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Multimetallic catalysed radical oxidative
C(sp3)–H/C(sp)–H cross-coupling between
unactivated alkanes and terminal alkynes
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Radical involved transformations are now considered as extremely important processes in

modern organic synthetic chemistry. According to the demand by atom-economic and

sustainable chemistry, direct C(sp3)–H functionalization through radical oxidative coupling

represents an appealing strategy for C–C bond formations. However, the selectivity control of

reactive radical intermediates is still a great challenge in these transformations. Here we show

a selective radical oxidative C(sp3)–H/C(sp)–H cross-coupling of unactivated alkanes with

terminal alkynes by using a combined Cu/Ni/Ag catalytic system. It provides a new way to

access substituted alkynes from readily available materials. Preliminary mechanistic studies

suggest that this reaction proceeds through a radical process and the C(sp3)–H bond

cleavage is the rate-limiting step. This study may have significant implications for controlling

selective C–C bond formation of reactive radical intermediates by using multimetallic

catalytic systems.
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S
ubstituted alkynes are fundamental structural motifs in
numerous natural products, bioactive molecules and
functional materials1–3. They also serve as versatile

intermediates in many chemical transformations. Continuous
efforts have been devoted to their synthesis throughout the
history of organic chemistry. During the last decades, the
transition-metal-catalysed Sonogashira coupling has been
proven to be one of the most popular and efficient approach
for the synthesis of substituted alkynes4. While early studies
focused on C(sp2)–C(sp) coupling of terminal alkynes with vinyl/
aryl electrophiles, recent attention has been paid to the
C(sp3)–C(sp) coupling of terminal alkynes with unactivated
alkyl halides. In 2003, Eckhardt and Fu5 pioneered the cross-
coupling of terminal alkynes with unactivated primary bromides
and iodides by using Pd/Cu synergistic catalysis with
N–heterocyclic carbene ligands. Later on, this reaction protocol
was extended to unactivated secondary bromides and iodides by
Altenhoff et al.6. In 2009, Vechorkin et al.7 applied a combined
Ni/Cu catalytic system to achieve the coupling of terminal alkynes
with unactivated primary halides. Similarly, a modified Ni/Cu
co-catalysed system was developed by Yi et al.8 to deal with the
coupling with secondary bromides and iodides. More recently,
Chen et al.9 developed a photo–promoted, transition-metal-free
protocol to couple terminal alkynes with all types of unactivated
alkyl iodides. As an alternative process for achieving the direct
alkynylation of terminal alkynes, our group demonstrated a
Pd-catalysed oxidative cross-coupling between terminal alkynes
and alkylzinc reagents for the synthesis of substituted alkynes.
Echoing the pursuit of atom-economic and sustainable chemistry,
direct utilization of unactivated alkanes to replace unactivated
alkyl halides and alkylzinc reagents in the synthesis of substituted
alkynes has great significance in terms of both concept innovation
and practical application.

Direct C(sp3)–H functionalization is a highly attractive
approach for converting alkanes into functionalized organic
compounds. However, the development of direct and selective
methods for alkane functionalization is still in its infancy due to
the low reactivity of C(sp3)–H bonds10–15. With the rapid
development of C–H functionalization, direct C–H alkynylation
with terminal alkynes has recently emerged as one of the most
attractive approaches to access substituted alkynes16–26. This
transformation has been considered to be challenging because of
the facile homo-coupling and polymerization of terminal alkynes
under oxidative conditions. Methods for the oxidative C(sp3)–H
alkynylation of tertiary amines27–30 or benzylic ethers31,32 have

been developed through normal cross-dehydrogenative
coupling33 pathway (Fig. 1a), but direct oxidative C(sp3)–H
alkynylation of unactivated alkanes with terminal alkynes to form
substituted alkynes is still a great challenge and remains
undeveloped.

Herein, we report a Cu/Ni/Ag co-catalysed oxidative C(sp3)–H
alkynylation of unactivated alkanes with terminal alkynes. This
protocol provides a new approach for the synthesis of substituted
alkynes from readily available materials. Various alkanes and
terminal alkynes are suitable in this transformation, affording the
C(sp3)–C(sp) coupling product in good to high yields.

Results
Designing strategy. Radicals have been widely utilized in a large
range of processes such as organic synthesis, biological processes
and polymerization34–37. Generally, radicals with a single electron
have a strong tendency to form chemical bonds. However,
selective bond formation from radical intermediates was less
developed compared with the ionic intermediates. Recent
achievements showed that radical cross-coupling can provide a
new opportunity for the formation of C–C bonds38–40.
Considering that unactivated alkanes can be converted into
corresponding alkyl radicals in the presence of oxidants, we
envisioned that a radical oxidative cross-coupling pathway might
provide a solution for the C(sp3)–H/C(sp)–H cross-coupling
between unactivated alkanes and terminal alkynes (Fig. 1b).
Nevertheless, the direct coupling of an alkyl radical with terminal
alkynes usually ends up with reductive addition or
difunctionalization to afford internal alkenes41–44. It was
difficult to control the selectivity toward direct alkynylation
rather than simple addition to alkyne. To deal with this
challenging transformation, we wish to report a selective radical
oxidative C(sp3)–H/C(sp)–H cross-coupling of unactivated
alkanes with terminal alkynes by using a multimetallic
catalysis45 system (Fig. 1b).

Optimization of reaction conditions. We started our research by
examining the model reaction between cyclohexane (1a) and
p-tolylacetylene (2a) under various conditions. After considerable
efforts, we found that the combination of Cu(OTf)2, Ni(acac)2

and AgOAc as catalysts, 1,4–bis(diphenylphosphino)butane
(dppb) as ligand, and di-tert-butyl peroxide (DTBP) as oxidant in
chlorobenzene at 130 �C gave the best result (see Supplementary
Tables 1–5 for detailed condition optimization). A 75% GC yield
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Figure 1 | Approaches for C(sp3)–H/C(sp)–H coupling. (a) Alkynylation of activated C(sp3)–H bonds through CDC pathway. (b) Proposed radical

oxidative coupling pathway for C(sp3)–H alkynylation of unactivated alkanes with terminal alkynes.
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could be obtained within 3 h (Table 1, entry 1). The effect of each
reaction parameter was examined and listed in Table 1. Both
copper and nickel catalysts were crucial for this C(sp3)–C(sp)
coupling reaction. Only 6% yield of the desired product was
obtained in the absence of Ni(acac)2 (Table 1, entry 2). No
desired products could be observed in the absence of Cu(OTf)2

(Table 1, entry 3). Instead, direct addition product 4a was
obtained in 13% yield (Fig. 2a). Moreover, CuOTf failed to fur-
nish the coupling product (Table 1, entry 4). Ligand was not
indispensable for this oxidative cross-coupling reaction. A mod-
erate yield could be obtained in the absence of ligand (Table 1,
entry 5). Addition of bipyridine did not improve the reaction
yield (Table 1, entry 6). PPh3 was less effective than dppb in this
transformation (Table 1, entry 7). Control experiments regarding
the role of silver were also performed (Table 1, entries 8–9). In the
absence of AgOAc, a good but slightly decreased yield could still
be obtained (Table 1, entry 8). When CsOAc was used instead of
AgOAc, the reaction resulted in a poor yield (Table 1, entry 9).
Silver likely plays a role in the C(sp)–H activation step since it

could coordinate with the alkynyl group46–48. Solvent effects were
also investigated in this transformation. Without additional
solvent, the reaction yield decreased significantly (Table 1, entry
10). Benzene gave a similar result with chlorobenzene (Table 1,
entry 11). Different oxidants were also applied in this
transformation. Dicumyl peroxide could furnish the desired
product in a lower yield (Table 1, entry 12). Benzoyl peroxide was
not suitable in this transformation (Table 1, entry 13). In
addition, the influence of temperature was also explored. Both
decreased and increased temperatures gave decreased yields
(Table 1, entries 14–15). It is worthy of note that oligomerization
of 2a was the major side reaction pathway in all the above
conditions.

Scope of unactivated alkanes. To further demonstrate the
applicability of this transformation, the reaction system was
applied to other unactivated alkanes for the synthesis of
substituted alkynes (Fig. 3). Both cyclohexane and
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Figure 2 | Control experiments. (a) Addition to terminal alkyne in the absence of copper catalyst. (b) Direct methylation of terminal alkyne in the absence

of alkane substrates.

Table 1 | Effects of reaction parameters.*

H H

2a 3aa1a

Cu(OTf)2, Ni(acac)2
AgOAc

dppb, DTBP
PhCI, 130 °C, 3 h

+

Entry Variation from the standard conditions Yieldw

1 None 75
2 Without Ni(acac)2 6
3 Without Cu(OTf)2 ND
4 CuOTf instead of Cu(OTf)2 ND
5 Without dppb 54
6 bipy instead of dppb 51
7z PPh3 instead of dppb 64
8 Without AgOAc 63
9 CsOAc instead of AgOAc 4
10 Without PhCl 34
11 PhH instead of PhCl 74
12 DCP instead of DTBP 52
13 BPO intead of DTBP Trace
14 120 �C instead of 130 �C 72
15 140 �C instead of 130 �C 66

BPO, benzoyl peroxide; DCP, dicumyl peroxide; dppb, 1,4–bis(diphenylphosphino)butane; DTBP, di-tert-butyl peroxide; ND, not detected.
*Standard conditions: 1a (4.0 ml), 2a (0.50 mmol), Cu(OTf)2 (7.5 mol%), Ni(acac)2 (7.5 mol%), dppb (7.5 mol%), AgOAc (10 mol%) and DTBP (1.5 mmol), PhCl (3.0 ml), 130 �C, 3 h.
wYields were determined by GC analysis with biphenyl as the internal standard.
z15 mol% PPh3 was added.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11676 ARTICLE

NATURE COMMUNICATIONS | 7:11676 | DOI: 10.1038/ncomms11676 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


methylcyclohexane showed a good reaction efficiency toward
alkynylation (3aa and 3ba). Other cycloalkanes were applied as
substrates in this transformation. The ring size had evident effect
on the yield of the corresponding alkynylation products. For
example, cyclopentane and cycloheptane did furnish the desired
products but with decreased reaction efficiency (3ca and 3da).
Unactivated acyclic alkanes including linear alkanes and bran-
ched alkanes were tested in this oxidative C(sp3)–H alkynylation
reaction. The reaction of 2a with linear alkanes including
n-pentane, n-hexane and n-heptane proceeded smoothly but
afforded a mixture of regioisomers (3ea–3ga). The reaction result
of a branched alkane was also presented. Neohexane was also able
to couple with 2a and afforded the desired product as two
regioisomers (3ha). Oxidative C(sp3)–H alkynylation of norbor-
nane proceeded with single-site selectivity and gave 3ia in 49%
yield. Despite simple alkanes, toluene derivatives were also
suitable in this transformation. Direct oxidative benzylic
C(sp3)–H alkynylation of toluene derivatives could be obtained in
good yields under similar conditions (3ja–3la). Since tert-butoxyl
radical can undergo b–Me scission to generate a methyl
radical49–52, direct methylation of terminal alkyne was observed
as a competing side reaction in the above cases. Importantly,
efficient methylation of terminal alkyne could be achieved in the
absence of alkane substrates (Fig. 2b).

Scope of terminal alkynes. Different terminal alkynes were
applied as substrates to react with cyclohexane (Fig. 4). The
reactions of simple phenylacetylene, meta- and ortho-methyl
substituted phenylacetylene all proceeded well and afforded the
corresponding aliphatic internal alkynes in good yields

(3ab and 3ad). 4–Ethynyl–1,10–biphenyl also gave the desired
products in good yields (3ae). To our delight, electron-rich
phenylacetylenes were more reactive, furnishing the desired
products in higher yields (3af and 3ag). At the same time,
strongly electron-deficient phenylacetylenes were also suitable but
with slightly decreased efficiency in this reaction system
(3ah and 3ai). It is noteworthy that silver had evident effect on
the reaction yield of electron-deficient phenylacetylenes. For
example, the yield of 3ah decreased markedly (14%) in the
absence of AgOAc. Notably, halide substituents such as F, Cl and
Br were all tolerated in this transformation, which provides the
possibility for further functionalization (3aj–3am). Other
aromatic alkynes were also applied in this transformation.
2-ethynylnaphthalene and 2-ethynylthiophene both furnished the
desired products in good yields (3an and 3ao). Delightfully,
aliphatic alkyne such as 1-heptyne and cyclohexylacetylene were
also suitable in the oxidative C(sp3)–H/C(sp) cross-coupling and
afforded the desired product in good to excellent yields
(3ap and 3aq). Late-stage modification of a bioactive molecule is
highly important for medical chemistry studies. Delightfully,
3-ethynylestrone containing carbonyl group and four continuous
chiral centres furnished the desired coupling product in 70% yield
under the standard conditions (3ar).

Discussion
Since the method had been established, we then tried to gain
some insights into the catalytic pathway. To confirm the existence
of radical intermediates, a radical trapping experiment was
carried out by using 1 equiv of (2, 2, 6, 6–tetramethylpiperidin–1–
yl)oxy (TEMPO). No cross-coupling product 3aa was obtained in
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Figure 3 | Scope of alkanes substrates. Reaction conditions A: 1 (4.0 ml), 2a (0.50 mmol), Cu(OTf)2 (7.5 mol%), Ni(acac)2 (7.5 mol%), AgOAc

(10 mol%), dppb (7.5 mol%) and DTBP (2.0 mmol), PhCl (3.0 ml), 130 �C, 3 h. The ratio of regioisomers shown in parentheses was determined by GC–MS.

Reaction conditions B: 1 (7.0 ml), 2a (0.50 mmol), Cu(OTf)2 (10 mol%), Ni(acac)2 (10 mol%), AgOAc (5 mol%), dppb (10 mol%) and DTBP (0.75 mmol),

130 �C, 3 h. wDTBP (1.5 mmol) was used. zYields of all regioisomers.
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this reaction (Fig. 5). Instead, the GC–MS and 1H NMR analysis
of the reaction mixture showed the existence of cyclohexyl radical
trapped by TEMPO (Supplementary Figs 66,67).

Next, kinetic isotopic effect studies with separate kinetic
experiments were performed to gain insights into the rate-
determining step for this C–H/C–H cross-coupling reaction. Both
the C(sp3)–H bond cleavage of 1a and the C(sp)–H bond cleavage
of 2a were studied. A primary kinetic isotopic effect was observed
for C(sp3)–H bond cleavage (Fig. 6a, kH/kD¼ 2.2) while no
obvious kinetic isotopic effect was observed for the C(sp)–H
cleavage (Fig. 6b, kH/kD¼ 0.9), suggesting that C(sp3)–H bond
cleavage was probably the rate-determining step in this
transformation (for details, see Supplementary Fig. 68)53.

In the next step, the reactions with alkynyl metal species were
performed to get some insights into the radical cross-coupling
step. (Phenylethynyl)copper (2d–[Cu]) and (phenylethynyl)silver
(2d–[Ag]) were prepared and used as substrates to react with 1a
under the standard conditions (Fig. 7). However, neither of them
could furnish the cross-coupling product. Thus, both alkynyl
Cu(I) complex and alkynyl Ag(I) complex are not likely to be
involved in the C(sp3)–C(sp) cross-coupling process. An alkynyl
Cu(II) complex is more possibly to be generated in this
transformation.

On the basis of the experimental results and previous
reports50,51, a plausible reaction mechanism is presented in
Fig. 8. Copper and silver work synergistically in the C(sp)–H
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Figure 4 | Scope of terminal alkynes. Reaction conditions: 1a (4.0 ml), 2 (0.50 mmol), Cu(OTf)2 (7.5 mol%), Ni(acac)2 (7.5 mol%), dppb (7.5 mol%),

AgOAc (10 mol%) and DTBP (1.5 mmol), PhCl (3.0 ml), 130 �C, 3 h. Isolated yields are shown. wIn the absence of AgOAc.
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Figure 5 | Radical trapping experiment. Observation of trapped cyclohexyl radical.
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activation of terminal alkyne, which leads to the formation of an
alkynyl Cu(II) complex. The alkynyl copper complex is then
transmetaled with Ni(II) species to generate an alkynyl Ni(II)
complex. At the same time, an alkyl radical can be generated
through hydrogen abstraction by in situ generated tert-butoxyl
radical. This radical then reacts with the Ni(II) alkynyl
complex54–59. The C(sp3)–C(sp) bond can be formed either
through radical homolytic substitution or reductive elimination
(see Supplementary Fig. 69 for details). Finally, the released Ni(I)
species can be oxidized to Ni(II) species by DTBP to complete the
nickel catalytic cycle.

In conclusion, we have developed a combined Cu/Ni/Ag
catalytic system to achieve the challenging oxidative C(sp3)–H/
C(sp)–H cross-coupling of unactivated alkanes with terminal
alkynes. The utilization of multimetallic catalysis was the key for
controlling the reaction selectivity toward C(sp3)–C(sp) bond
formation. Various substituted alkynes were synthesized in good
to high yields with a good functional group tolerance. Preliminary
mechanistic studies suggest that the reaction proceeds through a
transition-metal-catalysed radical reaction pathway and that the
C(sp3)–H bond cleavage of unactivated alkanes is the rate-
limiting step. This work not only provides an environmentally
friendly approach to access alkyne compounds, but also
contributes new knowledge to radical cross-coupling chemistry.
The application of the radical alkynylation strategy in the
synthesis of other substituted alkynes is underway in our
laboratory.

Methods
General procedure (3aa). In an oven-dried Teflon septum screw-capped tube
equipped with a stir bar, Cu(OTf)2 (13.6 mg, 0.038 mmol), Ni(acac)2 (9.6 mg,
0.038 mmol), dppb (16.0 mg, 0.038 mmol) and AgOAc (8.3 mg, 0.050 mmol) were
combined and sealed. The tube was then charged with nitrogen. Then cyclohexane
(4.0 ml) and PhCl (3.0 ml) were injected into the tube by syringe. After stirring for
5 min, DTBP (135 mg, 1.5 mmol) and p-tolylacetylene (58.0 mg, 0.50 mmol) were
subsequently injected into the reaction tube. The reaction was then heated to 130 �C.
After stirring for 3 h, the reaction was cooled down to room temperature and
quenched with saturated Na2S2O3 solution. After extraction with ethyl acetate
(3� 10 ml), the organic layers were combined and dried over anhydrous Na2SO4, the
pure product was obtained by flash column chromatography on silica gel (petro-
leum:ethyl ether¼ 10:1). Colourless oil was obtained in 73% isolated yield. 1H NMR
(400 MHz, CDCl3) d 7.28 (d, J¼ 8.1 Hz, 2H), 7.06 (d, J¼ 7.9 Hz, 2H), 2.56 (tt, J¼ 9.0,
3.6 Hz, 1H), 2.31 (s, 3H), 1.92–1.82 (m, 2H), 1.80–1.69 (m, 2H), 1.59–1.46 (m, 3H),
1.40–1.28 (m, 3H). 13C NMR (101 MHz, CDCl3) d 137.26, 131.38, 128.84, 120.99,
93.58, 80.47, 32.75, 29.65, 25.92, 24.90, 21.34. For 1H NMR, 13C NMR, 19F NMR and
GC–MS (if applicable) spectra of compounds 3aa-3la, 3ab–3ar, 6 see Supplementary
Figs 1–66. For the general information of the analytical methods and the mechanistic
studies, please see Supplementary Methods.
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Figure 7 | Reactions of cyclohexane with alkynyl metal species.

(a) Reaction between 1a and 2d–[Cu] under standard conditions.

(b) Reaction between 1a and 2d–[Ag] under standard conditions.
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Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information files.
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