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Antibiotics underpin the ‘modern medicine’ that has increased life expectancy, leading to societies with sizeable
vulnerable elderly populations who have suffered disproportionately during the current COVID-19 pandemic.
Governments have responded by shuttering economies, limiting social interactions and refocusing healthcare.
There are implications for antibiotic resistance both during and after these events. During spring 2020,
COVID-19-stressed ICUs relaxed stewardship, perhaps promoting resistance. Counterpoised to this, more citi-
zens died at home and total hospital antibiotic use declined, reducing selection pressure. Restricted travel and
social distancing potentially reduced community import and transmission of resistant bacteria, though hard
data are lacking. The future depends on the vaccines now being deployed. Unequivocal vaccine success should
allow a swift return to normality. Vaccine failure followed by extended and successful non-pharmaceutical
suppression may lead to the same point, but only after some delay, and with indefinite travel restrictions; sus-
tainability is doubtful. Alternatively, failure of vaccines and control measures may prompt acceptance that we
must live with the virus, as in the prolonged 1889–94 ‘influenza’ (or coronavirus OC43) pandemic. Vaccine failure
scenarios, particularly those accepting ‘learning to live with the virus’, favour increased outpatient management
of non-COVID-19 infections using oral and long t1=2 antibiotics. Ultimately, all models—except those envisaging
societal collapse—suggest that COVID-19 will be controlled and that hospitals will revert to pre-2020 patterns
with a large backlog of non-COVID-19 patients awaiting treatment. Clearing this will increase workloads, stresses,
nosocomial infections, antibiotic use and resistance. New antibiotics, including cefiderocol, are part of the answer.
The prescribing information for cefiderocol is available at: https://shionogi-eu-content.com/gb/fetcroja/pi.

Introduction

The modern medical era began around 1937–42, as systemic
sulphonamides and penicillin mitigated the hazard of bacterial
infection, opening medical and surgical possibilities that were
previously unthinkable.

Antibiotics remain the bedrock of what followed. Complex
surgery, intensive care, transplants and immunosuppressive treat-
ments all would be impossible if infection could not reliably be con-
trolled. In the community, pneumococcal pneumonia still kills the
debilitated, but no longer threatens the likes of Jane Austen’s
Marianne Dashwood. Along with earlier improvements in public
health, modern medicine has made early non-violent death rare in
advanced societies. Mean, median and modal life expectancies
have converged (Figure 1) then extended.1 The caveat is that late-
life years of ill health have extended too,2 giving a growing frail eld-
erly population with chronic illness and cognitive decline, particu-
larly in Europe, North America and East Asia.3 These citizens are
the frequent victims of opportunist Gram-negative bacteria, with
accumulating resistance (Figure 2).4

Until 2020 this medical edifice grew without major viral chal-
lenge. Influenza pandemics in 1958–59 and 1968–69 killed
many but were terminated by a mixture of strain ‘burnout’ and

vaccination.5 HIV took a grim toll but was largely avoidable by
personal precautions and now is medically manageable. SARS-
CoV-2 has changed the dynamic, whether temporarily or more
permanently.

A brief history of COVID-19

First reports of COVID-19 seeped from Wuhan late in 2019, with
the causative coronavirus SARS-CoV-2 putatively having jumped
from bats in a ‘seafood’ market. Laboratory escape is plausible too,
as Wuhan hosts centres for coronavirus research, but is hotly
disputed.6

During January to February 2020, outbreaks occurred in China.
By February/March infection was spreading in Iran, then Europe.
The USA was hit next, with major outbreaks in the northeast, par-
ticularly New York and New Jersey. Extensive spread followed in
the southern USA, Latin America and India. The pandemic peaked
in northern Europe and the north-eastern USA in the early spring,
with subsequent declines in infections, hospitalizations and deaths
through the late spring and summer before a resurgence in
the northern autumn and winter. Argentina, with the seasons
reversed, showed the converse pattern, with peak deaths in
October, at the end of the southern winter. With some exceptions,
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including a current (January 2021) upsurge in South Africa, these
patterns broadly support the view that SARS-CoV-2 is transitioning
from being a ‘new pandemic virus’ to an ‘endemic winter respira-
tory virus’, joining the four long-established coronaviruses (229E,
OC43, NL63 and HKU1) that account for 10%–20% of common
colds.7 A few countries, notably Taiwan, Australia and New
Zealand, have effectively isolated themselves from the pandemic
by a combination of entry restrictions and strict containment

efforts whenever small clusters have been detected. Central Africa
has been little affected.

Like other single-stranded RNA viruses, SARS-CoV-2 is highly
mutable, with over 20 000 sequence variants described. There is
current concern about particular variants, including types that first
circulated extensively in the UK (VUI202012/01 or B1.1.1.7), South
Africa (1.351) and Brazil (P1). These appear to spread more effi-
ciently and, in some cases, may have modifed vaccine-relevant
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Figure 1. Three measures of changing lifespan for men in the UK. Data Source: Office for National Statistics.1 LE, life expectancy. Patterns for women
are similar though life expectancy is slightly longer.
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Figure 2. Incidence of E. coli bacteraemia in England and Wales, by age. Data source: PHE.4
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epitopes (see below); there are no substantiated data to indicate
that they are more lethal.8

Most COVID-19 infection is mild, inconsequential, and self-limit-
ing. Many only learn that they have been infected when they are
found seropositive. Even when virus is detected by RT-PCR, half re-
cord no symptoms.9 Among those who do develop symptoms—
predominantly fever, cough and shortness of breath along with
loss of taste and smell—recovery generally follows after 1 week.
But, for a minority, pulmonary symptoms worsen, necessitating
hospitalization and, in extremis, supplementary oxygen or ventila-
tion.10,11 Death occurs in 40%–50% of ICU cases,12 increasing with
age, male gender, obesity, dementia, diabetes and cardiovascular
or pulmonary disease.13

Estimation of fatality rates is fraught, since most mild infections
pass unrecorded. In October 2020, the WHO suggested that c.
10% of the world’s population had been infected,14 and that
deaths had then reached 1 million. This indicated an infection fa-
tality rate of around 0.13%. Ioannidis,15 using seroprevalence data
as the denominator, estimated 0.15%–0.2%. These statistics are
reassuring but carry four caveats: (i) the proportion is significantly
higher in countries with a large elderly population; (ii) sufficient se-
vere cases can arise to overwhelm local or national ICU capacity,
again especially if there is a large vulnerable elderly population;16

(iii) outbreaks in elderly care facilities can kill extensively, as in the
UK, Sweden, New York, Italy and Spain;17–19 and (iv) even low mor-
tality rates translate to numerous deaths in large populations. The
aspects have dominated political debate, media coverage and pol-
icy response. As of this writing (January 2021) the UK NHS has
around one-third of its beds occupied by patients infected with
SARS-CoV-2, including more than half of its ICU beds, and is clearly
showing stresses, emphasized in rolling 24 h news bulletins. Cold
review of actual numbers gives a different perspective. From a UK
population of 67 million, roughly 1.1 million (2%) were estimated
to be infected with SARS-CoV-2 in early January,20 and just 3000—

1 citizen in 22 000—were sufficiently sick to need ICU care. In other
words, the central issue is a shortage of ICU beds for the minority
who become severely ill, and staff to support them, not that
COVID-19 has a high fatality rate.

Most governments across Europe, North America and South
America have enacted repeated ‘lockdowns’, closing the economy,
confining populations and mandating social distancing.
Reductions in deaths are attributed to these actions in China (strict
lockdown), Europe and New York (varying strictness).21 There is,
however, considerable scope for scepticism. In the initial spring
wave, UK deaths peaked on 8 April,22 whereas lockdown began on
23 March, suggesting that new infections were already declining,
assuming �19 days from infection to death (5–6 days incubation,
.8 to hospitalization, �6 to death). Moreover, there is a remark-
able similarity between the spring trajectories of death rates per
million population between France, with a strict lockdown, the UK,
with a less severe lockdown and Sweden, which had no lockdown
beyond general advice on social distancing and restrictions on
large events and bar-counter service (Figure 3). The likely explan-
ation is that viral seasonality, not lockdown, underpinned the
declines in each country. In an extensive analysis, De
Larochelambert et al.23 reviewed deaths against lockdown strin-
gency for 160 countries, finding little relationship and concluding
that death rates largely reflected whether a country was in the
temperate zone, typically had few deaths due to communicable
diseases, and had a large elderly population for whom life expect-
ancy was no longer extending. Strict lockdowns in seven Danish
counties, enacted following discovery of a new variant in mink,
had no greater effect than milder restrictions in four adjacent
counties;24 death and infection trajectories in North and South
Dakota are almost superimposable, despite more extensive busi-
ness closure restrictions (and mask mandates) in the former.
Lockdowns have only worked convincingly where they were
enforced very strictly against outbreaks that were tiny in global
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Figure 3. First wave deaths from COVID-19 in France (strict lockdown; 13.8% Q2 fall in GDP), UK (moderate lockdown; 20.4% Q2 fall in GDP) and
Sweden (no lockdown; 8.6% Q2 fall in GDP).96
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terms, as in Melbourne, or where, as in China, they approximated
to classical quarantine, by extracting and confining those found
infected.

Immediate impacts on antibiotic use and
resistance

Most non-hospitalized COVID-19 patients receive no antibiotics.
On the other hand, antibiotics—typically those used for commu-
nity-acquired pneumonia (i.e. amoxicillin/clavulanate!macrolide;
ceftriaxone ! macrolide or levofloxacin)—are prescribed to hospi-
talized cases, though few have evidence of bacterial infection.25

Thus, Rawson et al.26 estimated that 72% of hospitalized COVID-
19 patients received antibiotics but only 8% had bacterial infection
and Langford et al.27 published similar figures. This suggests poor
stewardship. Others note that bacterial coinfection is rarer than in
influenza28 whilst a Swiss study found that ‘early’ antibiotics, be-
fore ICU transfer, had little benefit.29 Some hospitals initially
administered hydroxychloroquine plus azithromycin against
COVID-19 itself, though any benefits, and their mechanism, are
disputed and the therapy has fallen into disfavour.30,31

ICU COVID-19 patients are usually intubated and face the
risk of ventilator-associated pneumonia, mostly involving the
Enterobacterales, Staphylococcus aureus and non-fermenters typ-
ical of this infection. Across five UK ICUs we found Klebsiella pneu-
moniae and Klebsiella aerogenes unusually prevalent in COVID-19
patients,32 whereas a single-hospital French study found an excess
of non-fermenters.33

Ventilated COVID-19 patients often receive multiple antibiotic
courses. At the height of the pandemic, stewardship policies were
overridden,26 with ICU capacity increased. A Spanish hospital
reported increased antibiotic use.34 Such data lead to concern that
resistance may proliferate in hospitals as a result of COVID-19
pressures, though with scant evidence that it has actually done so.
Resistance drivers in the community potentially may increase too.
More general practice consultations are remote, and pre-COVID-
19 studies suggest that US community physicians are more willing
to prescribe antibiotics when consulted online for children35,36

though not for adults.37 Delivery of childhood vaccines has been
disrupted,38 favouring resurgence of multiresistant vaccine sero-
types of Streptococcus pneumoniae. Disruption of TB treatments
will promote recrudescence, resistance and transmission of resist-
ant variants, potentially leading to future treatment difficulties.
This is an issue e.g. in India, where TB kills over 420 000 p.a., or
around 2.5-fold more than COVID-19 to date (January 2021).39

Dentists—long discouraged from antibiotic use—were reduced to
the options of antibiotics, analgesics and extraction, with aerosol-
generating procedures forbidden.40,41

However, countervailing forces apply, reducing pressure for re-
sistance. First, much non-COVID-19 hospital activity ceased during
peaks of COVID-19 activity.42 In some jurisdictions, particularly the
USA, hospital staff were laid off.43 The complex patients who are
most vulnerable to multiresistant Gram-negative bacteria were no
longer hospitalized. In the UK more people died at home and in
care homes rather than in hospitals, where they likely would have
received antibiotics.22 IV antibiotic use in English hospitals, meas-
ured as DDDs, was 32% lower in April–May 2020 than in April–May
2019 (P. Howard, Leeds Teaching Hospitals NHS Trust, personal

communication). Similarly, wholesale IV antibiotic shipments to
US hospitals, as DDDs, declined 30.7% in the same comparison
(A. Carr, Needham & Company LLC, personal communication) with
only 4/36 products showing increases. These data suggest
reduced use, though we cannot exclude distortions from stock
management inside hospitals, and the decline was only 6.9% if
the month of March was added to the comparisons. A more recent
report, comparing January to November 2020 with January to
November 2019, indicates reduction in unit sales of systemic anti-
biotics as follows: Spain, 2.1%; France, 3.6%; Germany, 9.3%; Italy,
14%; and the UK, 14.5%.44 Reports of Escherichia coli bacteraemia
to England’s mandatory surveillance in the July to September
quarter of 2020 were 13.4% below those of the same quarter of
2019, sharply reversing a rising trend.45 The likely explanation is
that many septic patients, who ordinarily would present to A&E,
are failing to do so and are failing to receive IV antibiotic therapy.
They may be represented among the persistently increased num-
bers of citizens presently dying at home rather than in hospitals.46

Changes in incidence are much less marked for bacteraemias
involving pathogens that are mostly healthcare acquired, specific-
ally K. pneumoniae and Pseudomonas aeruginosa.

Second, ICU triage, as applied at the height of the pandem-
ic,47,48 militated against the ‘frequent flyer’ patients likely to be
pre-colonized with multiresistant opportunists, favouring hospital-
naive patients more likely to retain a susceptible flora.

Third, international travel has been dramatically curtailed, and
this must reduce the transfer of resistance. London private hospi-
tals ordinarily admit patients from the Middle East, frequently al-
ready colonized with resistant Gram-negative opportunists.49 This
has stopped. Travellers e.g. to India commonly become colonized
by ESBL-producing E. coli.50,51 Again, such travel has essentially
ceased. Social distancing and travel restrictions reduce opportuni-
ties to catch and import ‘super gonorrhoea’;52,53 though closure
of genitourinary medicine clinics54 will facilitate the spread of any
already circulating, and a study in Milan indicated no reduction in
presentations for acute syphilis and gonorrhoea in early 2020
compared with 2019.55

Social distancing and masks may impact community transmis-
sion of respiratory infections, reducing demand for antibiotics.
The elderly often acquire pneumococci from grandchildren56

and will not do so if families cannot meet. In Italy, discontinued
medical monitoring of otitis media-prone children led to reduced
antimicrobial prescriptions in the late winter, without apparent
harm.57

A final aspect, of uncertain impact, is the COVID-19-directed
use of personal protective equipment. This might be expected to
diminish cross-infection, but the inconvenience of changing
between patients increased MRSA transmission in the 2003 SARS
outbreaks in Canada and Singapore.58,59

What next? Possible scenarios

There are several plausible futures. These are set out below and
their implications for resistance, summarized in Table 1, are then
considered. There also are extreme possibilities, outlined briefly in
the concluding paragraphs of this paper.

Vaccines directed against SARS-CoV-2 (Table 2) have been
developed at impressive speed. Based on interim analyses of on-
going trials, several have been given emergency use authorizations
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in multiple jurisdictions. Those deployed in Europe and North
America are ‘new-technology’ mRNA and adenovirus vector prod-
ucts targeting the SARS-CoV-2 spike protein, which is crucial to viral
receptor binding. Classical inactivated virus vaccines have been
developed in China and are finding use in South East Asia, Latin
America and the Middle East. Deployment is most advanced in
Israel, with most (.80%) of the population now vaccinated using
the Pfizer BioNTech product, but is progressing rapidly e.g. in the
UK, UAE, USA and Chile.

Although early results are promising, considerable uncertainty
remains. First, since use is based on interim trial analyses the
duration of protection is unknown. Post-infection immune
responses to the classical coronaviruses (229E, HKU1, NL63 and

OC43) fade swiftly, restoring vulnerability to infection, though
this is generally mild.60 Infection-induced IgG to SARS-CoV-2
declines rapidly too,61,62 especially in asymptomatic cases, sug-
gesting a similar risk, though clinically manifest reinfections
seem rare, perhaps owing to persistent T cell-mediated immun-
ity.63 Secondly, there is uncertainty about vaccine responses in
the vulnerable elderly with ‘adaptive immunosenescence’.64

Thirdly, it is uncertain whether the vaccines will prevent infection
or will reduce severity whilst leaving infected vaccinees as vec-
tors of infection. Last, some emerging virus variants have muta-
tions affecting the spike protein, and it is uncertain whether the
present vaccines will reliably cover all present and future
variants.8

Table 1. Implications of different scenarios for resistance

Scenario
Central prediction on

COVID-19 Sustainable

Push towards more treat-
ment in the community

with oral, OPAT and long t1=2

agents

Surge of hospital
activity to clear

backlog
Travel; import of

resistance

Vaccine overwhelmingly

successful, and perceived

as such

Burden no greater than sea-

sonal influenza with this

politically acceptable

Yes Brief: until population vacci-

nated

Early Briefly reduced, then

normalized

Vaccine failure or perceived

failure. Prolonged em-

phasis on track and trace

Control requires eternal vigi-

lance but is achieved and

maintained

Doubtful Brief (if successful): until

COVID-19 reduced to low

incidence

Early (if suppres-

sion successful)

Reduced for pro-

longed period

Vaccine failure. Acceptance

that virus is established,

endemic and that lock-

downs are ineffective or

cause unacceptable

collateral damage

Successive COVID-19

waves, ending in herd

immunity; significant

further direct mortality

Yes Extended: until population

immunity dominates

Delayed Steady reversion to

normality

Arrows indicate predicted change in selection pressure from the pre-COVID-19 situation: upward, increased selection pressure; horizontal, reversion
to status quo ante; downward, reduced selection pressure.

Table 2. Vaccines against SARS-CoV-2

Vaccine Manufacturer Type Efficacy Notes Reference

BNT162b2 Pfizer BioNTech mRNA 95% 122

mRNA-1273 Moderna mRNA 94.1% 123

Sputnik Gamaleya Institute adenovirus vector 91.4% 124

ChAdOx1 nCoV-19 AstraZeneca/

Oxford University

adenovirus vector 53.4%–90.0% efficacy varied with

subgroup, dosage

and dosage interval

125

BBIBP-CorV Sinopharm inactivated virus 79%–86% 126

CoronaVac Sinovac inactivated virus 50.4% 127
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The optimistic scenario is that vaccines overwhelmingly
succeed, reducing the threat of SARS-CoV-2 at least to that of
seasonal influenza (which typically has 10 000–30 000 attributed
deaths annually in England),65 and that the public accept this situ-
ation, allowing a return to normality. At worst, in this scenario, an
annual booster shot will be needed, particularly for the elderly and
those caring for them, and perhaps with some adaptation to cover
prevalent variants, as with influenza vaccines.

The pessimistic scenario is that vaccines provide only modest
and brief protection, most probably owing to the proliferation of di-
verse spike protein variants and/or to general failure to protect the
most vulnerable elderly. Failure might also arise if the public, after
a year of saturation propaganda, can be satisfied by nothing less
than ‘zero COVID’.

Substantial vaccine failure (or unrealistic demands for com-
plete suppression) could be met with indefinite restrictions on
social interactions along with extensive track and trace sys-
tems. Incoming travellers, including returning nationals, would
require testing or quarantine; outgoing travellers would enter a
dangerous world unless all countries follow this approach
(which they are not doing). The strategy may be sustainable for
a remote island, possibly New Zealand, but seems unfeasible in
the long term for a trading nation, let alone for a continental
union with free movement and varied national approaches to
COVID-19.

The alternative response to vaccine failure is to accept that
SARS-CoV-2 has become endemic and must circulate, potentially
in the form of diversifying spike protein variants that facilitate re-
infection. Repeated exposure, together with modestly protective
vaccines, should progressively reduce disease severity, especially
among the young, who would age with SARS-CoV-2 as we all do
with the four long-established coronaviruses. The difficulties with
this model are (i) how best to protect the present cohort of most-
vulnerable elderly, who lack both prior exposure and the ability to
adapt, and (ii) how to re-educate a public that has been ‘trained’ to
believe COVID-19 to be far more lethal than is actually the case.66

There is one tantalizing hint of how a future that accepted
spread might unfold: the 1889–94 ‘Russian influenza’ pandemic.
This is conventionally attributed to H2N2 or H3N8 influenza A,67,68

based on the serology of elderly patients tested decades later. An
alternative hypothesis is that coronavirus OC43 was responsible,
having evolved apart from a bovine coronavirus shortly before-
hand.69 Like COVID-19 and unlike influenza, the 1889–94 infection
selectively killed men, spared children70 and caused loss of taste
and smell.71 Unlike earlier influenza epidemics it gave repeating
similarly sized waves over 5 years, a point thought unusual at
the time, and which seems exceptional compared with any in-
fluenza epidemic in the preceding 200 years or the subsequent
130.72,73 Such a prolonged pandemic fits a model whereby prior
exposure to other coronaviruses gives partial cross-protection,
as now postulated for SARS-CoV-2,74,75 but with cohorts regain-
ing vulnerability as immune responses diminished, and perhaps
experiencing more than one OC43 infection as immune-escap-
ing mutants were selected. This is speculation, but the parallels
are intriguing.

If correct and if predictive (two big ‘ifs’!), it implies that
coevolution of man and virus may take half a decade to achieve
equilibrium. Even today OC43 can cause lethal care home
outbreaks.76

Implications of the scenarios for antibiotic
usage and resistance

1. Vaccine success

If vaccines prove overwhelmingly successful there should be a pro-
gressive and increasingly exuberant return to the ‘old normal’ in
human behaviour and (assuming solvency) travel. Hospitals will
face a backlog of elective procedures, along with patients who,
fearful of nosocomial COVID-19, had postponed seeking health-
care; one analysis suggests that this backlog may amount to al-
most 5 million hospital treatment episodes in the UK alone.77

Some will have more severe disease, including more advanced
cancers, than would ordinarily be the case. Unless additional hos-
pitals can be commissioned, and (the greater challenge) staffed,
there will be considerable workload pressures, which are correlates
of increased nosocomial infections,78 antibiotic use, and resist-
ance. In short, once healthcare and travel revert to full capacity,
more resistance should be expected.

A partial counterpoise will be the numbers of previously heavy
users of healthcare who succumbed to COVID-19 or (because they
could not access treatment in the COVID-19-dominated period) to
other illnesses. UK excess mortality from March to June 2020 was
30% above normal, with half the deaths falling among care home
residents.79 Their demise will reduce hospital demand, but this fac-
tor will be small: the great majority of the highly vulnerable popu-
lation have survived the pandemic.

2. Perceived vaccine ‘failure’: long-term track and trace
seeking ‘zero COVID’

The aim here, following vaccine disappointments, would be to sup-
press COVID-19 sufficiently that normality of a sort resumes within
a closed system, as presently in Taiwan, Australia or New Zealand,
all of which achieved early control of viral spread meaning that
their hospitals are not under the pressures seen elsewhere. If suc-
cessful, the medium-term implications for hospital antibiotic util-
ization would resemble the vaccine case. In the short term,
the pressures would be rather different and would continue to re-
semble those that have pertained in the pandemic itself, both in
respect of hospital workload being dominated by COVID-19 and
with reduced hospital capacity caused by the needs (i) to socially
distance beds, (ii) to cohort patients according to COVID-19 status,
and (iii) for numerous staff to self-isolate following track and trace
alerts. These factors may drive a shift to outpatient antibiotic
therapy and long dosage-interval antibiotics, followed by rise in
use, selection pressure and bacterial cross-infection once COVID-
19 comes under control and hospitals move to clear their backlog.
Such a model must assume drastic long-term reductions in inter-
national travel, as it would not be feasible to allow free movement
to and from countries lacking similarly stringency. This would im-
pede the transnational flow of resistant bacteria.

The issues with this model are not its implications for antibiotic
resistance, which are broadly positive, at least in the short term,
but its feasibility and its sustainability. Track and trace systems
have, so far, only worked in countries where COVID-19 gained little
initial traction, not those, such as the UK, USA and the EU states,
where the virus has become endemic and prevalent. In these latter
polities, track and trace has been overwhelmed or confounded by
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undetected cases, spurious late positivity in recovered patients,80

poor concordance between repeat tests81 and poor agreement
between different types of test.82 Once infection rates are low,
false positives are apt to outnumber true positives, even for a test
with e.g. 99% specificity, reducing the positive predictive value.83

The failure of track and trace is illustrated by the extent to which
governments have resorted to repeated lockdowns that they had
sworn, after Spring 2020, to eschew.

In the view of this author, vaccines would have to come close
to being successful, greatly reducing disease prevalence, before
the approach becomes practicable. And, if these conditions per-
tain, it becomes disproportionate to prioritize COVID-19 compared
with other infections, notably influenza, that remain significant
causes of death in the same demographic. What is more, the eco-
nomic and social costs will mount as other countries, eschewing
this approach, abandon restrictions and their contingent costs.
Closed defensive economies rarely prosper. These issues, albeit
without the issues of healthcare backlog, will have to be faced also
by those countries that have been most successful at suppressing
COVID-19 during 2020. Should they deploy a suboptimal vaccine,
accepting that they will then have COVID-19 and COVID-19
deaths, or should they remain closed?

3. Vaccine ‘failure’: community control relaxed or
abandoned

Given the massive ‘sunk cost,’ control abandonment is now likely
only after multiple vaccine disappointments and as the social and
economic cost of lockdowns becomes obvious and painful, even to
those who presently believe in their efficacy and virtue.

Further viral waves would then be anticipated, largest in
countries that initially suppressed COVID-19 most effectively or,
more randomly, in those where immunologically distinct variants
emerge. If the 1889–94 ‘influenza’ is a model, spikes of infection
might extend over years. Vaccines, whilst failing to prevent COVID-
19, may mitigate severity and treatments will likely improve.
Dexamethasone reduces mortality84 in severely ill patients, and
inhaled interferon-b may reduce progression to severe disease.85

Clinical manageability may encourage governments to reduce
suppression.

Even so, hospitals will still be hazardous, or be perceived as
hazardous, extending pressure to use oral outpatient parenteral
antibiotic therapy (OPAT) and long t1=2 antibiotics. Since this period
will be longer than under other scenarios, there will be more im-
petus to develop such therapies. Single-dose IV oritavancin and
dalbavancin give near-universal antistaphylococcal coverage, as
do (multidose) oral oxazolidinones, delafloxacin and omadacy-
cline.86 Oral cephalosporin/b-lactamase inhibitor combinations
and (carba)penems—sulopenem and tebipenem—are in devel-
opment,87,88 targeting ESBL producers. Although sulopenem dis-
appointed in complicated urinary tract infections (cUTI),89 it
proved effective in uncomplicated urinary tract infections,90

whilst tebipenem was found to be as effective as ertapenem in
cUTI.91 Of particular note are combinations of ceftibuten with the
oral boronate QPX7728, which inhibits serine and metallo carba-
penemase (except IMP types) as well as ESBLs and AmpC
enzymes.92

Gradually, normality will return. And maybe sooner than the
1889–94 analogy suggests, given the boost that even partially

effective vaccines may provide. Public fear will subside as the huge
excess of mild infection is better appreciated. Hospitals, society
and travel will revert to pre-pandemic patterns though after a dis-
ruption that may persist for several years.

Ultimately all these models predict that COVID-19 will, more or
less quickly, decline in importance. As it does so, old concerns will
re-emerge, mirroring Churchill’s93 observation after WW1:

‘The position of countries has been violently altered. The
modes of thought of men, the whole outlook on affairs, the
grouping of parties, all have encountered violent and tremen-
dous change. . . But as the deluge subsides and the waters fall
short, we see the dreary steeples of Fermanagh and Tyrone
emerging. . . The integrity of their quarrel is one of the few
institutions unaltered in the cataclysm. . .’

And, in the present context, multiresistant Gram-negatives will
renew their challenge. Those seeking a review of prevalent types
are directed to the article by Bush and Bradford,94 those wishing to
appreciate differing threats of ‘carbapenem resistant’ and ‘carba-
penemase-producing’, to our own publication.95 Figure 4 of the
present paper summarizes the activity of recently licensed
agents against important resistance types, noting where there is
demonstrated clinical evidence of efficacy.

Conclusions

COVID-19 is not a great historical pandemic. During 2020 it was re-
portedly involved in around 1.8 million (3%) of the 60 million
deaths that occurred worldwide, and the world population rose by
80 million.96 The 1347–50 Black Death, for comparison, reduced
the European population by 33%–60%, with recovery taking
150 years. On 29 September 1918, the troopship SS Leviathan
cleared New York with 11 800 aboard. When she docked at Brest
10 days later, 2000 were sick with influenza, 1000 were stretch-
ered ashore and 80 were dead; 15 more died in France.97 For com-
parison, a COVID-19 outbreak on the USS Theodore Roosevelt
infected at least 1200 from a complement of 4000.98 One died.
The 1889–94 pandemic killed 125 000 in the UK, 27 000 in its
1889–90 wave. This was from a population of 33 million, or around
half of today. Some social scientists blame the influenza for fin de
siècle angst,99,100 but life continued. Gilbert and Sullivan’s
Gondoliers opened on 7 December 1889, days before the first case,
playing continuously until April 1891. Prince Eddy—second in line
to the throne—succumbed on 14 January 1892; Lady
Windermere’s Fan opened in the February. In October 1918, the
Allies’ ‘100 Days Campaign’ crept bloodily eastwards, defeating
the German army just as the pandemic peaked.101,102 Across the
lines, Berlin alone recorded 1700 influenza deaths on 18
October,103 but retained sufficient energy for street revolution to
erupt in November.104 Our forebears, lacking virology, would have
mistaken 2020 for a ‘bad flu year’, mourned their dead, but carried
on.

Where COVID-19 is unique is in hitting a modern medicalized
population with many elderly and vulnerable, and in humanity’s
reaction. Never before was it policy to shutter the economy or to
confine the healthy. The WHO’s pandemic influenza plan of 2019
makes no mention of lockdown as a strategy105 and the approach
was expressly dismissed in the 1957 influenza pandemic.106,107
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It will be for future historians to assess the wisdom or folly of
the policies adopted in 2020–21, but it is already arguable that our
response generated more harm than the epidemic, leading to im-
poverishment, delayed treatment and increased mortality for
other (e.g. cardiovascular) conditions, disrupted educations and
mental illness.108–111 A particularly extensive review of the harms
of lockdown is provided by Joffe.112 Many ‘saved’ by lockdowns
had little time to live: someone entering a care home in the UK
‘expects’ c. 30 months, and care home residents account for half
the UK deaths.113 Those whose prospects are blighted by the re-
sponse to COVID-19 span the age spectrum. Unless vaccination is
successful, or societies are prepared to accept indefinite and stulti-
fying restrictions on liberty, the epidemic must ultimately run its
course.

Against this ‘big picture’, effects on antibiotic resistance are a
sideshow. Sharp reductions in COVID-19-unrelated medicine, IV
antibiotic use and travel are reducing short-term selection pressure
nationally, though selection may be locally increased in stressed
ICUs. The longer-term effects depend on the success of vaccines
or, if they fail, on our response to this failure. If vaccines succeed
overwhelmingly, a hectic period will follow as hospitals address a
backlog, with some patients sicker than had they been treated ear-
lier. Resulting pressures will promote resistance. If vaccines fail, or
if unrealistic hopes lead to a perception of failure, a more atomized
society will persist. This will favour oral, OPAT and long t1=2 antibiot-
ics, reducing hospital-centred selection and cross-infection. Travel
will be reduced, limiting import of resistance. But such an approach
is unsustainable except in an island choosing indefinite isolation.

The dénouement, sooner or later, will be relaxation, further COVID-
19 waves, perhaps by vaccine-evading variants, then recovery and
normalization.

Some shifts seem set to be maintained, notably more
homeworking, which may reduce circulation of other respiratory
infections and the contingent, often unwarranted, community
demand for antibiotics. In hospitals, all ‘likely’ scenarios favour a
short-term reduction in resistance selection, then a bounceback.
Ultimately, old challenges will renew, including with carbapene-
mase producers. Newer antibiotics, including cefiderocol, address
these.

Last, there are extreme futures, where economic damage aris-
ing from lockdowns or failure of the ‘modern monetary theory’
used to finance COVID-19 responses precipitates civil unrest, loss
of confidence and a flight to gold. Lebanon—already in political
turmoil in 2019—exemplifies COVID-19 tipping a precarious
situation over the edge. During 2020 the lira fell 85% on the dollar,
inflation hit 50% monthly and the government was unable to pay
healthcare providers. Hospitals suffered blackouts. An early ‘total
shutdown’ was followed by an accelerating case tally114,115 and a
further shutdown, though it was hard to see how this could be
financed, or a good outcome achieved, even without the devastat-
ing explosion of 4 August.116 Experience in Libya and Syria shows
that carbapenemase-producing bacteria can proliferate in times
of chaos.117,118 The inability of a bankrupt Argentina to pay for
antibiotics in 2003 was associated, briefly, with reduced use119

though also with worse outcomes for non-infectious conditions,120

and increased mortality in infections.121

Enterobacterales Pseudomonas Acinetobacter

ESBL AmpC KPC OXA-48 MBL Efflux AmpC MBL OXA 

Ceftolozane/tazobactam a b b

Ceftazidime/avibactam c d d 

Meropenem/vaborbactam e 

Imipenem/relebactam f 

Plazomicin (USA)g h 

Eravacycline (USA)i

Cefiderocol j j j j j,k k l 

Key Green, widely active (>90%) Orange, variably active (50%–90%) Red, rarely (<50%) or never active

Figure 4. Activity of recently licensed (USA and EU/UK) agents against problem groups of Gram-negative bacteria. Green, widely active (.90%);
orange, variably active (50%–90%); red, rarely (,50%) or never active. aTrial evidence of efficacy.128 bIn-use evidence of clinical activity against
P. aeruginosa likely, based on phenotypes, to have these mechanisms.129 cTrial evidence of efficacy.130 dIn-use evidence of efficacy and of better
outcomes than colistin combinations.131,132 eTrial evidence of better outcomes than colistin combinations.133 fTrial evidence of activity against imi-
penem-resistant P. aeruginosa, likely to have owed their phenotypes to combination of loss of porin OprD and expression of AmpC.134 gLicensing
application withdrawn in EU. hMany isolates with NDM carbapenemases co-produce ArmA or RmtB 16S rRNA methyltransferases, conferring broad
aminoglycoside resistance including plazomicin.135 iGood in vitro activity against carbapenemase-producing Enterobacterales, but trial failures in
cUTI.136 jTrial evidence of activity.137 kMICs raised for isolates with NDM carbapenemase compared with those for isolates with other carbapene-
mases; the proportion of these that count as resistant will depend on the breakpoints used.138 lIn vitro activity, but excess mortality in CREDIBLE-CR
study compared with colistin combinations, associated with Acinetobacter baumannii, suggesting the need for caution.139
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If future society is to prosper and to be able to afford modern
medicine, it is vital that we avoid such futures, for their human cost
will greatly exceed than any toll arising from the virus itself.
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