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ABSTRACT Small noncoding RNAs (sRNAs) are key regulators of bacterial gene ex-
pression. Through complementary base pairing, sRNAs affect mRNA stability and
translation efficiency. Here, we describe a network inference approach designed to
identify sRNA-mediated regulation of transcript levels. We use existing transcriptional
data sets and prior knowledge to infer sRNA regulons using our network inference
tool, the Inferelator. This approach produces genome-wide gene regulatory networks
that include contributions by both transcription factors and sRNAs. We show the
benefits of estimating and incorporating sRNA activities into network inference pipe-
lines using available experimental data. We also demonstrate how these estimated
sRNA regulatory activities can be mined to identify the experimental conditions
where sRNAs are most active. We uncover 45 novel experimentally supported sRNA-
mRNA interactions in Escherichia coli, outperforming previous network-based efforts.
Additionally, our pipeline complements sequence-based sRNA-mRNA interaction pre-
diction methods by adding a data-driven filtering step. Finally, we show the general
applicability of our approach by identifying 24 novel, experimentally supported,
sRNA-mRNA interactions in Pseudomonas aeruginosa, Staphylococcus aureus, and Ba-
cillus subtilis. Overall, our strategy generates novel insights into the functional con-
text of sRNA regulation in multiple bacterial species.

IMPORTANCE Individual bacterial genomes can have dozens of small noncoding
RNAs with largely unexplored regulatory functions. Although bacterial sRNAs influ-
ence a wide range of biological processes, including antibiotic resistance and patho-
genicity, our current understanding of sRNA-mediated regulation is far from com-
plete. Most of the available information is restricted to a few well-studied bacterial
species; and even in those species, only partial sets of sRNA targets have been char-
acterized in detail. To close this information gap, we developed a computational
strategy that takes advantage of available transcriptional data and knowledge about
validated and putative sRNA-mRNA interactions for inferring expanded sRNA regu-
lons. Our approach facilitates the identification of experimentally supported novel
interactions while filtering out false-positive results. Due to its data-driven nature,
our method prioritizes biologically relevant interactions among lists of candidate
sRNA-target pairs predicted in silico from sequence analysis or derived from sRNA-
mRNA binding experiments.
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Small noncoding RNAs (sRNAs) are key regulators of global bacterial gene expression
(1–5). Via complementary base pairing to their mRNA targets, sRNAs modulate

recognition of transcripts by complexes such as ribosomes and ribonucleases (3). sRNAs
can be classified as either trans-encoded (when they regulate genes regardless of their
chromosomal location) or cis-encoded (when they regulate adjacent genes only) (3, 6).
Here, we focus on trans-encoded sRNAs affecting mRNA stability. Because transcription
factors (TFs) and sRNAs share targets or even regulate each other (7), a comprehensive
characterization of any gene regulation network must incorporate both types of
regulators (8).

Escherichia coli is currently the bacterial species with the highest number of well-
characterized sRNA-mRNA interactions, where 22 sRNAs and their targets form an
intricate network of 102 experimentally supported interactions (9); however, this
number is likely a fraction of sRNA-mediated regulation in that species (10, 11).
Accurate and comprehensive detection of sRNA-mRNA interactions is challenging,
experimentally and computationally. Experimental strategies are complicated by the
difficulty of identifying the conditions in which sRNAs are active (12). Computational
methods predicting sRNA-mRNA interactions are fast and inexpensive, but they have a
high false-positive rate and often fail to recall known targets (5, 9).

Network inference methods have been implemented to study sRNA-mediated
regulation and map E. coli sRNA regulatory networks using transcriptional profiles of
sRNAs and their putative target genes. These strategies rely either on context likelihood
of relatedness (CLR) or exploit gene coregulation; however, the recall of known
sRNA-mRNA interactions is limited, and the accuracy of novel predictions is not
systematically evaluated (13–15). Contrary to what was assumed in previous network
inference strategies, sRNA levels might not be an adequate proxy for their regulatory
activity. Confounding factors include RNA chaperones (such as Hfq) that promote
sRNA-mRNA interactions (4, 5, 16) and ribonucleases that are required to activate some
sRNAs by processing (e.g., RNase Y-mediated modification of RoxS in Bacillus subtilis)
(17). Moreover, the regulatory contribution of sRNAs becomes inconsequential when
the concentration of their targets significantly exceeds their own concentration (18, 19).

In this work, we address the complexity of sRNA-mediated regulation by estimating
sRNA regulatory activities to generate models of gene regulation for four bacterial
species. We show that our pipeline outperforms previous efforts, detects novel sRNA-
mRNA interactions, and complements RNA-RNA interaction prediction methods by
discriminating between true and false targets. By identifying the most likely sRNA
targets, our strategy can help researchers to select promising interactions for experi-
mental validation.

RESULTS AND DISCUSSION

We inferred sRNA regulons from transcriptomic data using either the Inferelator (20)
or CLR (13, 21). A set of experimentally supported sRNA-mRNA interactions (referred to
as sRNA priors; see Table S1 in the supplemental material) was used for estimating sRNA
regulatory activities (SRAs). Because it mines transcriptomic data, our approach is
designed to identify sRNA-mRNA interactions that change mRNA stability. The initial
analysis was restricted to eight E. coli sRNAs with several experimentally supported
targets (Table 1) and then expanded to B. subtilis, Pseudomonas aeruginosa, and
Staphylococcus aureus. The accuracy of the inferred sRNA regulons was assessed by
analysis of publicly available experimental data.

sRNA transcript level is not a good proxy for regulatory activity in a network
inference context. Transcriptional profiles of regulators (i.e., expression levels in a
given transcriptomic compendium) commonly serve as proxies for their regulatory
activity (14, 15), even though the outcome of sRNA-mediated regulation is influenced
by RNA chaperones, ribonucleases, RNA sponges, and target mRNA concentrations. It
was also previously demonstrated that the activity of TFs does not consistently match
their transcription profiles (22, 23). Figure 1A and B and Fig. S1 in the supplemental
material display the transcriptional profiles of several sRNAs against the average
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transcriptional profile of their experimentally supported targets. In E. coli and other
species (e.g., B. subtilis and S. aureus), sRNA transcript levels exhibited only a weak linear
relation with their mRNA targets, implying that sRNA transcript levels are less than
optimal proxies for sRNA regulatory activity in network inference procedures.

Estimating sRNA regulatory activity. To estimate SRA, we used transcriptional
profiles of experimentally supported sRNA targets. Thus, estimated SRAs can account
for multiple mechanisms of sRNA-mediated control of mRNA stability. Conceptually,
this is analogous to relying on a reporter gene, except that every presumed target of
the sRNA is considered in the estimation, as previously done for TF activity (TFA)
estimation (24). We checked the relationship between estimated SRAs and the tran-
scriptional profiles of their respective priors (Fig. 1A and B and Fig. S1). As expected
based on work with TFA (24), there was a stronger linear relationship between target
genes and the SRA of their corresponding sRNA regulator than with raw sRNA transcript
levels. Due to the repressive nature of sRNA-mRNA interactions used as priors, SRA and
their targets were usually anticorrelated (Fig. 1C). Nonetheless, positive sRNA-mRNA
interactions can also be used as priors and predicted in our approach (similar to TFs that
can act both as repressors and activators). Importantly, estimated SRAs can be used for
network inference even when the transcriptomic data set does not contain information
about the transcription of sRNAs of interest (which happens frequently in microarray-
collected data sets). In our workflow, the only requirement for including an sRNA as a
potential regulator is the availability of the transcriptional profiles of a set of candidate
targets. For instance, despite the absence of FnrS in the transcriptomic data set, its
activity was estimated using 10 priors (Fig. 1D).

General strategy for inferring sRNA regulons. Our network inference pipeline is
displayed in Fig. 2. TFAs and SRAs were estimated using a transcriptomic data set (from
a public repository such as the Many Microbe Microarrays database) (25) and a set of
experimentally supported TF-gene and sRNA-mRNA interactions (prior network) from
RegulonDB (26), RegPrecise (27), or equivalent. Next, all of this information was used as
inputs to simultaneously infer the TF-controlled and sRNA-controlled networks with the
Inferelator (20, 24). Predicted interactions not included in the prior network were
considered novel. Inclusion of a prior TF network, much larger than the prior sRNA
network, was necessary to define thresholds (calibrated using desired precision values)
for selecting the interactions that should be kept in the final models. This strategy also
prevented overfitting due to an incomplete set of regulators and interactions to explore
and enabled us to study connections between the transcriptional and posttranscrip-
tional regulatory layers.

TABLE 1 Escherichia coli sRNAs analyzed in this study

sRNA Biological process Prior target genes
No. of candidate
target genesa Reference(s)

CyaR Sugar metabolismb luxS, nadE, ompX, ptsI, yobF, yqaE 28 29, 75
FnrS Anaerobic respirationb cydD, folE, folX, gpmA, maeA, marA, metE, sodA, sodB, yobA 59 29, 72, 73
GcvB Amino acid metabolism

and transportc

argT, csgD, cycA, gdhA, livJ, lrp, phoP, sstT, yifK 87d 34, 76–79

MicA Stress responseb ecnB, fimB, lamB, lpxT, ompA, ompW, ompX, tsx, ycfS, yfeK 15 80
OmrA/OmrBe Stress response

(membrane)b

cirA, csgD, fecA, fepA, ompR, ompT 46 81, 82

RybB Stress responseb fadL, fiu, lamB, nmpC, ompA, ompC, ompF, ompW, rluD, tsx 22 80
RyhB Iron metabolismb acnA, cysE, dmsA, erpA, fumA, fumB, msrB, nagZ, sodB, uof, ykgJ, ynfF 84f 28, 29, 31
Spot 42 Sugar metabolism and

transportc

ascF, fucI, galK, glpF, gltA, maeA, nanC, paaK, puuE, srlA, sthA, xylF 42g 35, 83

aPotential targets were extracted from studies reporting transcriptional profiling data and validated targets.
bRefers to the process that influences the expression of the corresponding sRNA.
cThe sRNA controls multiple targets associated with the indicated biological processes.
dIncludes targets detected in Salmonella Typhimurium.
eOmrA and OmrB were considered a single regulator (OmrA) in the analyses.
fIncludes ribosome profiling data. Targets labeled as indirect RyhB targets in Wang et al. (28) were not considered.
gIncludes differentially expressed genes detected with our reanalysis, using Cyber-T (37), of transcriptomic data reported in reference 35.
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Our strategy improves performance, recovers known interactions, and predicts
novel sRNA-mRNA interactions. We compared the performance of the Inferelator
(using a Bayesian best subset regression [BBSR]) and a mixed CLR (a modified version
of CLR) (21), with and without incorporating SRAs (Fig. 3A). The rank of putative sRNA
targets identified with transcriptomic experiments in the list of predicted sRNA targets
informs about the performance of the approach (10). Genes used as priors for SRA
estimation were removed from the set of predicted targets because they tend to

FIG 1 The transcriptional profile of an sRNA is a suboptimal proxy for its regulatory activity. The
motivation for estimating sRNA activities is illustrated for three E. coli sRNAs. sRNA activities were
estimated for each experimental condition. Each circle represents the value for one microarray experi-
ment. The numbers of known targets used to estimate sRNA activities and to compute the mean
expression of the analyzed regulons (under each condition) are indicated. (A) Spot 42 controls the uptake
and metabolism of alternative sugars (35). A stronger relation is observed between the estimated Spot
42 activity and the mean expression profile of its dependent genes (right panel) than between the
expression profile of spf and its targets (left panel). (B) RyhB represses production of iron-consuming
proteins as part of the iron-sparing response (28, 31). Similarly, the relation between estimated RyhB
activity and the mean expression profile of its targets is stronger than the relationship between the
expression profile of ryhB and its targets. (C) Violin plots show the distribution of Pearson correlation
values between sRNAs and the transcriptional profile of their priors when either estimated sRNA activities
or sRNA transcriptional profiles are used for computation. Purple dots indicate median correlation values
(�0.5 and �0.19 for sRNA activity and sRNA transcriptional profiles, respectively). The difference
between both sets of correlation values is statistically significant (t test P value � 9.3e�10). (D) FnrS is
associated with anaerobic respiration (72, 73). The probes for fnrS did not need to be present in the E.
coli transcriptomic data set in order to be included as a potential regulator in our pipeline. FnrS activity
was estimated from the expression profile of 10 FnrS-dependent genes present in the transcriptomic
compendium (see Table S1 in the supplemental material).
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occupy high positions in the prediction ranking. FnrS was not considered because its
transcriptional profile was missing from the transcriptomic data set. A predicted target
was considered experimentally supported if it was included in the set of candidate
targets of its putative regulator (retrieved mainly from transcriptional profiling exper-
iments overexpressing or deleting sRNAs) (Table 1) or when the predicted target was
part of an operon that contains differentially expressed genes or other validated
targets. For RyhB, ribosome profiling data were also considered (28). Among the 140
predictions (top 20 predictions for seven E. coli sRNAs) made by the Inferelator with SRA
(BBSR.SRA), 28 were experimentally supported (25 for mixed CLR). In contrast, the
Inferelator without SRA predicted only eight experimentally supported targets (three for
mixed CLR). The BBSR.SRA performed best for Spot 42 (10 supported targets in the top
20) and GcvB (9 supported targets). In general, we observed that incorporation of SRA
consistently improved the detection power of both Inferelator and CLR (Fig. 3A, green
and blue lines [with SRAs] versus purple and orange lines [without SRAs]).

The E. coli sRNA network inferred using BBSR.SRA is shown in Fig. 3B. Limited overlap
was observed between the sRNA and TF networks. Only 19% of sRNA-regulated genes
were also predicted as targets of one or more TFs. Although 41% of the regulated genes
in the prior network had two or more regulators, expression of most genes was
explained as the function of a single regulator’s activity. In many cases, the regulatory
influence of an sRNA surpassed that of TFs targeting the same gene. For example, marA
was regulated by five TFs and one sRNA (FnrS) in the prior network. Only the interac-
tions between marA and FnrS and one TF (AcrR) were recalled into the final model.
Nevertheless, TFs were commonly the most influential regulator, and on average, the
influence of sRNAs is subtler than the one exerted by TFs (Fig. 3C), in agreement with
previous studies (3). In an alternative Inferelator run (where sRNAs were not considered
as regulators), 90% of the genes exclusively regulated by sRNAs in our combined
network (Fig. 3B) lacked regulatory hypotheses (data not shown), suggesting that
inclusion of sRNAs expands the gene regulation models.

The accuracy of inferred sRNA regulons was assessed using previously published
studies (see Data Set S1 in the supplemental material). Thirty-eight sRNA-mRNA inter-
actions from the prior network were kept in the final model (total recall of 0.51). The
average recall per sRNA regulon was 0.55, and the highest recall was obtained for CyaR

FIG 2 General strategy. A transcriptomic data set and a prior network (built from experimentally
supported TF-gene and experimentally supported or candidate sRNA-mRNA interactions) are used for
estimating the regulatory activities of TFs (TFAs) and sRNAs (SRAs) using a network component analysis
approach (24, 68). Next, estimated TFAs and SRAs, transcriptomic data, and prior network are used as
input for the Inferelator to infer a regulatory network composed of a transcriptional layer (TF based) and
a posttranscriptional layer (sRNA based).
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FIG 3 Performance of the Inferelator and alternative computational methods for expanding sRNA networks. (A) Performance of the Inferelator
(BBSR) and mixed CLR, an alternative method, with incorporation of sRNA activities (SRA suffix) and without incorporation of sRNA activities.

(Continued on next page)
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(1.0). The inferred sRNA network contained 61 novel interactions, including 29 with
experimental support (0.48 support rate) as shown in Fig. 3D. Per regulon, the average
experimental support was 0.47 for novel predictions (0.73 when considering both novel
predictions and recovered priors). Failure to recall MicA targets is likely a consequence
of the weak correlation between estimated activity and the transcription profiles of
MicA’s known targets (Fig. S1C). MicA activity may be masked by the action of
coregulators (e.g., MicA and RybB share four targets [Table 1]), in agreement with the
observation that TFs sharing multiple targets had the lowest recall rate (24). Although
we intentionally left out some sRNA targets to estimate the accuracy of our procedure,
in future applications, priors’ sets can be expanded by including every differentially
expressed gene. In conclusion, integration of estimated SRAs in network inference
procedures greatly improves the ability to detect accurate sRNA-mRNA interactions.

Robustness to incorrect prior information. In the procedure described above,
priors included only experimentally supported sRNA-mRNA interactions; however, in a
more realistic scenario, priors would be compiled from heterogenous sources and a mix
of true and false interactions is expected. Previously, we showed that the Inferelator is
robust to noisy priors (up to 1:10 ratio of true/false priors) (24). To confirm this result
in the context of sRNAs, we added different amounts of false interactions to the sRNA
priors, ran the pipeline with these noisy priors, and found that our method efficiently
distinguishes true interactions from false interactions (Fig. 3E). Although the number of
recovered priors with experimental support is lower than in the original run without
false priors (Fig. S2), the average proportion of recovered priors still exceeded the ratio
expected from a random selection (gray stars in Fig. 3E). Thus, this strategy successfully
filters out priors not supported by transcriptional data (20, 24).

Combining sequence-based predictions with transcriptomic data using the
Inferelator. We exploited the robustness of the Inferelator to noisy priors to separate
true positive from false-positive interactions among computationally predicted sRNA-
mRNA interactions (Fig. 4A). For any sRNA of interest, we built a set of priors using
sequence-based predictions of sRNA-mRNA interactions. Next, we ran the Inferelator to
recover the most likely pairs. CopraRNA (29), a state-of-the-art RNA-RNA interaction
prediction method was employed to produce these priors (9). Standard CopraRNA
outputs contain 100 predictions (ranked by the associated P values) and likely include
many false-positive interactions.

We focused our analysis on the E. coli sRNAs RyhB, GcvB, and Spot 42, since each
may directly or indirectly regulate dozens of genes (Table 1). We hypothesized that if
we used CopraRNA predictions as priors, our downstream activity estimation and
network inference method would further distinguish between true-positive and false-
positive interactions and also detect novel interactions. From the compiled sets of
candidate sRNA targets (Table 1) and binding data reported by Melamed et al. (10), we
estimated that 25% of the CopraRNA predictions were experimentally supported
(Table S2). For each sRNA, we ran our pipeline using six sets of priors: (set i) the full set

FIG 3 Legend (Continued)
Genes predicted as targets but not used for sRNA activity estimation were considered to be experimentally supported if they were included
in the compiled list of candidate targets of the corresponding sRNA (Table 1). Most candidate targets were differentially expressed in
transcriptional profiling experiments (deletion or overexpression of cyaR, gcvB, micA, omrA, spf [encoding Spot 42], rybB, and ryhB). Additionally,
predicted targets were considered experimentally supported when they were part of an operon containing differentially expressed genes or
other validated targets. For each sRNA, targets were ranked based on confidence score (in the case of the Inferelator) or mutual information-
based score (in the mixed-CLR runs). To estimate the basal performance level of the Inferelator, the average of 10 runs with shuffled sRNA priors
was also computed (gray line). (B) The inferred sRNA regulatory network of E. coli. To allow comparison between transcriptional and
posttranscriptional networks, overlap between both networks is displayed. (C) Violin plots showing the distribution of absolute values of
Bayesian regression coefficients (which indicate magnitude) associated with TF-gene and sRNA-mRNA interactions. Black dots indicate the
median values. (D) The inferred sRNA regulons are experimentally supported (description of each sRNA regulon in Data Set S1 in the
supplemental material). Experimental support rate for novel predictions (not in the prior network) and full inferred regulons (recovered priors
and novel predictions) of the BBSR.SRA run shown in panel A are shown above each bar. (E) The Inferelator identifies experimentally supported
targets among noisy priors. Experimental support rates for recovered priors are plotted for different levels of noise in the priors. Each symbol
shows the mean value of 10 Inferelator runs (each run with a different set of false priors). Each colored symbol corresponds to one of eight
sRNAs. Black lines indicate the median of the average proportions for all eight sRNAs. The gray stars indicate the average expected proportion
if priors included in the predicted networks were randomly selected. The numbers of true sRNA targets are shown in parentheses.
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of CopraRNA predictions, (set ii) targets with P values of �0.01, (set iii) targets associ-
ated with enriched functional terms, (set iv) the intersection of sets ii and iii, (set v) the
union of sets ii and iii, and (set vi) the union of the top 15 targets based on P value (as
suggested in the original CopraRNA publication [29]) and set iv. Experimental support
rate across the sets ranges from 0.17 to 0.73.

We observed that, in general, running the Inferelator dramatically shrank the initial
set of priors (Table S2), while the experimental support rate increased significantly
(Fig. 4B). We found that 22 out of the 43 (51.2%) CopraRNA-derived priors included in

FIG 4 The Inferelator identifies computationally predicted sRNA-mRNA interactions with experimental support. (A) General strategy to integrate computational
sRNA-mRNA predictions in our pipeline. The resulting sRNA regulons are then analyzed to identify sequence-based sRNA-mRNA interactions supported by
available experimental data and potential additions to the sRNA regulon. (B) The experimental support rate of recovered priors is significantly higher than the
rate of the original CopraRNA-derived sRNA priors. The six points per sRNA correspond to the six sets of sRNA priors derived from CopraRNA predictions
(Table S2). (C) The inferred RyhB regulon when CopraRNA predictions associated with enriched functional terms were used as priors. (D) The inferred GcvB
regulon when CopraRNA predictions with P values of �0.01 were used as priors. Based on the high number of common GcvB targets in E. coli and S.
Typhimurium, experimental data from S. Typhimurium was considered supporting evidence. (E) The inferred Spot 42 regulon when CopraRNA predictions with
P values of �0.01 and associated with enriched functional terms were used as priors. In panels C to E, diamonds and circles represent sRNAs and target genes,
respectively. Solid lines indicate interactions with experimental support. Dashed lines indicate interactions without experimental support; dotted lines indicate
targets without direct support but located in the same operon of experimentally supported targets. Priors included in the final regulon are shown with black
text. Novel targets (i.e., not present in the priors) are shown by white text. Bold white font indicates validated novel targets. Target genes are colored according
to their functional annotation (from the EcoCyc database) (74).
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the final networks had been independently validated (Data Set S2). Nine additional
sRNA recalled priors are experimentally supported (but not validated yet). Regarding
novel predictions, out of 159 interactions, 18 were independently validated, and 33
were experimentally supported (Data Set S2). A subset of 34 predicted interactions
supported by experimental data (physical binding, transcriptional profiling, and vali-
dation in a closely related species such as Salmonella enterica serotype Typhimurium)
are listed in Table 2. For example, the RyhB-cheY interaction is supported in E. coli by
physical binding data and significant upregulation of cheY in an S. Typhimurium strain
missing one of its two RyhB genes (10, 30). Similarly, the RyhB-mrp interaction is
supported by downregulation of mrp when RyhB is overexpressed (31), physical
interaction (10), and increased translation rate of mrp in a ryhB deletion strain (28).

For RyhB, best results were obtained with a set of priors containing 38 genes
associated with enriched functional terms (Fig. 4C). The inferred RyhB regulon had a
0.73 accuracy (11 experimentally supported targets out of 15). In addition to six recalled
validated priors, nine additional targets were predicted (five of which had experimental
support [Data Set S2]). Genes involved in respiration (nuoA and nuoE), the tricarboxylic

TABLE 2 Experimentally supported new members of the RyhB, GcvB, and Spot 42
regulons identified using CopraRNA-derived sRNA priorsa

sRNA Target gene
Exptl
supportb

Recovered
prior?c Prior set(s)d Reference(s)

RyhB acpP B No ii 10
RyhB amn B No iii, v 70
RyhB cheY B, S Yes i 10, 30
RyhB fabZ B No vi 10, 70
RyhB folX B No ii 10
RyhB gshB B No ii 10
RyhB mrp TD, B, RP No iv 10, 28, 31, 70
RyhB rna B No ii 70
RyhB rsmE B No ii, vi 70
RyhB tpx B No i 10
RyhB ubiD B No ii, vi 10
RyhB ybaB B No ii, iv, vi 10
GcvB aroG B No v 32
GcvB aroP B, S Yes ii�vi 10, 32, 34
GcvB asd B No ii�vi 10
GcvB cysD TD No ii, v 76
GcvB dcyD (yedO) B, S No i, ii, iv�vi 10, 34
GcvB hcxB (ybiC) B No ii�vi 10, 32
GcvB icd B, S No i 10, 84
GcvB ilvN TD, S No iii, iv, vi 34, 76
GcvB leuA B No ii�vi 32
GcvB purU B, S No i 10, 32, 34
GcvB ydiJ B, S Yes ii, v 10, 32, 34
GcvB yecS S No ii 34
Spot 42 fabA TDe No i 35
Spot 42 fadL TDe Yes iv 35
Spot 42 lpd B Yes iv, vi 10
Spot 42 lysS B, I Yes i 10, 85
Spot 42 mdh B No iv, vi 10
Spot 42 mglB TDe, S Yes iii, iv 35, 39
Spot 42 rbsB TDe No iii 35
Spot 42 tktA B Yes i 10
Spot 42 yjiA B, TD Yes v 10, 35
Spot 42 yjjK TDe, I No i, ii, v, vi 35, 85
aA complete description of experimental data that support listed interactions is available in Data Set S2.
bExperimental support is indicated as follows: B, support from physical sRNA-mRNA interaction data; S,
support from studies with S. Typhimurium; TD, support from transcriptional data; RP, support from
ribosome profiling data; I, indirect support (e.g., differential expression in hfq deletion strain).

cPredicted targets were either sRNA priors (included in the CopraRNA predictions used to infer sRNA
regulons) or novel targets.

dRefers to the six versions of CopraRNA-derived sRNA priors described in Results and Discussion.
eGene was identified as differentially expressed in our reanalysis of the transcriptional data reported in
reference 35.

Inferring Bacterial Small Noncoding RNA Networks

May/June 2020 Volume 5 Issue 3 e00057-20 msystems.asm.org 9

https://msystems.asm.org


acid (TCA) cycle (sucA-sucB-sucD), and nucleoside metabolism (amn) were among the
novel predictions.

Even when using different prior sets, large regulons were systematically inferred for
GcvB (Table S2), in line with its global regulatory role (32). Figure 4D displays the
inferred GcvB regulon for CopraRNA predictions with P values of �0.01. Eleven priors
(out of 46) were recalled. Ten of these 11 priors were previously validated or experi-
mentally supported (Data Set S2). Thirty-nine genes were predicted as novel targets,
including seven validated targets (fliY, hisJ, hisQ, dppB, dppD, dppF, and nlpA). Among
these, hisJ and hisQ are in the same operon as argT, a known GcvB target. Similarly,
dppB, dppD, and dppF all belong to the same operon, involved in peptide transport (33),
and dppA, the first gene in that operon, was present among the priors. In total, 13 novel
predictions for GcvB were experimentally supported, including nlpA, which was present
in five of the six inferred GcvB regulons, and validated as a target in reference 32. Three
novel targets, asd, hcxB (ybiC), and dcyD were supported by physical binding data (10,
32), as well as a previous report of the GcvB-dcyD interaction in S. Typhimurium (34).
Eleven novel targets lacked direct experimental support but belonged to operons that
include known GcvB targets (dotted lines in Fig. 4D).

Figure 4E shows the Spot 42 regulon inferred using as priors 23 CopraRNA-predicted
targets with P values of �0.01 and associated with enriched terms; however, these
priors had low experimental support rate (Table S2). Only six priors were recalled,
including two (icd and sdhC) that have been validated and three more with experi-
mental support (Data Set S2). This constitutes another illustration of our method’s
ability to select experimentally supported interactions and filter out false-positive
interactions. Among the novel targets were sthA, a validated Spot 42 target (35), and
mdh. The Spot 42-mdh interaction is supported by physical binding data and consistent
with the role of Spot 42 in carbon metabolism (10, 35).

Expanding the partially characterized sRNA regulons for Spot 42, GcvB, PrrF,
FsrA, and RsaE. For five selected sRNAs, we show how our approach identified 30
novel sRNA-mRNA interactions with experimental support in E. coli, P. aeruginosa, B.
subtilis, and S. aureus (Data Set S1). Spot 42 (encoded by spf) controls sugar metabolism
(35), and Fig. 5A reports its predicted regulon (inferred using experimentally supported
priors rather than CopraRNA predictions). Four (out of 12) priors were recalled, and five
novel targets were predicted. The first novel target, maeB, encodes an NADP-
dependent malate dehydrogenase (36). It had not been flagged as differentially ex-
pressed in previous experiments (35); however, after reanalysis of available transcrip-
tional data with a Bayesian t test (37), we found that maeB was significantly
downregulated in response to spf overexpression (�2.12 average fold change). Since a
physical interaction between Spot 42 and maeB mRNA was recently reported (10), we
conclude that maeB is a genuine Spot 42 target. Because the NAD-dependent malate
dehydrogenase encoded by maeA (an independent transcriptional unit from maeB) is
a known Spot 42 target (35, 36), interaction of Spot 42 with both mae transcripts would
likely result in a complete block of pyruvate synthesis from malate. Another novel
predicted target was mglB, which encodes a galactose ABC transporter (38). This gene
was significantly downregulated in an spf-overexpressing strain (�2.69 average fold
change) and was predicted as a target by CopraRNA (Fig. 4E). Its interaction with Spot
42 was recently validated in S. Typhimurium (39). We conclude that the mgl operon is
also a true target in E. coli, implying that Spot 42 represses galactose metabolism and
transport through repression of both the gal (40) and mgl operons. The last novel target
was sdhA, in agreement with a previously reported interaction between Spot 42 and
sdhC, another member of the sdh operon (41). Desnoyers and Massé (41) found that
Spot 42 primarily regulates sdh at the translational level. Yet, our approach was able to
detect this interaction, maybe because it is sensitive to subtle changes in mRNA
stability (degradation of the sdh mRNA was observed 30 min after spf induction) or
because Spot 42 promotes faster degradation of the sdh polycistronic transcript in a still
unidentified condition. Overall, all five of the Spot 42 novel targets were experimentally
supported.
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FIG 5 Selected expanded sRNA regulons of E. coli, P. aeruginosa, B. subtilis, and S. aureus. sRNA regulons were inferred using manually
selected sRNA priors listed in Table S1. Diamonds and circles represent sRNAs and target genes, respectively. Solid lines indicate priors

(Continued on next page)
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GcvB is known to regulate amino acid biosynthesis and transport (32). An expanded
E. coli GcvB regulon (inferred from the compiled set of experimentally supported sRNA
priors) is shown in Fig. 5B. Six (out of nine) priors were recovered as GcvB targets, and
27 additional targets were predicted. Of these novel targets, 8 have been indepen-
dently validated (shown in bold white font in Fig. 5B; Data Set S1), and 10 had support
from physical binding data (hypergeometric test P value of �1e�07) (10). Notably, six
novel targets (asd, kgtP, hisJ, hisQ, nlpA, and yhjE), although not supported by tran-
scriptomic data, were detected as physically interacting with GcvB in vivo (10, 32). Two
additional predictions (thrC and cysC) were indirectly supported. The leader sequence
of the thr operon, thrL, interacts with GcvB and is a confirmed GcvB target in S.
Typhimurium (10, 34), whereas GcvB physically interacts with the transcript of a
transcriptional regulator of cysC, CysB (10). The GcvB-asd interaction appears to be
conserved among multiple species, since higher Asd levels were observed in gcvB and
hfq deletion strains of Pasteurella multocida (42). A challenge for new technologies
assessing binding of sRNA to mRNAs, such as RNA interaction by ligation and sequenc-
ing (RIL-Seq) (10), in vivo UV cross-linking with RNA deep sequencing (39), and MS2
affinity purification coupled with RNA sequencing (32), is to identify whether the
detected interactions actually influence mRNA stability and/or translation rate (10, 43).
Our approach constitutes a complementary tool to identify which interactions have
functional relevance among the hundreds of detected binding events.

PrrF1 and PrrF2 in P. aeruginosa are functional analogs of E. coli RyhB (44) and B.
subtilis FsrA (45). Both PrrFs are transcriptionally repressed by Fur under iron-rich
conditions (44). Since PrrF1 and PrrF2 are almost identical at the sequence level (44),
they were considered a single regulator (PrrF) in our analysis. The predicted PrrF
regulon included all 11 priors and 10 novel targets (Fig. 5C and Data Set S1). Among the
novel predictions, two (antR and sdhC) are experimentally validated targets (46, 47), and
three (PA2682, catA, and catC) were significantly upregulated in P. aeruginosa cells
grown under high- versus low-iron conditions, as well as in the prrF1-prrF2 deletion
mutant versus wild-type (WT) cells (44, 46). PA2682 was also downregulated at the
protein level in low- versus high-iron conditions (48). Similarly, PA4430 and PA4570
were supported by the upregulation at the protein level in the prrF1-prrF2 deletion
mutant (48) and for PA4430 in high- versus low-iron conditions (48). Unexpectedly,
PA4570 protein level was downregulated in high- versus low-iron conditions (48). This
may explain a predicted positive interaction between PrrF and PA4570 (Fig. 5C).
Furthermore, PA4570 could be regulated by both Fur and PrrF, as targets shared by Fur
and RyhB have been proposed for E. coli (31). PA4430 and the catACB operon were also
predicted as PrrF targets by CopraRNA (Data Set S1). The predicted PrrF-gltA interaction
is supported by significant upregulation of gltA at both the transcriptional and trans-
lational levels in high- versus low-iron conditions (46, 48). Moreover, in B. subtilis, gltA
is a known target of FsrA (49). Interactions with the nuo operon members, nuoF and
nuoI, were supported by the decrease in NuoF and NuoI protein levels in low- versus
high-iron conditions (48). Similarly, expression of nuoA was induced after iron addition

FIG 5 Legend (Continued)
and experimentally supported novel targets. Dashed lines indicate unsupported predictions. Black node labels indicate prior targets,
and white node labels indicate novel targets (not used as sRNA priors). Validated novel targets are shown in bold white font. Target
genes are colored according to their functional annotation. (A) The inferred E. coli Spot 42 regulon. All predicted targets were
experimentally supported. (B) The inferred E. coli GcvB regulon. Novel interactions supported by transcriptional profiling data, physical
binding data, or both are shown in red, blue, and green, respectively. Based on the high number of common GcvB targets in E. coli
and S. Typhimurium, experimental data from S. Typhimurium was considered supporting evidence. Dotted lines indicate targets
without direct support but located in the same operon of experimentally supported targets. (C) The inferred PrrF regulon of P.
aeruginosa. Dotted lines indicate PrrF targets supported by increased expression at the mRNA or protein levels in high-iron versus
low-iron conditions but not in prrF deletion strains. (D) The inferred FsrA regulon of B. subtilis. Dotted lines indicate FsrA targets
supported by mRNA upregulation in the fur deletion strain (with respect to the wild-type strain) but not in the fsrA fur double deletion
strain (with respect to fur deletion strain). (E) The inferred S. aureus RsaE regulon. Experimental support was evaluated using
transcriptional profiling data of rsaE deletion, rsaE overexpression, and limited RsaE-mRNA binding data reported by Rochat et al. (52).
Green, orange, and red lines indicate RsaE targets supported by one, two, and three data types, respectively. Due to space constraints,
the first part of the locus names (SAOUHSC_) was abbreviated to “SA” in panel E.
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(50). Like acnA, acnB, and the sdh operon, the nuo operon may be a target shared by
PrrF and RyhB. In summary, all 10 novel PrrF targets predicted by the model are
experimentally supported.

Figure 5D shows the inferred FsrA regulon in B. subtilis (45), which recalls 8 (out of
12) priors and predicts seven novel target genes (including six that were experimentally
supported). Three novel targets (odhA, odhB, and pmi) are also among the FsrA targets
predicted by CopraRNA (Data Set S1). The odh operon encodes enzymes involved in the
TCA cycle (51), and odh transcripts were upregulated (mean fold changes, 1.7 for odhA
and 1.9 for odhB) in the fsrA-fur deletion mutant compared to the fur deletion mutant
(49). Similarly, interactions with ysmA, sucD (of the sucCD operon), or ppnKB were
supported by upregulation under the same conditions (mean fold changes, 3. 8, 2.5,
and 11.0, respectively) (49). Furthermore, sucC was downregulated (0.5 mean fold
change) in the fur single deletion mutant compared to the WT (49). Interactions
between FsrA and the odhA-odhB or sucC-sucD transcripts are particularly promising
due to the role played by these genes in the TCA cycle, as already noted for the sdh
operon, which is a previously known target (45, 49). In addition, sucC and ppnKB are
validated targets of RoxS, another trans-encoded sRNA of B. subtilis (17). This may reveal
a functional connection between RoxS and FsrA, as implied by the observation that
multiple genes regulated by Fur, the transcriptional repressor of FsrA, appear to also be
influenced by RoxS (17). Follow-up experiments are required to obtain a definitive
answer.

RsaE is a partially characterized sRNA of S. aureus involved in the regulation of
arginine degradation (52). Rochat et al. detected more than 300 potential RsaE targets
using transcriptomics (deletion and overexpression of rsaE) and in vitro trapping of
sRNA targets (52). We inferred the RsaE regulon (Fig. 5E) using a mix of 10 validated and
experimentally supported RsaE targets as priors (Table S1). Seven priors were recalled
(five can be considered validated [Data Set S1]), and 18 novel targets were predicted.
Of these, three (folD, fumC, and mqo1) were significantly upregulated in the rsaE
deletion strain and downregulated in an overexpression strain (versus WT). One
target (SAOUHSC_00405) was significantly upregulated only in the rsaE deletion
strain. Six novel targets (rpsA, SAOUHSC_00918, SAOUHSC_00939, SAOUHSC_
01264, SAOUHSC_02150, and yjbM) were significantly downregulated in a rsaE over-
expression strain. The set of novel targets was thus significantly enriched with genes
downregulated in the rsaE overexpression strain (hypergeometric test P value of
�1e�04). In summary, the inferred RsaE regulon includes new candidates and some of
the RsaE targets discovered in reference 52.

Uncovering the most relevant physiological contexts for sRNA-mediated reg-
ulation. Estimated SRA profiles can be directly used to determine the physiological
context associated with highest sRNA activity. For any sRNA of interest, conditions of
highest SRA can be compared to reveal commonalities. As an example, we analyzed the
activity profiles of PrrF in P. aeruginosa and RsaE in S. aureus.

The distribution of estimated PrrF activities is shown in Fig. 6A. We focused on a
subset of 56 experiments (out of 559) that corresponds to the 10% of highest PrrF
activity. Figure 6B reveals that in the selected experiments, color coded based on the
available metadata, PrrF activity follows an exponential distribution. As expected from
PrrF’s involvement in the iron-sparing response, this subset included two experiments
performed under low-iron conditions (red circles) (Data Set S3). Seven experiments
were associated with quorum sensing, i.e., the presence of the Pseudomonas quinolone
signal (PQS) in the growth medium (orange circles). This observation is explained by the
iron chelator properties of PQS (53). Moreover, PrrF is known to connect quorum
sensing to iron metabolism (46). PrrF activity was also high in biofilms versus planktonic
cultures (yellow circles), consistent with the influence of iron availability on biofilm
formation (54). Finally, our results imply that PrrF influences P. aeruginosa pathogenic-
ity. PrrF activities were higher in the presence of neutrophils versus LB medium and in
a transmissible P. aeruginosa strain (55) versus the PAO1 strain (blue circles). This
hypothesis is supported by the reduced virulence of a PrrF deletion strain (56).
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We then analyzed the distribution of estimated RsaE activities in S. aureus to uncover
the most relevant physiological contexts for this sRNA (Fig. 6C). Analysis of conditions
with the 10% of highest RsaE activity (16 experiments) uncovered a link to antibiotic-
induced stress responses (linezolid, clindamycin, ciprofloxacin, and colistin challenges).
As previously reported (57), RsaE activity was high during exponential phase (Fig. 6D
and Data Set S3). RsaE activity and expression profiles showed limited correlation
(Spearman’s correlation � 0.127; P value � 0.113). This discrepancy is epitomized by
the fact that the experiment with the highest RsaE activity (linezolid-treated S. aureus
in stationary phase) had the lowest RsaE RNA level in the transcriptomic compendium
(Fig. 6D). This observation could be a possible consequence of codegradation of RsaE
with its targets mediated by RNase III (58). In summary, analysis of the estimated SRA
profiles unveils conditions where sRNAs are most likely to interact with their targets.
This knowledge is highly valuable for validating predictions of sRNA-mediated regula-
tion.

Conclusions. We have developed a new computational pipeline for inferring bac-
terial sRNA regulons through integration of TFA and SRA estimates with a reliable

FIG 6 Analysis of sRNA activity profiles reveals the conditions where sRNAs are most likely to interact with their predicted targets. (A)
Distribution of the estimated PrrF activity in the 559 experiments included in the P. aeruginosa transcriptomic compendium. (B)
Experimental conditions (10% of 559) where PrrF is most active. Each circle depicts the value for one experiment (normalized with respect
to a control condition) (60). The first 17 experiments in the ranking are colored according to the corresponding growth conditions. (C)
Distribution of the estimated RsaE activity in the 156 experiments included in the S. aureus transcriptomic compendium. (D) Comparison
of the complete RsaE activity and expression profiles. Each circle depicts the value for one experiment. Experiments in the top 10% of RsaE
activity are colored according to the corresponding growth conditions.
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network model selection procedure. This strategy is motivated by the realization that
using transcriptional profiles of sRNAs as proxies for their activity is not optimal because
SRAs are influenced by RNA chaperones, ribonucleases, and sRNA/target ratios (18, 19).
Our findings demonstrate that the need to estimate activity of regulatory noncoding
RNAs involved in multiple interactions or requiring substantial processing is not
exclusive to eukaryotic systems (59).

Our results indicate that integration of SRAs in network inference pipelines signifi-
cantly improves prediction power in a way that outperforms previous efforts (Fig. 3A).
This approach complements sRNA-mRNA prediction methods based on sequence
analyses and technologies for detecting physical interactions between sRNAs and
mRNAs (Fig. 4). In this work, we report a total of 42 validated and 79 experimentally
supported sRNA-mRNA interactions in E. coli, P. aeruginosa, B. subtilis, and S. aureus.
These numbers exclude the 64 manually selected sRNA priors recovered in the inferred
models and take into account the overlap between the models built with CopraRNA-
derived and manually selected sRNA priors (Data Set S1 and Data Set S2). Our strategy
is especially well suited for removing the many false-positive interactions introduced in
sequence-based predictions of sRNA-mRNA interactions. Hence, it can both expand
current sRNA regulons and serve as a guide to study uncharacterized sRNAs.

Our study increased by 101% the number of sRNA priors originally compiled for
estimating E. coli SRAs (Table 1). The new set includes 31 independently validated
interactions and 45 novel experimentally supported targets (Table S3). Specifically, the
contribution of sRNA-mediated regulation in chemotaxis and oxidation-reduction path-
ways is extended (Fig. 4 and Fig. 5). We also described how a single sRNA (Spot 42) can
repress all branches of a metabolic reaction (conversion of malate to pyruvate) and
repress the consumption of alternative sugars like galactose by simultaneously inhib-
iting catabolism and intake. Our approach highlights the functional role of bacterial
sRNAs as fine tuners of gene expression.

The main limiting factor in our strategy is the requisite for prior information (in the
form of a transcriptomic data set, a TF-based transcriptional network, and a list of
candidate sRNAs and putative targets). We selected bacterial species for which we
could comprehensively assess the quality of the inferred models; however, there is a
much larger group of species, including S. Typhimurium and Mycobacterium tubercu-
losis, that would benefit from application of this approach. The COLOMBOS database is
a repository of transcriptional compendia for approximately 20 bacterial species (60),
and experimentally supported transcriptional interactions can be readily obtained by
mining literature and databases, such as RegPrecise (27). In addition, sets of sRNA priors
can be generated from sequence-based prediction tools (e.g., CopraRNA), experiments
measuring changes in expression levels after inhibition or overexpression of regulators
of interest, and global approaches detecting binding of sRNAs to their targets.

The applicability of our strategy will increase as the field of bacterial sRNA-mediated
regulation grows. Incorporating estimated TFAs in network inference strategies has led
to recent improvements in yeast (61), Drosophila (62), and transcriptional networks
associated with cancer (63, 64) and differentiation of mouse T lymphocytes (65). We
expect that performance will keep improving as the number of confirmed sRNA-mRNA
interactions continues to rise and thus the ability to accurately estimate SRAs.

MATERIALS AND METHODS
Bacterial species. We inferred transcriptional regulatory networks and small noncoding RNA regu-

lons for E. coli, P. aeruginosa, S. aureus, and B. subtilis.
Small noncoding RNA priors. sRNA-mRNA interactions used as sRNA priors for SRA estimation in

each species are listed in Table S1 in the supplemental material. To avoid overrepresentation of any
operon in manually selected sRNA priors for E. coli, only one member of each operon containing multiple
validated sRNA targets was considered. Priors for RsaE, PrrFs, and FsrA were obtained from reference 52,
references 44, 46, and 66, and references 45, 49, and 67, respectively.

Transcriptomic data sets. The transcriptomic data sets used for inferring the transcriptional and
sRNA networks are described in Table S4.

Prior transcriptional networks. For each species, the prior transcriptional network was constructed
as a collection of experimentally supported, signed (activation or repression), TF-gene interactions. The

Inferring Bacterial Small Noncoding RNA Networks

May/June 2020 Volume 5 Issue 3 e00057-20 msystems.asm.org 15

https://msystems.asm.org


prior networks were used for estimating the regulatory activities of TFs included as potential regulators,
inferring the corresponding transcriptional network, and defining the final model of the inferred
networks (see below). Sources for each species are shown in Table S4.

Estimation of transcription factor and sRNA regulatory activities. TFAs and SRAs were simulta-
neously estimated using the set of experimentally supported interactions in the prior network as
described in reference 24. Briefly, we first combined the sRNA and transcriptional prior networks into a
global prior network. We represented the analyzed transcriptional data set in matrix format (referred to
as X) where each row corresponded to the transcriptional profile of a gene. Then, we applied a network
component analysis (NCA) (68) to decompose X in two matrices: a first matrix P, which we derived from
the prior network. The values in P are in the {0, 1, �1} set, where 1 and �1 indicate activation and
repression, respectively. The value in the Pi,j entry corresponds to the interaction between gene i and
regulator j. The second matrix A is unknown but represents the activities of regulators along the
conditions in X. As such, the Ak,l entry is the activity of regulator k in condition l. In matrix notation, NCA
can be stated as:

X � PA (1)

We solved for A using the pseudoinverse of P as explained in reference 24.
Inference of transcriptional and sRNA networks. TF and sRNA networks were simultaneously

inferred using Inferelator Bayesian best subset regression (BBSR), as detailed in reference 24. The core
model of the Inferelator with incorporation of TFAs and SRAs can be summarized as:

Xi,j � �
k��TFs U sRNAs�

�i,kÂk,j (2)

where Xi,j is the mRNA level of gene i in condition j, Â is the matrix of estimated activities generated with
NCA (as described above), and �i,k indicates the effect (positive or negative) and strength of regulator k’s
activity on gene i. � is the main output of the Inferelator. To model the sparsity of biological networks,
BBSR solves for a matrix � where most values are zero. More details about BBSR solution can be found
in reference 24. To avoid overfitting, we bootstrapped the input transcriptional data 20 times (we have
previously observed minimal change above 20 bootstraps) (24). We averaged the � scores associated
with each resampling instance into a final � matrix. The second output of the Inferelator is a confidence
score matrix generated as explained in reference 24. The confidence score of an interaction indicates the
likelihood of the interaction. Mixed CLR was run using the mi_and_clr.R script in the Inferelator release,
available at https://sites.google.com/a/nyu.edu/inferelator/home.

Construction of final model of TF and sRNA networks. We ranked the set of all potential regulator
(TF/sRNA)-gene interactions based on the associated confidence scores. We used a 0.5 precision cutoff
(as previously used in reference 24) to define the set of interactions included in the final model. The
confidence cutoff was defined as the score at which exactly 50% of the TF-gene and sRNA-gene
interactions above the cutoff were part of the prior network.

Validation of inferred sRNA regulons. To assess the accuracy of the inferred sRNA regulons, we
mined publicly available transcriptional profiling data sets, sRNA-mRNA binding data, and results of other
relevant experiments (Northern blots, point mutations, translational fusions, ribosome profiling, in silico
predictions, etc.) for each species. A total of 383 candidate E. coli sRNA-mRNA interactions were retrieved
from available literature (excluding binding data). This set of potential interactions was extended to 689
to include genes located in the same operons, as predicted in MicrobesOnline (69). Independent studies
supporting novel sRNA-mRNA interactions discussed in the text are cited in the relevant sections.

sRNA prior shuffling and noisy sRNA priors. To estimate the basal performance of the Inferelator
algorithm when SRA was incorporated, sRNA priors were randomly shuffled while conserving the original
size of each sRNA regulon. To add different amounts of false interactions to the manually curated E. coli
sRNA priors, additional targets were randomly selected from the genes not supported as potential sRNA
targets (i.e., located outside operons that contain genes differentially expressed in transcriptional
profiling experiments perturbing sRNA expression or other validated sRNA targets).

Differential expression analysis of spf overexpression in E. coli microarray data. To evaluate
whether additional candidate targets of Spot 42 could be identified, differential expression analysis was
performed, using a Bayesian T-test with Cyber-T (37). We analyzed the normalized microarray data of spf
overexpression (GEO accession no. GSE24875) reported in reference 35. To consider a gene differentially
expressed, Beisel and Storz used a minimum twofold change in each of the replicates and only 16 genes
fit that criterion (35). In our analysis, we considered only genes included in the E. coli transcriptomic data
used as input for the Inferelator and excluded genes that were absent in any of the replicates. Genes with
P values of �0.01 were considered differentially expressed. Adjusted P values were not used because
only five and seven genes had adjusted P values of �0.05 or adjusted P values of �0.1, respectively. This
would narrow down the set of potential targets (not our goal), and it would leave out previously
validated Spot 42 targets. We have successfully used a 0.01 raw P value threshold for analyzing B. subtilis
transcriptomic data (24). Thirteen out of the 16 genes originally labeled as differentially expressed in
reference 35 were recovered, and 25 additional differentially expressed genes were detected.

In silico prediction of sRNA-mRNA interactions. For sRNAs that were conserved among multiple
bacterial species, precomputed predictions from the CopraRNA website (http://rna.informatik.uni
-freiburg.de/CopraRNA/Input.jsp) were downloaded and used as priors. When predictions were not
available for an sRNA of interest, a new run was submitted to the CopraRNA website. All CopraRNA
predictions for E. coli sRNAs were downloaded between January and July 2016.

Analysis of publicly available data for physical sRNA-mRNA interactions detected by MS2
affinity purification coupled with RNA sequencing. Lalaouna and collaborators have successfully
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developed and applied the MS2 affinity purification coupled with RNA sequencing (MAPS) technology to
detect mRNAs that physically interact with RyhB and GcvB sRNAs (32, 70). For each potential interaction
detected with MAPS, its frequency in a bacterial strain expressing the sRNA of interest with an MS2 tag
and a control strain is compared. In this way, interacting RNA-RNA pairs with higher ratio values are
expected to have a higher probability of being true physical interactions. We downloaded the ratio
scores for the RyhB and GcvB interactomes reported in references 32 and 70. Because those data sets
contained all detected interactions (4,362 and 7,374 for RyhB and GcvB, respectively) and there is no
standard ratio threshold to distinguish true from spurious binding events, we used a ratio of 20 as our
threshold to consider an sRNA-mRNA interaction as supported by MAPS. We chose this stringent
threshold (there are validated RyhB and GcvB targets with ratios smaller than 20) based on the fact that
it was the lowest value among the newly validated sRNA targets reported in references 32 and 70. Using
this threshold, only 5.5% and 7% of the potential RyhB and GcvB interactome were considered supported
by MAPS. To take into account random binding between RNAs and MS2, we considered only interactions
that have at least twice the ratio score in the strain expressing the MS2-tagged sRNA with respect to the
ratio reported for a strain expressing MS2 alone (43).

Network visualization. sRNA networks and regulons were visualized using Cytoscape v 3.4.0 (71).
Code availability. R scripts and necessary input files to infer the described sRNA regulons are

publicly available in the following GitHub repository: https://github.com/marioluisao/sRNA_networks.
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