithms proposed by Hoefler
et al. (2010b). It targets the overhead (both waiting time
and metadata exchange) caused by the handshake phase of
communication by overlapping it with the send-receive data
phase—see Figure 6). For sparse communication, Hoefler et al.
(2010b) demonstrate that NBX performs better than PEX.

Previous attempts to optimize data exchange in SNN
simulators have been limited to implemented PEX-like point-
to-point communication (Hammarlund and Ekeberg, 1998;
Ananthanarayanan and Modha, 2007a; Kumar et al., 2010;
Minkovich et al., 2014; Jordan et al., 2018). To the best of
our knowledge, no SNN simulation has considered using DSDE
algorithms. This work compares the performance of PEX and
NBX and their impact to communication performance.

2.2.1. Details on the Implementation of PEX and NBX

Both algorithms require each process to maintain a lookup table
of target processes each local neuron connects to (populated
before starting the simulation). When a process is in the
communication stage, it matches the local spiking neurons
to the lookup table to generate the data to be sent to each
process. PEX and NBX differ in the way they distribute this
data. Both PEX and NBX follow the implementations described
by Hoefler et al. (2010b).

For the comparisons, PEX is implemented with an all to all
call for the handshake, which informs other processes of which
processes to listen to. An asymmetric all to all follows, where each
process may send different amounts of data, to send-receive data
(which is preferred to individual send and receive postings per
process as it incurs in less call overheads).

NBX is implemented as depicted in Figure 6. First, each
process sends data asynchronously (non-blocking) to all its
targets. Whilst the messages are being delivered, processes probe
for incoming messages. Once a sender process is notified that
its messages have been received, it places an asynchronous
barrier and continues to probe for incoming messages until all
other processes have reached the barrier (with an MPI_Ibarrier
call), signaling the end of the communication phase. The use

of an asynchronous barrier removes the need for an explicit
handshake, effectively allowing the data exchange to start without
explicit knowledge from the receiver.

2.3. Experimental Design
2.3.1. Cortical Microcircuit SNN Model
For the benchmark experiments, the model used is based on the
Cortical Microcircuit (CM) described by Potjans and Diesmann
(2014), scaled to 77k neurons and 150M synaptic connections.
The CM model is representative of microcircuit-type models in
which a SNN is constructed by layers of neurons and connectivity
probabilities within and between layers. As such, findings on the
CM model can be applicable to other microcircuit models and
similarly structured biologically plausible networks.

The size of the model is sufficient to display the limitations
of scalability in distributed simulations due to communication
overhead scalability —see Figure 1. This is a consequence of the
high frequency of synchronization required in the simulation:
message packing optimization is not allowed because the
model contains random synaptic delays, forcing processes to
synchronize at each time step.

To ensure network activity across the simulation, uniform
constant current is injected to all neurons (0.95 mA), with
resting potential (−45 mV) and spiking threshold (−50 mV).
This form of input differs from Potjans and Diesmann (2014)
Poisson spike trains but results in an equivalent global average
activity of 5–7 spikes/s. A constant input is more adequate for our
study of communication in distributed simulations, as it tends
to spread the activity across the network. This prevents from
skewed communication (in which a subset of processes do most
of the sending whilst others only receive), that could interfere
with interpreting the results from allocation and communication
algorithms. Biological realism in activity patterns is therefore
not required.

2.3.2. Macaque Visual Cortex Multi-Scale Model
To understand how the hypergraph partitioning allocation and
the NBX communication scale to larger models, we implement
the multi-scale model of the macaque visual cortex (MVC)
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described by Schmidt et al. (2018). The model bridges the gap
between local circuit models (such as the CM) and large-scale
abstractions to represent one hemisphere of the macaque visual
cortex. It is comprised of 32 areas, each one constructed as a CM
and connected to others with fixed probability, i.e., a cell on one
area is connected to cells in another area with a probability that
is fixed for all cells between said two layers. The nature of the
model is modular (i.e. divided in areas) which makes it a suitable
candidate for smart partitioning.

The model is implemented at 16% of the original scale,
with 660 k neurons and approximately 620 million synapses,
with the same connectivity probability. Neurons share the same
parameters as the ones detailed in the original model (Potjans
and Diesmann, 2014). As with the CM model, a constant current
of 0.38 mA is introduced to all neurons. To produce an average
activity of 20–23 spikes/s, the weight multiplier of inhibitory
connections is set to−15 (instead of−4).

2.3.3. Implementation of the Models
Both models are implemented in C++, where different neuron
allocation and communication strategies are evaluated. The main
features of the implementation are:

• Time-step driven simulation.
• Single neuron (leak integrate and fire) and synaptic models

(exponential).
• Distributed across computing nodes (processes). Within a

process, computation is performed sequentially (computation
performance is out of the scope of this work).

• MPI library used for interprocess communication.

These features are built to be representative of the wider class
of SNN simulators, with functionally equivalent output (network
activity) for the same model execution. Thus, the findings on this
work could inform development in other time-step, distributed
SNN simulators (such as NEST, NEURON, Arbor Klijn et al.,
2017).

Profiling timing is done internally by wrapping specific
functions with MPI_Wtime calls. We are mainly interested
in measuring time spent in computation, in implicit
synchronization and in data exchange, as well as how these
impact overall performance.

• Computation: includes the sequential computation of neuron
and synapse state updates, as well as effecting the received
spiking information from other processes to local neurons.

• Implicit synchronization: to quantify load balance, a global
artificial barrier is introduced at the end of the computation
cycle to measure waiting time on each process2

• Data exchange: measurement of the time it takes for the
selected communication pattern to initiate and complete spike
propagation.

2This is implemented with MPI_Barrier calls. Although there are limitations to

this approach (a process is only held until it is notified that all other processes

have entered the barrier; but message propagation delays may result in additional

imbalance) it is a good approximation of time to synchronize.

• Simulation time: overall global time to complete the
simulation, including computation, implicit synchronization,
and data exchange.

The code for the implementation of the models, as well as
the allocation and communication algorithms have been made
available and can be accessed at: https://github.com/cfmusoles/
distributed_sim.git .

2.3.4. Hardware Architecture
Simulations of the CM and the MVC model are run on the
ARCHER Cray XC30 MPP supercomputer, with 4,920 nodes,
each with two 12 cores Intel Ivy bridge series processors (for
a total of 24 processors) and up to 128 GB RAM available.
Computing nodes are connected via fast low latency Cray Aries
interconnect links3.

ARCHER allocates exclusive computing nodes (cores and
memory), however, as a cluster computer, network related
resources are potentially shared. There are two types of noise
that can affect benchmarking results: external application traffic
contention and distance on the allocated computing nodes.
Traffic noise is minimized by running each iteration (same
seed) of an experiment multiple times (with the same node
allocation) and selecting the fastest sample. Node distance
variability (communication between any two nodes depends on
how close they are in the topology) is smoothed by running each
set of experiments multiple times with different node allocations.
Furthermore, when comparing strategies, all candidates within
an experiment set run with the same node allocation.

3. RESULTS

The first series of strong scaling experiments (size of the model
is fixed whilst increasing the number of processes) are run to
understand the impact of the novel neuron allocation strategy
and the application of DSDE communication patterns in SNN
simulation. The experiments simulate 750 ms of the CM model
at 0.1 ms time step4. The process scales used are: 96, 192, 384,
768, 1,536, and 3,072 processes.

3.1. Neuron Allocation via Hypergraph
Partitioning
The baseline neuron allocation strategy Random Balanced is a
variation of random allocation that takes the number of post-
synaptic connections into account to keep processes balanced.
Random Balance performance is compared to Hypergraph,
our allocation strategy that uses hypergraph partitioning to
minimize the total interconnectivity between nodes in the
Process Communication Graph. Both strategies use PEX to
communicate spiking data.

Figure 7 shows comparative results from both allocation
strategies. Since they are based on the same metrics for load
balance, there are no differences in implicit synchronization

3More information regarding ARCHER hardware can be found on https://www.

archer.ac.uk/about-archer/hardware/
4This value is the default time step in many SNN simulators as a resolution for the

simulation that provides meaningful functional results.
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FIGURE 7 | Performance results of Random balanced allocation compared with hypergraph partitioning. The top part shows quantitative timings during the different

phases of communication: (A) Implicit synchronization time and (B) data exchange time. The bottom part of the figure shows reductions brought by hypergraph

partitioning over random: (C) Average number of runtime neighbors (average number of processes each process communicates to at any given communication step,

a subset of the total neighborhood defined in the PCG); (D) remote spikes (local spikes that need to be propagated to other processes); (E) spiking data volume

exchanged difference.

FIGURE 8 | Communication time using PEX and NBX are shown. (A) Implicit synchronization time per simulation. (B) Total volume of spiking data exchanged during

simulation. (C) Data exchange time per simulation.

time between strategies (Figure 7A). Hypergraph has its impact
in terms of interprocess connectivity. As expected, the number
of average runtime neighbors (ARN, average number of target
processes at each communication step per process) is reduced
(Figure 7C), making communication more sparse. This leads
to fewer remote spikes, when a local neuron spike needs to be
propagated to other processes (Figure 7D) and a decreased total
amount of data exchanged (Figure 7E). Despite the improvement
in sparsity, data exchange time (Figure 7B) is not significantly
reduced and therefore simulation time is not affected since PEX
is not designed to take advantage of sparsity—see discussion in
section 4.1.

3.2. NBX Dynamic Sparse Communication
Pattern
NBX and PEX communication patterns are compared in
simulations using Random Balanced allocation. Figure 8

shows how NBX reduces communication time by significantly
decreasing implicit synchronization time (Figure 8A), as a result

of a more balanced communication time amongst processes—
see discussion in section 4.2. Total amount of spiking data sent
across processes is decreased (Figure 8B) due to the elimination
of the handshake phase during communication. Data exchange
time is not impacted (Figure 8C) despite the reduction in
data—see discussion in section 4.2.

3.3. Combining Neuron Allocation (HP)
With and Sparse Communicator (NBX)
Once the strategies have been evaluated independently, we
combine them to identify synergies. The four candidates
compared are Random-PEX, Random-NBX, Hypergraph
partition-PEX, and Hypergraph partition-NBX, indicating which
neuron allocation algorithm (random balanced or hypergraph
partitioning) and communication strategy (PEX orNBX) is used.

The results in Figure 9 show the effectiveness of Hypergraph
partition-NBX over the rest, with reduced simulation time
(Figure 9A) as a consequence of decreased communication time .
The improvement is due to implicit synchronization time gain
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FIGURE 9 | Simulation performance measurements for Rand-PEX, HP-PEX, Rand-NBX, and HP-NBX. (A) overall simulation time. (B) Implicit synchronization time per

simulation. (C) Data exchange time per simulation.

FIGURE 10 | Simulation results of the MVC model showing performance improvements of HB-NBX over the baseline round robin-PEX. The top part of the figure

displays connectivity-related metrics. (A) Data volume exchanged during simulation; (B) Average runtime neighbors in communication phases reduction in

percentage. The bottom part of the figure shows results of the MVC scaling experiments with both alternatives. (C) Computation time which decreases linearly,

demonstrating the potential benefit of increased parallelism; (D) Data exchange time; (E) Implicit synchronization time; (F) Total simulation time.

(Figure 9B) brought by the use of NBX, as well as a reduction
of data exchange time of Hypergraph partition-NBX over Rand-
NBX—see discussion in section 4.3 for an in depth analysis.

The Hypergraph partition-NBX approach is not only faster
than the random alternatives, but as Figure 9A demonstrates, it
also manages to improve scaling by delaying the point at which
the increased communication overhead outweighs the gains in
simulation time. The approach scales up to 1,536 processes for
this model (per 768 of the other alternatives).

3.4. Round Robin Allocation in Large
Models
A second set of strong scaling experiments has been performed
to analyse howHP-NBX scales to larger, modular models, such as
the MCV model. The experiments involve simulating the MCV
model over a 350 ms time interval with a 0.1 ms timestep, using
the following range of scales: 192, 384, 768, 1,536, 3,072, and
6,144 processes.

Round robin scheduling of computations is a common
workload distribution strategy in neuronal simulators. It is
used as a simple load balancing approach, spreading neurons

with similar activity patterns across the network (Jordan et al.,
2018). Thus, round robin is used in here as a baseline, with
PEX communication.

Figure 10 shows the results of the strong scaling experiments
for the larger, modular MVC model. It compares our proposed
strategy HP-NBX to the baseline Round robin-PEX. The
computation time scales linearly with the number of processes
(Figure 10C), indicating the simulation does benefit from
parallel execution. HP-NBX significantly impacts interprocess
communication by reducing the number of average runtime
neighbors by around 90% (Figure 10B). Hosted neurons
have to send spikes to fewer neighbors, and thus data
exchanged is reduced in comparison (Figure 10A). This is
a qualitative reduction, as the data volume has a quadratic
growth for Round robin-PEX but linearly for HP-NBX.
With less data volume being sent and a more balanced
communication pattern, both phases of communication
are reduced: data exchange time (Figure 10D) and implicit
synchronization time (Figure 10E). As a consequence,
HP-NBX simulation time scales well with the number
of processes, whereas Round robin-PEX struggles with
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FIGURE 11 | HP-NBX computational efficiency gains over the baseline Round robin-PEX during MVC simulations. The graph shows the proportion of time an MVC

simulation spends in computation (red), implicit synchronization (light blue), and data exchange (dark blue) when using Round robin-PEX (A) and HP-NBX (B). The

proposed strategy HP-NBX consistently increases computational efficiency in all processes counts (percentage points improvement in increasing process count

order: 5.2, 2.7, 12, 22.3, 40.8, and 32).

high process counts (no improvement with 1536 processes
or higher).

The overall computational efficiency gain of HP-NBX is
outlined in Figure 11, which compares it to the baseline Round
robin-PEX. Not only overall simulation time is reduced by
up to 73% (Figure 10F) but the proportion of time spent
in computation is increased (Figures 11A,B), resulting in an
improved computational efficiency, by up to 40.8 percentage
points (from 22.2 to 63%).

4. DISCUSSION

Spike propagation, the necessary exchange of data between
computational nodes, is shown to limit scalability in distributed
SNN simulations—see Figure 1. Jordan et al. (2018) and Schenck
et al. (2014) suggest that this exchange may not be limiting
scalability for simulations that make effective use of message
packing. Since such simulations employ synaptic delays that
are larger than the resolution of the simulation time step,
communication steps only occur on multiples of the global
minimum synaptic delay. This significantly reduces the number
of synchronization events and therefore minimizes the impact of
communication on the overall simulation time. In contrast, for
models that cannot make use of message packing (such as the CM
andMVCmodels with random synaptic delays), communication
is acknowledged as a bottleneck for scalability.

4.1. Hypergraph Partitioning as a Neuron
Allocation Strategy
Our proposed neuron allocation method based on hypergraph
partitioning offers an improvement to approaches employing
graph partitioning (Heien et al., 2010) or clustering (Urgese et al.,
2016). A hypergraph allows the total communication volume
of the simulation to be modeled more accurately than using a
normal graph (Devine et al., 2005; Deveci et al., 2015) which
enables a better allocation of neurons to computing nodes to
reduce connectivity between processes.

Hypergraph partitioning is effective in minimizing
interprocess connectivity, as shown by a 10–20% reduction
in remote spikes (Figure 7D) and 20–25% in average runtime
neighbors (Figure 7C). Increased sparsity of the communication
graph, however, does not impact data exchange time—see
Figure 7B. This is because PEX is not designed to take
advantage of this sparsity: send-receive data is implemented
with MPI_Alltoall, which results in global synchronization
of all processes even with reduced interconnectivity.
Therefore, performance improvement on simulation time
is negligible.

Partitioning alone brings a verymoderate reduction in volume
of data exchanged (Figure 7E) that becomes negligible as the
parallelism is increased. The effect is expected since partitioning
optimizes only the data send-receive portion of the exchange
phase, and as shown in Figure 5 this is not the dominant
part of the communication, less so as the number of processes
increases. Parallel SNN simulations in which the send-receive
part is dominant (e.g., high frequency of neuronal activity or
increased neuronal density per process) could see a significant
improvement here.

Lytton et al. (2016), point out that simple collective
communication patterns like all gather may perform better than
point-to-point provided the number of ranks is significantly
lower than the average number of connections per neuron.
This tipping point assumes random allocation of neurons and
hence random chance of post-synaptic targets being placed at
any computing node. Using partitioning actively increases the
probability of a pre- and post-synaptic neuron living in the
same process (as seen by a reduction in runtime neighbors
in Figure 7C) and therefore neurons will normally have less
targeted process than post-synaptic targets. This shifts the tipping
point in favor of point-to-point communications to be reached
much sooner, at fewer processes.

4.2. NBX Dynamic Sparse Exchange
NBX has a strong impact on implicit synchronization time
(Figure 8A), which is an indirect measurement of load balance
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between processes. With both alternatives employing Random
Balanced allocation, the computation phase remains the same.
Therefore any change in load balance, reflected in implicit
synchronization, can be attributed to the communication
strategy—some processes taking longer than others to
finish communication phase which carries over to the next
communication step when processes re-synchronize again. PEX
makes use of collective MPI calls, which ensure that processes
are synchronized at the point of entry of that function. Note that
each process may continue execution as soon as it has receive
messages from all others. This is not guaranteed to happen
at the same time for all processes, introducing imbalance—a
well-known phenomena in parallel synchronization (Hoefler
et al., 2010a). With NBX processes are implicitly synchronized
with an asynchronous MPI_Ibarrier: all processes are guaranteed
to have sent all data before any of the processes finishes
communication phase and continues with the simulation. This
acts as a balancing mechanism whilst not forcing processes to be
idle, since the barrier notification messaging happens in parallel
whilst receiving data.

The cost of synchronization for NBX shows in the measured
time for data exchange on Figure 8C. NBX scales in a more
predictable way than PEX, but at the level of communication of
the simulation (random allocation of neurons leads to almost
all to all process connectivity) it is often slower. Hoefler et al.
(2010b) indicates that the performance of NBX is dependent
on the number of neighbors (sparsity) during communication.
Hence, increasing sparsity would improve NBX performance—
see discussion in section 4.3.

Figure 8B shows volume of data sent by both alternatives,
with a qualitatively improvement of NBX. This measurement
accounts only for explicit data sent; for PEX this includes
handshake metadata, which as we have discussed becomes
dominant with increased parallelism (each process needs to
send data to all other processes specifying whether further
communication is to be expected). NBX performs the handshake
implicitly with MPI_Ibarriers, which has a payload of 0 and does
not require all to all messaging.

4.3. Synergy Between Hypergraph
Partitioning and NBX
The combined Hypergraph partition-NBX strategy performs
better than either one on its own (Figure 9A). It keeps
the reduced implicit synchronization time (Figure 9B) that
comes with NBX better process balance during communication.
Furthermore, when compared to Random-NBX, Hypergraph
partition-NBX has enhanced communication sparsity due to
partitioning allocation that increases the effectiveness of the
sparse communication pattern, resulting in data exchange time
reduction (Figure 9C). With sparsity, Hypergraph partition-NBX
matches the data exchange performance of PEX alternatives
in lower processor counts, and improves upon it as the
parallelization increases.

The dual nature of Hypergraph partition-NBX could impact
performance in SNN models with different communication
profiles. In high frequency communicating SNN simulations
(high neuron firing rate or high process neuronal density), where

communication is dominated by data send-receive (Figure 5),
the impact of hypergraph partitioning in reducing the volume
of communication is expected to increase: when more neurons
are spiking, more data is sent across processes, making any
reduction in inter-process synapses more significant. This
effectively increases the sparsity of communication, improving
the effectiveness of NBX. In low frequency communicating SNN
simulations (low neuron firing rate, low process neuronal density,
or a modular SNN model that can be partitioned well), where
communication is sparse, NBX is expected to speed up data
exchange time—as discussed in section 4.2 and by Hoefler
et al. (2010b). Therefore, with increased network communication
sparsity, NBX is a more suitable communication pattern than
point-to-point strategies used by SNN distributed simulators
(Hammarlund and Ekeberg, 1998; Kumar et al., 2010; Minkovich
et al., 2014; Jordan et al., 2018).

4.4. HP-NBX vs. Round Robin in Large and
Modular Model
We have shown that the proposed strategy leads to significant
performance improvement on the CM model. The main
limitations of this model are its relatively small size and the
random connectivity between its layers, which can pose a
challenge to workload distribution (particularly the random
connectivity, as it makes reducing communication through
partitioning more challenging). To demonstrate further
applicability of our strategy to larger and modular models, we
investigate the effect of HP-NBX on the MVC model: 660 k
neurons with 620 million synapses, arranged in 32 modular areas
as described by Schmidt et al. (2018).

Round robin is a standard neuron allocation algorithm
employed by many neuronal simulators (such as NEST or
NEURON). Although it is an adequate load balancing approach
(Jordan et al., 2018), round robin represents the worse-case
scenario in terms of connectivity, as it purposefully separates
neurons which are more likely to be more interconnected (those
belonging to the same population). As a consequence, round
robin forces each process to be communicating with a high
number of other processes.

HP-NBX is capable of taking advantage of the modularity
of the model and decreases the average number of neighbors
each process communicates with by 90% (Figure 10B). The lower
ARN impacts the data exchanged not only in reducing its volume
but also allowing linear scaling with the number of processes,
compared to the quadratic growth of Round robin-PEX.

The decreased ARN allows the NBX algorithm to be more
efficient and balanced and hence simulations spend less time in
implicit synchronization (Figure 10E). The qualitative difference
in scaling of data volume (linear for HP-NBX and quadratic
for Round robin-PEX) leads to reduced data exchange time
(Figure 10D). Both Figures 10D,E show how our approach
scales better: data exchange time growth slows down with the
number of processes, in contrast with a continuous quadratic
growth of the baseline; similarly, implicit synchronization time
decreases with higher processor counts, whereas it is increased
in the baseline. This limits the scalability of simulations with
Round robin-PEX (Figure 10F), with simulation time not being
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FIGURE 12 | Comparing the cost of computing hypergraph partitioning in extra build time (in seconds) (A) to the gains in simulation time by HP-NBX as a percentage

of the build time (B). Notwithstanding the gains on a 350 ms simulation are canceled out by the extra computing cost, the gains are expected to scale with the

simulated time, whereas the cost is uniform for any given simulation time chosen and number of processes.

improved despite the extra computing resources (1,536 processes
and above). In contrast, HP-NBX scales well, with simulation
time reduced for all process counts.

The impact of HP-NBX on data exchange time reduction
contrasts with those seen when comparing random allocation
and hypergraph partitioning using the CM model, in which
a moderate reduction on average runtime neighbors (25%) or
data volume (1–3%) on their own did not significantly impact
data exchange time. There are two key factors that explain
the difference. The first one is quantitative: the communication
reduction is much greatermore intense in the MVC model (90%
average runtime neighbors and 80% data volume). The second
reason is qualitative and is due to the scaling of both data volume
and ARN. The data volume difference (Figure 7E) and the ARN
difference (Figure 7C) in the CM simulation decreases with the
number of processes, whereas both differences increase rapidly
in the MVC model, making it more significant the more the
simulation is parallelized. This is therefore sufficient to impact
communication time.

Overall Figure 10 shows that HP-NBX is a more effective
allocation and communication algorithm than Round robin-PEX,
yielding shorter simulation times (Figure 10F). It is worth noting
that our implementation of round robin does not take advantage
of short cuts such as finding the target process for a post-
synaptic neuron by simply using mod operator, however this
is a memory optimization rather than a computation one and
therefore does not affect our results. This results demonstrate
the need of careful neuron allocation based on connectivity and
the inadequacy of round robin on large scale communication
bound simulations.

4.5. Cost of HP-NBX Against the Gains in
Simulation Time
Performing hypergraph partitioning adds a cost to building
the simulation that is calculated by taking the difference
between build time for baseline and HP-NBX. Similarly, the
time gain of the simulation is defined as the difference
in simulation time between the baseline and HP-NBX, as
a percentage of the build time. Figure 12 shows the build
time and simulation time gain between Round robin-PEX

and HP-NBX in 350 ms of MVC simulations. Due to the
use of a parallel implementation of hypergraph partitioning,
build time difference (Figure 12A) is reduced when scaling.
With lower simulation time (Figure 10F), the time gain of
HP-NBX reaches over 90% with 6,144 processes. Although
this means the proposed strategy is under 10% slower
overall (build time and simulation time), this is the case
for a short simulation of 350ms. Simulation time gains
are proportional to the simulated time but build time is
independent of it. Therefore, as the simulated time increases,
simulation gains will continue to increase whilst the build
time remains the same, resulting in the partitioning cost
becoming negligible.

5. CONCLUSIONS

Communication becomes the dominant part of parallel
SNN simulations as the number of processes is increased,
limiting scalability. This work shows how to improve
computational efficiency in distributed SNN simulations
by optimizing the three phases of communication: implicit
synchronization, process handshake, and data exchange. We use
neuronal connectivity to reduce interprocess communication,
applying hypergraph partitioning to drive neuron allocation
to processes. To tackle the impact of the mandatory
handshake in point-to-point parallel communications, we
implement NBX dynamic sparse strategy as a communication
pattern.

This work demonstrates:

1. Hypergraph partitioning leads to communication sparsity in
distributed SNN simulations and reduces volume of data
exchanged.

2. Dynamic sparse communication NBX smooths process load
imbalance introduced by PEX, resulting in reduced implicit
synchronization time.

3. Synergy between partitioning and NBX: Hypergraph
partitioning sparsity makes NBX more effective and reduces
data exchange time.

4. Hypergraph partitioning neuron allocation combined with
NBX communication pattern increases computational
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efficiency by up to 40.8% points and reduces simulation time
by up to 73%, compared to round robin allocation, a standard
algorithm in neuronal simulators.

The findings are application agnostic and are applicable
to other distributed complex system simulations in which
communication can be modeled as a graph network.

5.1. Future Work
This work has considered only uniform network topology
of processes, i.e., the cost of communication between any
two processes remains equal. Given the heterogeneity in
High Performance Computing, where compute nodes
are located at increasing distances (sharing a board,
within the same network group, or at remote groups),
considering the physical topology of the distributed
computing network could have an impact on neuronal
allocation. This information can be used to weigh the
PCG to better estimate the cost of communication
between processes.

Although the communication scalability problem
has not been removed completely (Figure 11) , it has
been reduced and pushed to the right (i.e., to a higher
compute node count). Implicit synchronization due to
load imbalance in communications has become negligible
and constant when scaling. The data exchange phase
of communication remains a target to optimize for
future work.

Our study is focused on constant current injection to generate
reproducible activity patterns across processes. The impact of
biologically plausible activity patterns of spiking neurons remains
an interesting extension of this work.
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