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Abstract

Motivation: Model-based estimates of general deleteriousness, like CADD, DANN or PolyPhen,

have become indispensable tools in the interpretation of genetic variants. However, these

approaches say little about the tissues in which the effects of deleterious variants will be most

meaningful. Tissue-specific annotations have been recently inferred for dozens of tissues/cell types

from large collections of cross-tissue epigenomic data, and have demonstrated sensitivity in pre-

dicting affected tissues in complex traits. It remains unclear, however, whether including additional

genome-scale data specific to the tissue of interest would appreciably improve functional

annotations.

Results: Herein, we introduce TiSAn, a tool that integrates multiple genome-scale data sources,

defined by expert knowledge. TiSAn uses machine learning to discriminate variants relevant to a

tissue from those with no bearing on the function of that tissue. Predictions are made genome-

wide, and can be used to contextualize and filter variants of interest in whole genome sequencing

or genome-wide association studies. We demonstrate the accuracy and flexibility of TiSAn by pro-

ducing predictive models for human heart and brain, and detecting tissue-relevant variations in

large cohorts for autism spectrum disorder (TiSAn-brain) and coronary artery disease (TiSAn-

heart). We find the multiomics TiSAn model is better able to prioritize genetic variants according to

their tissue-specific action than the current state-of-the-art method, GenoSkyLine.

Availability and implementation: Software and vignettes are available at http://github.com/

kevinVervier/TiSAn.

Contact: Jacob-Michaelson@uiowa.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Whole genome sequencing (WGS) is assuming a role as the technol-

ogy of choice for an increasing number of genetic studies. The vast

majority of the information yielded by WGS resides in non-coding

and poorly-characterized regions of the genome. Recent work in

annotating non-coding variation has shown that multiple levels of

information—integrated using machine learning algorithms—are

required to capture the diverse regulatory potentials in these regions

(Ionita-Laza et al., 2016; Kellis et al., 2014; Kircher et al., 2014;

Quang et al., 2015). However, current state-of-the-art variant anno-

tation methods predict generic pathogenicity, largely avoiding the

question of which tissues, organs and systems are most likely suscep-

tible to a particular genetic variation. Projects such as the Genotype-

Tissue Expression (GTEx) repository (GTEx Consortium, 2015)

and the NIH Roadmap Epigenomics (RME) Mapping Consortium

(Bernstein et al., 2010), provide clear evidence that a given variant

will not necessarily have the same impact on gene expression in dif-

ferent tissues or cell types. Recently proposed approaches, such as

GenoSkyline (Lu et al., 2016), have employed cross-tissue methyla-

tion levels to annotate genetic variations. However, such methods

are limited because they were trained using only data uniformly

collected across a wide variety of tissues, omitting potentially

informative features derived from databases providing unique,
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tissue-specific information. Such approaches emphasize perform-

ance over many tissues, rather than a specific tissue.

In this work, we introduce Tissue-Specific Annotation (TiSAn),

which combines the power of supervised machine learning with tis-

sue-specific annotations, including genomics, transcriptomics and

epigenomics (http://github.com/kevinVervier/TiSAn for the latest

version). We describe a general statistical learning framework in

which researchers can derive a nucleotide-resolution score for the

tissues they focus on. We foresee TiSAn’s application as a comple-

ment for existing scores that measure generic variant deleterious-

ness, like CADD or DANN. This combination makes it possible to

infer which variants may be most damaging in the context of the tis-

sue of interest. As a proof of principle, we apply our methodology to

two human tissues—brain and heart—and we have made available

pre-computed genome-wide scores for these tissues.

2 Materials and methods

2.1 Training set definition
We identified multiple sources of training examples with respect to a

given tissue T. For deriving a genome-wide predictor, the training

set needed to cover both coding and non-coding loci, but also loci

related (positive examples) and unrelated to T (negative examples).

Two types of public databases were used to derive training sets:

• Genotype array loci: Disease-related loci were identified in

consortium-developed arrays, designed for targeting specific dis-

orders, such as MetaboChip (Voight et al., 2012) for cardiovas-

cular diseases or Illumina Infinium PsychArray Beadchip for

psychiatric disorders. Genotyped single nucleotide polymor-

phisms (SNP) were sorted by confidence level into three classes.

First, replication SNPs were selected as follow-up for top associ-

ation signals from the largest available genome-wide association

studies (GWAS) meta-analysis, and contain tissue-related var-

iants (positive examples). Then, fine-mapping SNPs represent

associated haplotypes identified in preliminary studies. Finally,

backbone SNPs include sex-specific markers, Major histocom-

patibility complex region and other population variation, which

we consider as negative examples if they meet a minimal CADD

threshold described in Section 2.9. To ensure the highest quality

of positive labels, we only considered the first category in our

analysis, as positive examples.
• Large intergenic non-coding RNAs: Large intergenic non-coding

RNAs (lincRNAs) represent a well-studied group of non-coding

elements known to regulate gene transcription in a tissue-specific

manner (Popadin et al., 2013). Databases such as LincSNP (Ning

et al., 2014), contain disease-related variants that occur in

lincRNA loci. This is an important source of non-coding training

examples, since non-coding variants are generally less functional-

ly characterized than coding variants. After defining a list of

tissue-related disorders, we divided this database into two sub-

sets: one related to tissue T (positive examples) and one contain-

ing background variants (negative examples), i.e. randomly

sampled deleterious variants not related to the tissue at hand.

This way, we enriched the training set with putatively functional

non-coding positions.

We endeavored to ease the training set selection process for users

interested in training their own models, by developing a companion

tool called TiSAn-build (http://github.com/kevinVervier/TiSAn/tree/

master/TiSAn-build). Using this Shiny (Chang et al., 2017) graphical

user interface (GUI), the user can select training positions based on a

list of keywords and disease names (Supplementary Fig. S22). The

number and breakdown of training examples used for TiSAn brain

and heart models can be found in Supplementary Table S1. After se-

lection of positive and negative examples, we ensured there was no

selection bias between the two groups that would lead to poor gen-

eralizability of the classifier. For both brain and heart models, half

of the training examples were found within the proximity of a gene

(610 kb) and the remaining 50% were in intergenic regions, with no

detectable difference in the spatial distribution between positive and

negative examples. The variants found in genic regions covered

7219 and 7625 different genes in the brain and heart training sets,

respectively. No significant difference in terms of minor allele fre-

quency (MAF) distribution between positive and negative examples

was observed (brain: Wilcoxon test P¼1, average MAF¼0.14,

heart: Wilcoxon test P¼0.8, average MAF¼0.4). No significant

difference was observed in terms of variant pathogenicity (CADD

Phred score) distribution between positive and negative examples

(brain: Student’s test P¼1, average CADD¼3.5, heart: Student’s

test P¼0.66, average CADD¼4.1).

2.2 Feature extraction
We represent each genomic position in a functional space defined by

hundreds of different annotations. In the following, we describe

how such signal can be extracted using publicly available datasets,

and provide a comprehensive list of variables used in this study in

Supplementary Table S2. Most of the feature extraction process can

be extended to a wide variety of tissues (Supplementary Table S3),

and we have developed a companion tool, called TiSAn-build, aid-

ing users in extracting features for their own models. Users can as-

semble tissue-specific signal from eQTL (Supplementary Fig. S19),

DNA methylation (Supplementary Fig. S20) or literature databases

(Supplementary Fig. S21) which the machine learning algorithm

uses as reference annotations to extract features on training

examples.

2.2.1 Motifs in short nucleotide sequences

Nucleotide frequencies are linked to overall regulatory activity (G/C

content), and patterns in nucleotide k-mers are the basis of tran-

scription factor binding site detection (Zhou and Troyanskaya,

2015). Specific patterns have been recently identified to be tissue-

specific (Zhong et al., 2013), and we incorporate this information

by computing frequencies for all n-nucleotides [n 2 ð1;2; 3; 4Þ],
found within a 6500 base pair neighborhood around a given gen-

omic position x.

2.2.2 Distance to annotations

We model the impact of a known annotation on a given position x,

as a decreasing function of their distance. The comparison between

four different distributions found that the Weibull distribution was

the most stable across the considered features (Supplementary Table

S4). Therefore, in the following paragraphs, the distance is measured

as:

dðx; annoÞ ¼ b
a

� �
jx� annoj

a

� �b�1

exp � jx� annoj
a

� �b
 !

;

where anno refers to a known annotation position, a is a scale factor

and b is a shape parameter. Parameter fitting was performed separ-

ately for each annotation, using the MASS R package (Venables and

Ripley, 2002).
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2.2.3 Expression quantitative trait loci

Links between disease traits and tissue-specific gene expression have

been reported in studies using the GTEx dataset (GTEx Consortium,

2015). For each genomic location, we extract features based on a

position’s distance to known eQTL for tissue T, as well as for other

tissues. The Weibull distribution was used for modeling the minimal

distance to a GTEx eQTL (Supplementary Fig. S1). We also derive

Boolean features for whether the genomic position is at the exact lo-

cation of a GTEx eQTL, which puts more weight on known eQTL.

2.2.4 Literature mining for tissue-related genes

Although gene expression shows variation across tissues, definitive

lists of tissue-specific genes are limited. It has already been shown

that text mining techniques may help to extract relationships be-

tween genes and disease traits (Liu et al., 2015). Therefore, we adapt

such methods to identify genes reported to be associated with tissue

T, in the PubMed database (May 2016 gene2ID database). Genes

co-cited at least 3 times in publication’s title/abstract with the tissue

name (e.g. ‘brain’ or ‘heart’) are kept as tissue-related genes (Collier

et al., 2015). For each genomic location, we extract features based

on how close the position is to tissue-related genes. The Weibull dis-

tribution is used for modeling the minimal distance to a gene

(Supplementary Fig. S2). We also derive a Boolean feature for

whether or not the genomic position x is within the range of a

tissue-related gene, which puts more weight on positions in regions

well-supported by literature for its association with the tissue of

interest. When training the brain model under the Weibull distribu-

tion assumption, we observed that around 1000 tissue-related genes

represented enough genome coverage to derive a feature based on

the proximity between a locus x and a gene. Lists of genes identified

as tissue-related are provided in Supplementary Data S1 (1185 brain

genes) and Supplementary Data S2 (1721 heart genes).

2.2.5 Differentially methylated regions

Epigenomics, and, in particular, methylation profiles, have been

integrated to explain tissue-specific regulatory mechanisms (Miller

et al., 2016). We use the Weibull distribution approach for modeling

the minimal distance to a methylated region found in the RME data-

base (Supplementary Fig. S3). If the considered position x belongs to

a methylated region characterized in the RME project, we also note

the average methylation level for samples from the tissue of interest

T, and other samples.

2.2.6 Additional tissue-specific resources

In contrast to approaches that rely mostly on RME and/or GTEx,

we also consider tissue-specific datasets made available by research

projects focusing on a single tissue. For the brain model, we inte-

grate developmentally differentially methylated positions (dDMPs)

(Spiers et al., 2015) found in the fetal brain, and derive features

based on the distance between and the closest dDMP. For the heart

model, we use the Heart Enhancer Compendium database (Dickel

et al., 2016) to identify heart development candidates, and we use

the distance to the closest fetal development enhancer as a training

feature for TiSAn heart model.

2.3 Supervised machine learning model training
Considering the aforementioned training sets, we utilized machine

learning approaches, such as logistic regression (glm R package), lin-

ear support vector machine (libLineaR R package) and random for-

est (randomForest R package) (Lischke et al., 1998), and compared

them based on their 10-fold cross-validated performance (herein,

area under the receiver operating characteristic curve, AUC), and

selected the random forest algorithm to train the final model

(Supplementary Table S5). Using cross-validation, we optimize ran-

dom forest hyper-parameters and build a model with 1000 trees,

where each tree is trained on a bootstrapped sample of the training

set, and all the 360 variables are considered (instead of the default

value
ffiffiffiffiffiffiffiffi
360
p

� 19). The leaf node size is set, by default, as equal to

one, meaning that each root-leaf path is predicting a single example.

2.4 From class probability to rescaled odds ratio
Current variant annotation approaches often consider the raw class

probability as their functional score, requiring an additional tuning/

thresholding step from the user. Herein, we propose to rescale the

classifier output into a ready-to-use score. First, we define an opti-

mal cutoff value on the class probability (Supplementary Figs S4A

and S5A), as the smallest value which reaches a false discovery rate

(FDR) of 10%. For instance, this threshold is equal to 0.48 for the

brain model and to 0.67 for the heart model. Using FDR as a thresh-

old also accounts for potential mislabeling in the training data, espe-

cially in the background/negative examples set. We then rescale the

filtered probability to a score between 0 and 1, using the formula:

max 0; 1� thresh� P x 62 tissueð Þ
P x 2 tissueð Þ

� �
:

The main advantage here is to standardize predictive models,

and push non-tissue-related loci to a score strictly equal to 0

(Supplementary Figs S4B and S5B and S18).

2.5 Reference genome
Analyses performed in this study used the hg19 reference genome.

2.6 GTEx transcriptome data for 44 tissues
Median gene expression data were downloaded from the GTEx por-

tal (version 6), and are measured using Reads Per Kilobase, per

Million mapped reads (RPKM). We used the median RPKM, as it

measures expression at the entire gene scale, and allowed us to cor-

relate expression with a gene-level median TiSAn score. We ac-

knowledge that the use of raw expression data may contain

biological and technical confounders. We therefore limited the ana-

lysis to the 17 803 genes that were used in the original GTEx eQTL

study, after being fully processed, normalized and filtered.

2.7 ENIGMA genome-wide association for brain regions

volume
Genome-wide association summary statistics from the ENIGMA2

study (Hibar et al., 2015) were downloaded from www.enigma.ini.

usc.edu. For the four considered brain regions (accumbens, amyg-

dala, caudate and hippocampus), we annotated each of the 974 045

intergenic loci with a distance to the closest gene of at least

10 000 bp with Tisan-brain.

2.8 GWAS prioritization in coronary artery disease

(CAD-GWAS) cohort
CARDIoGRAM consortium GWAS meta-analysis summary statistics

for 8 443 810 SNPs were downloaded from http://www.cardiogram

plusc4d.org. We carefully removed positions that were found both in

the TiSAn training and the GWAS, to avoid an overly-optimistic esti-

mation of performance. A comparison between the TiSAn score and

association strength (Fig. 4) was obtained by binning coronary artery

disease (CAD)-GWAS SNPs in 100 percentile bins on reported
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GWAS P-value. Average score gain is measured for top 1% variants

(Bin 1) by comparing their scores against the remaining 99% of the

SNPs. Then the top 2% variants (Bins 1 and 2) are compared against

the remaining 98%, and so on, until merging all the data, which cor-

responds to the comparison between 99% of the data against the 1%

variants with the highest P-value. We derived confidence intervals for

both TiSAn and GenoSkyline by random permutations on the GWAS

P-values. When ranking variants that might have an impact on the

trait, we filtered variants not predicted as tissue-related by either

TiSAn (zero score), or by GenoSkyline (score<0.15).

2.9 Variant enrichment in the vicinity of ASD genes
Variants found in 960 Simons Simplex Collection (SSC) individu-

als—including probands and parents—were filtered based on their

pathogenicity using CADD score. We estimated different threshold

values for coding (>15) and non-coding (>10.7) variants to account

for systematic bias in CADD predictions. Those values correspond

to the top 10 percentile found in the 1000 Genomes data. We also

focused the analysis on variants found in 650 000 bp windows

around well-supported autism spectrum disorder (ASD) genes with

more than 20 citations in the June 2016 SFARI gene list at http://

gene.sfari.org/autdb/HG_Home.do (Supplementary Table S6). The

same filters were applied to variants found in 1000 Genomes (1KG)

European ancestry population (Phase 3). We carefully removed posi-

tions that were found in both the TiSAn training and the sequencing

variant call sets (SSC and 1KG), to avoid an overly optimistic esti-

mation of performance. We also controlled for potential linkage dis-

equilibrium (LD) between training data and validation variants. LD

correlation (R-squared) was estimated from 1000 Genomes

European population (CEU) allele frequencies using SNAP proxy

search (www.archive.broadinstitute.org/mpg/snap/ldsearch.php).

For each validation locus (positive or negative), we considered the

maximal correlation value with the training set loci. The distribu-

tions obtained for positive and negative examples were compared,

and correlation for positive examples was not found to be signifi-

cantly higher (Wilcoxon rank test: P¼0.9971, average LD pos-

itive¼0.92, average LD negative¼0.93). Coding and non-coding

variants were separated based on their RefSeq (O’Leary et al., 2016)

function annotation. The relative gain in average score (Fig. 3A

and B) was calculated by computing the difference between average

functional score in SSC and in 1KG for coding and non-coding var-

iants. Cumulative score enrichment for SSC over 1KG variants

(Fig. 3C) was obtained by binning both SSC and 1KG variants based

on their functional score, in 5 percentile groups. Then, the propor-

tion of SSC SNPs and 1KG variants present in each bin was com-

puted, and summed in a cumulative way, from the top 5% bin to all

the data (from left to right on the figure).

2.10 Transcription factor binding site enrichment in

tissue and cell type
The ENCODE project provides a large repository for Transcription

factor binding site (TFBS) locations in various cell type contexts.

Here, we assembled two databases, both available as UCSC Genome

Browser tracks, factorbookMotifPos (from factorbookMotif track),

which contains the location of more than 2 million TFBS across the

genome, and EncodeRegTfbsClustered (ENCODE Regulation ‘Txn

Factor’ track), which provides information regarding the cell types

where TFBS were observed. Overlapping the two databases resulted

in 1 514 086 unique TFBS found binding 53 different TF structural

families. For each of those TFBS, we expanded their location using

a6500 base pair window centered on the site, and TiSAn heart and

brain score profiles were extracted from these windows. Scores were

centered and scaled around the center value and show the actual score

enrichment along the window. An average profile was computed for

all TF structural families and cell types.

2.11 TiSAn use case
The main application for TiSAn involves the annotation of large sets

of variants, and we recommend the use of scalable tools, such as

vcfanno (www.github.com/brentp/vcfanno) to accomplish this an-

notation. On the other hand, examination of one or a handful of

loci can also be helpful in gaining insights about what features are

driving a prediction. Therefore, we developed a GUI tool called

TiSAn-view, where features extracted for a single locus are displayed

(Supplementary Fig. S6). Users simply need to upload a list of genet-

ic loci (e.g. in bed format), and choose the TiSAn to use. Tutorial

and vignettes are available on http://github.com/kevinVervier/

TiSAn.

2.12 Software availability
• Genome-wide TiSAn score databases (brain and heart) are avail-

able in bed format at http://www.flamingo.psychiatry.uiowa.

edu/TiSAn. We have also made publicly available the two com-

panion tools (TiSAn-build and TiSAn-view) at http://github.com/

kevinVervier/TiSAn.
• GenoSkyline approach: we downloaded brain and heart models

from (www.genocanyon.med.yale.edu), in November 2016.
• CADD: Deleteriousness annotations were performed using

CADD v1.3 (current version) at http://cadd.gs.washington.edu
• DANN annotations were downloaded in April 2015 (original

version) at http://cbcl.ics.uci.edu/public_data/DANN

3 Results

3.1 Machine learning for predicting tissue-specific func-

tional annotation
The design of TiSAn models is outlined in Figure 1 (details in

Section 2). Taking advantage of publicly available datasets (GTEx

Consortium, 2015; Bernstein et al., 2010), we extracted more than

350 different genome-wide variables that were used to describe two

large sets of disease-related loci. Training a supervised machine

learning model requires positive and negative examples: herein,

positive examples were nucleotide positions that had been previous-

ly linked to a tissue-specific disease, and negative examples were

variants that had no established link to the tissue-specific disease in

question. Predictive models were trained on the labeled datasets and

optimized to achieve high discrimination of tissue-specific loci

(Supplementary Figs S4 and S5). Herein, a score equal to 1 indicates

a position strongly associated with the tissue, whereas a score of 0

means no association at all; such a position is usually discarded in

subsequent analysis.

3.1.1 Impact of algorithm hyper-parameters

Feature group importance. The cross-validation procedure indicated

a random forest as the most accurate approach for the tissue-specifi-

city task. Interestingly, this analysis suggested that using all the fea-

tures when considering potential splits leads to superior

performance, with the optimal mtry parameter being equal to the

total number of features. In order to identify the most informative

features, we compared the contribution of each feature group to the

model’s accuracy, by training suboptimal models with features

restricted to a single group. Notably, we found that eQTL are the
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most informative features for both brain and heart models, whereas

DNA methylation shows limited performance (Supplementary Fig.

S7). Additional tissue-specific epigenome data (e.g. H3k4me1) were

found to have a negligible impact on performance (Supplementary

Fig. S8), suggesting that the signal in RME consolidated epigenomes

present in TiSAn models is sufficient.

Feature interactions. We identified combinations of features that

were likely to increase model accuracy using an iterative Random

Forest scheme (Basu et al., 2018). For the brain model, we observed

a strong interaction between GC content and proximity with brain

genes. In the heart model, interactions between heart eQTL and

heart enhancers were the main contributors. A complete list of stable

interactions is given in Supplementary Table S7.

Training set and learning curve. The number of training exam-

ples also has an impact on model performance (Supplementary Fig.

S9). We found that the current training set size for both brain and

heart models achieves the optimal trade-off between required

labeled examples and model predictive power.

3.1.2 Region-based analysis

In addition to cross-validation performance, we assessed our mod-

els’ generalization by holding out two genome regions from the

training sets, and confirmed there was no LD correlation between

the training set and the tested regions. The 16p11 region (from pos-

ition 28M to 31M) has been extensively studied in neurodevelop-

mental disorders, such as ASD (Weiss et al., 2008). The 9p21 region

(from position 19.9M to 25.4M) has been associated with cardio-

vascular disease (Gong et al., 2014). We extracted the TiSan brain

and heart scores within the two regions at a 1 kb resolution, and

reported tissue-specific enrichment in Supplementary Figure S10. As

expected, the brain score is significantly higher than the heart score

in the 16p11 region (paired Student’s P ¼ 1:38� 10�12), whereas

the heart score is significantly higher in the 9p21 region (paired

Student’s P ¼ 1:21� 10�127). Finally, we also used the held-out

labeled loci in those regions to estimate the TiSAn models’ sensitiv-

ity. Predictions with the brain model showed an AUC of 0.99 for the

16p11 region, and predictions with the heart model showed an AUC

of 0.86 for the 9p21 region. These values were comparable to the

observed cross-validated AUC for the corresponding models, sup-

porting TiSAn’s generalizability.

3.2 Tissue signal detection in non-disease traits
Here we demonstrate that the TiSAn score can identify functional,

tissue-specific variants that are not necessarily disease-related. First,

we considered 44 tissues characterized by RNA-seq, from the GTEx

project, including 2 heart tissues (atrial appendage and left ven-

tricle), and 10 brain tissues. We observed correlation between the

measured gene expression and the average corresponding TiSAn

score both for gene and flanking regions (Supplementary Fig. S11).

We found that TiSAn-brain is strongly associated with 9 out of 10

brain tissues, and TiSAn-heart shows enrichment for not only heart

tissues, but also in liver and pancreas, which is reasonable given

their known roles in diseases that are risk factors for cardiovascular

disorders, such as hypercholesterolemia and diabetes. We also eval-

uated TiSAn’s capability to properly annotate intergenic loci associ-

ated with brain volume. While not a disease trait, brain volume has

been associated with various neurodevelopmental and psychiatric

disorders (van Erp et al., 2016). ENIGMA GWAS found statistical

association between a large set of genetic variations and brain vol-

ume (Hibar et al., 2015). Figure 2 shows the correlation between the

TiSAn brain score obtained for a locus and its association with brain

volume. In the four considered brain regions, we observe the

Fig. 1. TiSAn framework overview. Each nucleotide position in the genome is annotated with multiple types of genome-scale information, such as sequence con-

tent, methylation level, proximity to genes, etc. (see Section 2). This information is extracted for training sets, comprised of deleterious variants with or without

an association with the tissue of interest. Using supervised machine learning, specifically a Random Forest (RF), a predictive model combines each feature based

on its ability to predict whether a position will be functionally associated with the tissue of interest. Model output consists in a tissue-specific functional score

ranging from no functional relevance to the tissue (0) and strong functional relevance to the tissue (1). This score can then be used, for instance, to filter down

large lists of candidate variants for further investigation, or to isolate the contribution of different tissues to a complex trait
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strongest signal for the loci within the top 5% GWAS associations,

confirming a role for non-coding variation in a non-disease trait.

The lack of a similar signal from the TiSAn heart model suggests

good specificity (Supplementary Fig. S12). Interestingly, none of the

generic pathogenicity scores [CADD (Kircher et al., 2014) and

DANN (Quang et al., 2015)] detected a comparable enrichment

around the stronger GWAS hits for any brain region

(Supplementary Figs S13–S16). This suggests that TiSAn is uniquely

able to capture functional, tissue-specific variation that is not neces-

sarily pathogenic.

In the following, we demonstrate TiSAn performance in three

different settings: (i) evaluating tissue-specific enrichment in case-

control cohort, (ii) enhancing discovery in a genome-wide associ-

ation study (GWAS) and (iii) identifying tissue-specific transcription

factors. We also make practical comparisons to a recently proposed

tool, GenoSkyline (Lu et al., 2016) that provides a genome partition

in terms of functional segments using only methylation data. Our

approach aims to provide functional prediction at the single nucleo-

tide resolution, because variants found in large predicted functional

blocks (as is the case in GenoSkyline) may in fact have different

functional effects.

3.3 Brain-specific variant prioritization in a sample with

familial risk for autism
3.3.1 Genome-wide enrichment for brain-related variations in

affected individuals

The SSC (http://base.sfari.org) provides WGS for one of the largest

ASD cohorts currently available. We hypothesized that deleterious

genetic variation (see definition in Section 2) found in the vicinity of

ASD-related genes would show higher enrichment in terms of brain-

related functional consequences (as measured by the TiSAn-brain

and GenoSkyline-brain scores) in the SSC compared to the 1000

Genomes (1KG) (1000 Genomes Project Consortium, 2012). We

further assessed enrichment using the respective heart-specific scores

as a form of negative control, since the cardiovascular system has

not been found to be a major etiological contributor to ASD. In this

analysis, the TiSAn-brain score showed the only positive tissue-

specific enrichment, over 50% for coding variants (Fig. 3A) and

around 10% for non-coding variants (Fig. 3B). Notably, there was a

significant difference between TiSAn brain and heart scores

(Wilcoxon signed-rank test, P < 2� 10�16), suggesting effective tis-

sue specificity, which was not observed for GenoSkyline models

(Wilcoxon signed-rank test, P¼0.351). Interestingly, we did not ob-

serve a differential enrichment between SSC family members (pro-

band, father, mother and sibling), suggesting a familial genetic

burden for autism (F-test, P¼0.28).

3.3.2 Case-control variants filtering with brain-specific annotation

Next, we ranked and binned variants according to their tissue-specific

scores (i.e. TiSAn or GenoSkyline) and calculated the enrichment of

SSC deleterious variants in each bin, compared to deleterious 1KG

variants. Because the SSC is a neurodevelopmental cohort, we

expected to see over-representation of SSC variants in the most confi-

dently called brain-related genomic regions. Indeed, significant enrich-

ment of SSC variants was observed in the top quantiles for TiSAn-

brain but also, unexpectedly, for GenoSkyline-Heart models

(Fig. 3C). Surprisingly, the GenoSkyline-heart model reported a more

pronounced enrichment than the corresponding brain model, suggest-

ing a potential lack of tissue specificity for GenoSkyline. TiSAn-brain

achieved the highest enrichment by ranking 2.5 times more SSC var-

iants in the top 5% than 1KG variants.

3.3.3 Autism and calcium channel genes

An autism-related calcium voltage-gated channel gene, CACNA1C

(Kabir et al., 2017), was the gene with the highest TiSAn-brain score

Fig. 2. TiSAn-brain annotation of intergenic loci associated with brain volume.

Each of 974 045 ENIGMA loci was binned into 100 percentile groups, based

on the statistical association strength with brain volume. For each bin, the

average TiSAn-brain score enrichment was computed with respect to the

average score across the entire set of loci. The right part of each panel corre-

sponds to loci with stronger associations with brain region volume Fig. 3. Brain-related functional enrichment in a case-control setting.

Comparison of SSC variants with 1KG variants. Coding variants (A) and non-

coding variants (B). Both brain and heart models for TiSAn and GenoSkyline

were evaluated. (C) Functional score enrichment in SSC variants compared to

1KG variants. After sorting SSC and 1KG variants based on their score, we

compute cumulative enrichment for each 5 percentile. Blue bars correspond

to significant difference between SSC and 1KG, using the v2 test (FDR

adjusted q-value<0.1) (Color version of this figure is available at

Bioinformatics online.)
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enrichment in SSC data, suggesting that deleterious variants at this

locus are likely to affect brain function. In particular, we identified

116 non-coding deleterious variants (see Section 2 for CADD

thresholds) in CTCF (Prickett et al., 2013) transcription factor bind-

ing sites proximal to CACNA1C in the SSC data, while none were

found in the unaffected population. Mutations in the same region

also hit non-coding RNAs (ncRNAs) more frequently in the SSC

population than in the control population (Fisher’s exact

test, P < 2� 10�16Þ. Interestingly, five of these ncRNAs

(Supplementary Table S8) were found in LD with loci associated

with autism and Tourette’s syndrome (Ning et al., 2014).

3.4 Heart-related signal prioritization in CAD
3.4.1 Genome-wide association strength and annotation score

Current approaches to GWAS analysis rely mostly on association

strength (e.g. P-value) to prioritize candidate regions. These variants

often belong to large LD blocks, making it difficult to decipher the

causal genetic mechanism. Here, we apply TiSAn to the Coronary

Artery Disease CARDIoGRAM consortium GWAS meta-analysis

(Nikpay et al., 2015), and demonstrate that the TiSAn-heart score is

significantly higher among the most associated variants [Fig. 4A,

(Student t-test, P < 2� 10�16)]. Furthermore, the top 100 SNPs

(according to their P-value) with a non-zero TiSAn were all found in

LD with genomic regions strongly associated with CAD, demon-

strating TiSAn high sensitivity. In this analysis, no significant enrich-

ment was observed for GenoSkyline-heart (Wilcoxon signed-rank

test, P¼0.12) or brain models (Fig. 4B).

3.4.2 Reduction of multiple hypothesis burden in GWAS

We filtered tissue-relevant genotyped variants before the GWAS

analysis, using the TiSAn-heart model, so that only heart-related

variants would be considered in the correction for multiple testing

(herein, Bonferroni correction). In the case of CAD-GWAS, this

reduced the number of SNPs considered by 75% and narrowed

significant loci by 20% on average (paired Student’s t-test,

P¼0.019). Furthermore, the overall enrichment in transcription fac-

tor binding sites (TFBS) among significant loci was conserved be-

tween the original and TiSAn-filtered sets (v2 test, P¼0.51),

suggesting that the regulatory content was preserved after the filter-

ing step (a further analysis of TFBS, provided in the Supplementary

Material, suggests that TiSAn can reveal which TFs have important

functional roles in specific tissues). Reducing the number of tested

variants directly recalibrated the multiple-testing correction thresh-

old used to determine significant loci from 5� 10�8 to 1:6� 10�7.

Herein, 91 new loci were found significantly associated with CAD,

and these show a significant enrichment in EBF1 TFBS (Fisher’s

exact test, P ¼ 3:2� 10�6). EBF1 is a transcription factor that has

been previously linked to obesity, diabetes, and cardiovascular dis-

ease (Singh et al., 2015).

A similar analysis, using TiSAn-brain, also resulted in a substan-

tial reduction of CAD-GWAS SNPs tested (90.2% reduction).

However, consistent with proper tissue specificity, the fraction

tested in this case was comparatively depleted for newly significant

loci (18 additional loci for TiSAn-brain filtering, versus 90 addition-

al loci for TiSAn-heart, P < 2:2� 10�16, v2 test). We emphasize

again that these 90 additional loci were not included in, or depend-

ent on, the training set used for TiSAn-heart. This result supports

the good generalization of the model.

4 Discussion

Integrative approaches like TiSAn hold great promise for helping gen-

omics researchers narrow massive lists of variants to focus on those

that are most relevant to the tissue or disease at hand. Few such tools

currently exist, however, with most development efforts focusing on

improving estimators of general (and not tissue-specific) deleterious-

ness (Capriotti and Fariselli, 2017). GenoSkyLine, a recently devel-

oped tool that utilizes genome-scale tissue-specific epigenetic data,

allowed us to benchmark TiSAn and demonstrate its effectiveness in

prioritizing genetic variants that are most likely to play a role in the

tissue-specific disease processes under consideration. Specifically, we

showed that individuals with elevated risk for autism (i.e. probands

and their family members) had more deleterious WGS variants that

were predicted to be brain relevant (by TiSAn-brain) than controls. At

the same time, we were unable to show such differences in regions

identified as brain-relevant by GenoSkyLine. Additionally, no differ-

ence between cases and controls was observed in TiSAn-heart score,

demonstrating its specificity. We showed that strongly associated

GWAS hits in a study of CAD have a significantly higher TiSAn-heart

signal than non-associated SNPs, supporting our method’s ability to

correctly prioritize tissue-specific variants. Again, we were unable to

observe this difference using the GenoSkyLine score for cardiovascular

tissue. We also demonstrated the practical advantages of reducing

GWAS multiple testing burden by pre-filtering SNPs on the basis of

their estimated tissue relevance. In each of these analyses, TiSAn

showed an ability to correctly prioritize variants according to tissue-

specific action, while GenoSkyLine, the current state-of-the-art for this

application, was unable to do so. TiSAn thus represents an important

development towards leveraging the massive amount of underutilized

information (i.e. non-coding variation) coming from WGS studies.

Several technical points related to the development of TiSAn are

worth mentioning. Perhaps most importantly, we demonstrated that

combining additional data sources gives TiSAn a higher sensitivity

compared to approaches that rely solely on epigenetic data.

Consequently, depending on the use case, it may be worthwhile to

Fig. 4. Genome-wide association signal prioritization for coronary artery dis-

ease. Genetic variants were binned by percentiles, based on their association

P-values. In each of these bins, we report average functional scores for heart

models (A), and brain models (B) (blue: TiSAn, gray: GenoSkyline). Shaded

areas represent confidence interval for the corresponding method, after

GWAS P-value random permutations (Color version of this figure is available

at Bioinformatics online.)
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take advantage of unique data sources that are available only for a

tissue of interest, rather than only those that are available in a wide

variety of tissues. Second, a comparison between multiple machine

learning algorithms (Supplementary Table S5) led us to use random

forests, known to better handle non-linearity and correlation be-

tween variables. Recently, deep learning has been evaluated in the

context of variation effects on chromatin (Zhou and Troyanskaya,

2015), and future analyses will investigate the impact of using this

algorithmic framework. Another issue is that supervised learning

requires genomic positions with accurate class labels, in this case,

known to be either associated with disease in a given tissue or not.

However, for most of the available data, such a ‘gold standard’ label

does not exist, especially for positive association with a tissue-

specific trait. Imbalance-aware machine learning (Schubach et al.,

2017) could be a solution to efficiently train predictive models in the

case of underrepresented classes. Finally, we developed TiSAn to

serve researchers with a particular focus on a single tissue by

improving performance, perhaps at the expense of broad tissue

coverage. Researchers interested in other tissues beyond brain or

heart can derive their own functional annotation for a selected tissue

of interest, and we have provided thorough documentation and soft-

ware tools, including tutorials, on how to use TiSAn in typical gen-

ome informatics workflows.
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