

OPEN ACCESS

Citation: Shieh G (2022) Assessing individual equivalence in parallel group and crossover designs: Exact test and sample size procedures. PLoS ONE 17(5): e0269128. [https://doi.org/](https://doi.org/10.1371/journal.pone.0269128) [10.1371/journal.pone.0269128](https://doi.org/10.1371/journal.pone.0269128)

Editor: Paul Aurelian Gagniuc, University Politehnica of Bucharest, ROMANIA

Received: November 19, 2021

Accepted: May 15, 2022

Published: May 27, 2022

Copyright: © 2022 Gwowen Shieh. This is an open access article distributed under the terms of the Creative Commons [Attribution](http://creativecommons.org/licenses/by/4.0/) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the paper and its Supporting [Information](#page-12-0) files.

Funding: This work was supported by a grant from the Ministry of Science and Technology (MOST 109-2410-H-009-021-MY2). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

RESEARCH ARTICLE

Assessing individual equivalence in parallel group and crossover designs: Exact test and sample size procedures

Gwowen Shieh^{*}

Department of Management Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

* gwshieh@nycu.edu.tw

Abstract

The consideration of individual equivalence provides an essential alternative to average equivalence in two-group comparative studies. A common procedure for declaring individual equivalence adopts the tolerance intervals of the designated proportions of measurement differences. This statistical practice is a direct generalization of the widely used two onesided tests (TOST) for average equivalence. Such TOST extensions often do not have adequate control of Type I error and result in excessively conservative tests. To signify and resolve the underlying issues of existing methods, this paper presents exact tests for assessing individual equivalence between two treatments under parallel group and crossover designs. Rigorous evaluations are conducted to clarify the discrepancy of critical values and Type I error probabilities between the equivalence procedures. The findings elucidate the shortcoming of the TOST technique and the advantage of the proposed approach. The associated power and sample size calculations are also justified through simulation studies.

Introduction

The two one-sided tests (TOST) procedure of mean equivalence, first described by Schuirmann $[1]$ and Westlake $[2]$ $[2]$, is the most common method in equivalence methodology. The conceptual simplicity and technical feasibility of TOST provide an important reform to apply appropriate statistical tools for equivalence, rather than relying on failure to reject the conventional hypothesis of no difference between treatment effects. Meyners [\[3](#page-12-0)] presented a comprehensive review of different types of equivalence tests. Moreover, Hauschke, Steinijans, and Pigeot [[4\]](#page-12-0), Chow and Liu [[5](#page-12-0)], Wellek [[6\]](#page-12-0), and Choudhary and Nagaraja [[7\]](#page-12-0) discussed the concepts and techniques for the design and analysis of equivalence studies. The TOST for mean equivalence focuses on the mean parameters of the target populations and represents a vital method within the general scope of average equivalence. It is important to note that mean equivalence testing specifies only the population mean difference and does not concern the other characteristics associated with the underlying distribution of measurement differences. Accordingly, the principle of average equivalence only demands similar average bioavailability and does not guarantee equivalence in intra-subject variability and closeness of the response distribution between the test and reference formulations.

In view of the practical issue and important problem about the interchangeability of bioequivalence drug products, the notion of individual equivalence has been proposed to ensure switchability when a large proportion of individuals need to be sufficiently similar on the two drug formulations. The basic concept and rationale of individual equivalence are described in Anderson and Hauck [\[8](#page-12-0)], Hauck and Anderson [\[9\]](#page-13-0), Sheiner [[10](#page-13-0)], Schall and Luus [\[11\]](#page-13-0), and Anderson [\[12\]](#page-13-0). Various individual equivalence principles and techniques have been proposed to evaluate exchangeability or switchability in terms of the desired proportion of the subjectlevel differences between two formulations. In particular, the commonly used reference limits of 95% proportion encompass the 2.5th percentile and 97.5th percentile for the distribution of measurement differences. Accordingly, the normal percentile is a linear function of the mean and standard deviation of the designated population. Statistical procedures and theoretical investigations of normal percentiles are essential for assessing individual equivalence.

For the mean equivalence appraisals considered in the TOST, the duality between decision rules and confidence intervals is well documented. Specifically, the null hypothesis of no mean equivalence is rejected if and only if the confidence limits of the corresponding equal-tail twosided $100(1-2\alpha)$ % confidence interval of mean difference are contained in the designated equivalence bounds. Within the context of individual equivalence, the target parameters are the lower and upper percentiles for describing the desired population proportion. It is appealing to apply the confidence interval procedure to the normal percentiles of the distribution of subject-level differences. The one-sided confidence intervals of normal percentiles have a close link to the one-sided tolerance bounds of a normal distribution. This technical correspondence reveals that tolerance interval estimation has an extended utility in assessing individual bioequivalence. The notion of confidence intervals for mean equivalence or average equivalence has been extended to the appraisals of individual equivalence, such as the TOST methods presented in Esinhart and Chinchilli [\[13\]](#page-13-0), Liu and Chow [[14](#page-13-0)], and Tsong and Shen [\[15\]](#page-13-0), among others. Accordingly, tolerance intervals are constructed for the desired proportions of measurement differences and individual equivalence is claimed if the resulting interval limits are within the selected equivalence range. General discussions of tolerance interval estimation are available in Krishnamoorthy and Mathew [\[16\]](#page-13-0) and Meeker, Hahn, and Escobar [\[17\]](#page-13-0).

Due to the close resemblance between tolerance intervals and confidence intervals, the TOST method for assessing individual equivalence is presumed to share the same desirable properties of the counterpart TOST for establishing mean equivalence. However, Berger and Hsu [\[18\]](#page-13-0) showed that size- α bioequivalence tests do not generally correspond to 100(1–2 α)% confidence sets. It is strongly advocated in Berger and Hsu [[18](#page-13-0)] that statistically sound techniques should be employed to derive a test with the specified Type I error rate. Notably, the prescribed TOST methods for individual equivalence were conducted with respect to tolerance interval estimation. The corresponding numerical results did not directly evaluate their Type I error control in hypothesis testing. Although the assessment of individual equivalence mainly focuses on biopharmaceutical applications, the concept and analysis are pertinent to comparative studies across virtually all scientific disciplines. It is of great interest to clarify the potential deficiency and implications of current methods in equivalence testing.

Following the two-sided sampling plan in Owen [\[19\]](#page-13-0), this article presents a unified approach for evaluating individual equivalence between two treatment formulations. Exact test procedures are described for the parallel group and crossover designs. Extensive numerical investigations are conducted to demonstrate the underlying features the suggested and TOST procedures. The comparisons and findings reveal their essential discrepancy on critical values and Type I error rates that have not been addressed in the literature. The results update the

less-recognized problems of the current TOST methods for examining individual equivalence in Liu and Chow $[14]$ $[14]$ $[14]$, and Tsong and Shen $[15]$. To enhance the usefulness of the proposed approach, the associated power and sample size calculations are also demonstrated for planning individual equivalence studies. Computer algorithms for computing the critical value, statistical power, and sample size of the suggested test procedures are available as supplemental material. It should be noted that Owen [\[19\]](#page-13-0) did not address hypothesis testing, power analysis and sample size determination for appraising individual equivalence. Moreover, the technical arguments presented here are more analytically transparent than the formulation based on the bivariate noncentral *t* distribution in Owen [\[19\]](#page-13-0).

Methods

Parallel group design

Consider independent random samples from two normal populations with the following formulations:

$$
X_{ij} \sim N(\mu_i, \sigma^2),\tag{1}
$$

where μ_i , σ^2 are unknown parameters, $j = 1, \ldots, N_i$, and $i = 1$ and 2. To establish individual equivalence between two treatments, the central portion of the difference between the individual measurements of two treatments $X_{1j}-X_{2j}$ needs to lie within a reasonable range around zero. The 100 p th percentile of the distribution $N(\mu_D, \sigma_D^2)$ of $X_{1j}-X_{2j'}$ is denoted by

$$
\theta_p = \mu_D + z_p \sigma_D,\tag{2}
$$

where $\mu_D = \mu_1 - \mu_2$, $\sigma_D^2 = 2\sigma^2$, z_p is the 100 *p*th percentile of the standard normal distribution *N* $(0, 1)$, and $0 < p < 1$. The null and alternative hypotheses of the individual equivalence test are expressed as

$$
\mathcal{H}_{0} : \theta_{1-p} \leq \Delta_{L} \text{or} \ \Delta_{U} \leq \theta_{p} \ \text{versus} \ \mathcal{H}_{1} : \ \Delta_{L} < \ \theta_{1-p} \ \text{and} \ \theta_{p} < \ \Delta_{U}, \tag{3}
$$

where $p > 0.5$ and the two designated constants Δ_L and Δ_U represent the lower and upper thresholds of the percentile range for declaring individual equivalence between two treatments. The alternative hypothesis indicates that there is at least $p^* = 2p - 1$ central proportion of the distribution $N(\mu_D, \sigma_D^2)$ in the range (Δ_L, Δ_U) .

Unlike the individual equivalence problem concerns the central proportion of a target distribution in terms of the pair of percentiles (θ_{1-p}, θ_p) , a comparison of alternative approaches for difference, noninferiority, and equivalence testing of a single normal percentile was presented in Shieh [\[20\]](#page-13-0). Similar to the widely used TOST for mean equivalence, Shieh [\[20\]](#page-13-0) showed that the TOST procedure for the comparability of a designated percentile also maintains good control the Type I error rate at the specified value. These promising results suggest that TOST principle can be useful for similar problems in more advanced designs and complex scenarios. However, a critical exposition of the TOST extensions for individual equivalence is presented to demonstrate that such generalizations do not have adequate control of Type I error and result in overly conservative tests.

The TOST procedure for parallel group design. To demonstrate average equivalence between two treatment means, the TOST procedure rejects the null hypothesis of incomparability if the ordinary $100(1-2\alpha)$ % equal-tailed confidence interval of mean difference is entirely included in the equivalence range. The same principle was extended to individual equivalence assessment for exchangeability between the test and standard treatments in Tsong and Shen

[\[15\]](#page-13-0). A concise illustration is presented to simplify the complicated results in Tsong and Shen [\[15\]](#page-13-0).

The usual two-sample *t* statistic has the form

$$
T=\frac{\bar{X}_1-\bar{X}_2}{\left(S^2/M\right)^{1/2}},
$$

where $\bar{X}_1 = \sum_{j=1}^{N_1} X_{1j}/N_1$, $\bar{X}_2 = \sum_{j=1}^{N_2} X_{2j}/N_2$, $M = 1/(1/N_1 + 1/N_2)$, $S^2 = \{(N_1 - 1) S_1^2 + (N_2 - 1) S_2^2 + (N_3 - 1) S_1^2 + (N_2 - 1) S_2^2 + (N_3 - 1) S_2^2 + (N_2 - 1) S_1^2 + (N_3 - 1) S_2^2 + (N_3 - 1) S_2^2 + (N_3 - 1) S_2^2 + ($ S_2^2 }/ ν , $S_1^2 = \sum_{j=1}^{N_1} (X_{1j} - \bar{X}_1)$ $\begin{array}{cc} 1 & \cdot & 2 \\ \end{array}$ $/(N_1-1), S_2^2 = \sum\nolimits_{j=1}^{N_2}\Big(X_{2j}-\bar{X}_2\Big)$ $\sqrt{2}$ $/(N_2 - 1)$, and $\nu = N_1 +$ *N*₂−2. The ordinary interval limits ($\hat{\mu}_{DL}$, $\hat{\mu}_{DL}$) of a 100(1–2α)% equal-tailed confidence interval of μ*^D* are

$$
\widehat{\mu}_{DL} = (\bar{X}_1 - \bar{X}_2) - t_{v,1-x} (S/M^{1/2}) \text{ and } \widehat{\mu}_{DU} = (\bar{X}_1 - \bar{X}_2) + t_{v,1-x} (S/M^{1/2}), \tag{4}
$$

respectively, where $t_{v,1-\alpha}$ is the 100(1 – α)th percentile of the *t* distribution with degrees of freedom *v*. In addition to the practical usefulness for interval estimation, the range $\{\hat{\mu}_{DL}, \hat{\mu}_{DU}\}$ has an interesting connection to equivalence assessment. A well-known simple approach to conduct the TOST for mean equivalence is by examining whether the $100(1-2\alpha)$ % confidence interval ($\hat{\mu}_{DL}$, $\hat{\mu}_{DU}$) of μ_D falls within the designated range (δ_L , δ_U) where δ_L and δ_U are a priori constant and represent the sensible bounds for declaring mean equivalence.

It is straightforward to show that the pivotal quantity for θ_{1-p} has a noncentral *t* distribution

$$
\frac{\bar{X}_1 - \bar{X}_2 - \theta_{1-p}}{(S^2/M)^{1/2}} \sim t\left(v, z_p(2M)^{1/2}\right),\tag{5}
$$

where $t(v, z_p(2M)^{1/2})$ is a noncentral *t* distribution with degrees of freedom v and noncentrality $z_p(2M)^{1/2}$. The exact lower confidence limit of an upper 100(1 – α)% one-sided confidence interval $\{\widehat{\theta}_{TL}, \infty\}$ of θ_{1-p} can be obtained as

$$
\widehat{\theta}_{TL} = \bar{X}_1 - \bar{X}_2 - \tau_T (S/M^{1/2}),
$$
\n(6)

where τ*^T* = *t*1−*α*(*v*, *zp*(2*M*) 1/2) is the 100(1 – α)th percentile of a noncentral *t* distribution *t*(*v*, z_p (2*M*)^{1/2}). Similarly, the pivotal quantity for θ_p is distributed as

$$
\frac{\bar{X}_1 - \bar{X}_2 - \theta_p}{\left(S^2 / M\right)^{1/2}} \sim t\left(v, -z_p (2M)^{1/2}\right).
$$
\n(7)

Using the important property of a noncentral distribution as in Johnson, Kotz, and Balakrishnan [\[21,](#page-13-0) Chapter 31] that *t*1−*α*(*v*, *zp*(2*M*) 1/2) = −*tα*(*v*, −*zp*(2*M*) 1/2) for 0 *<* α *<* 1, the exact upper confidence limit of a lower 100(1 – α)% two-sided confidence interval { $-\infty$, $\hat{\theta}_{TU}$ } of θ_p can be expressed as

$$
\widehat{\Theta}_{TU} = \bar{X}_1 - \bar{X}_2 + \tau_T \big(S / M^{1/2} \big). \tag{8}
$$

Note that the one-sided confidence intervals of normal percentiles are technically identical to the one-sided tolerance bounds of a normal distribution as noted in Hahn [\[22,](#page-13-0) [23\]](#page-13-0). The derived confidence limits $\widehat{\theta}_{TL}$ and $\widehat{\theta}_{TU}$ assure that $P\{\widehat{\theta}_{TL}<\theta_{1-p}<\infty\}=P\{P[\widehat{\theta}_{TL}<(X_{1j}-X_{2j})\mid \widehat{\theta}_{TL}>\theta_{1-p}<\infty\}$ $(\bar{X}_1 - \bar{X}_2, S^2) > p$ } = 1 – α and $P\{-\infty < \theta_p < \widehat{\theta}_{TU}\} = P\{P[(X_{1j} - X_{2j'}) < \widehat{\theta}_{TU} | (\bar{X}_1 - \bar{X}_2, S^2)] > p\}$ = 1 – α, respectively. Accordingly, for $p > 0.5$, a lower 100(1 – α)% confidence limit for the 100(1–*p*)-th percentile θ1−*^p* is equivalent to a lower tolerance limit to be exceeded by at least a

proportion *p* of the population with probability $1 - \alpha$. Likewise, an upper $100(1 - \alpha)$ % confidence limit for the 100 *p*-th percentile θ_p for $p > 0.5$ is equivalent to an upper tolerance limit to exceed at least a proportion p of the population with probability $1 - \alpha$.

As an extension to the use of tolerance intervals for the assessment of individual bioequiva-lence, Tsong and Shen [[15](#page-13-0)] suggested that the null hypothesis $H_0: \theta_{1-p} \leq \Delta_L$ or $\Delta_U \leq \theta_p$ is rejected if

$$
\Delta_L < \widehat{\theta}_{TL} \text{ and } \widehat{\theta}_{TU} < \Delta_U,\tag{9}
$$

or

$$
T_{L} = \frac{\bar{X}_{1} - \bar{X}_{2} - \Delta_{L}}{(S^{2}/M)^{1/2}} > \tau_{T} \text{ and } T_{U} = \frac{\bar{X}_{1} - \bar{X}_{2} - \Delta_{U}}{(S^{2}/M)^{1/2}} < -\tau_{T}.
$$
 (10)

The strong resemblance between $(\hat{\mu}_{DL}, \hat{\mu}_{DL})$ and $\{\hat{\theta}_{TL}, \hat{\theta}_{TL}\}$ in formulation and testing suggests that the rejection region $\{\widehat{\theta}_{\tau_l}, \widehat{\theta}_{\tau_l}\}$ for individual equivalence may possess similar statistical properties with the confidence interval ($\hat{\mu}_{DL}$, $\hat{\mu}_{DU}$) for mean equivalence. Specifically, the TOST of mean equivalence based on $(\hat{\mu}_{DL}, \hat{\mu}_{DU})$ adequately controls the Type I error rate at the specified value. However, Berger and Hsu $[18]$ exemplified that an equivalence procedure in terms of a 100(1–2α)% confidence interval can lead to a liberal or conservative test. The Type I error rate associated with the TOST of individual equivalence is evaluated by $\alpha_{TOST} = P{\tau_T}$ *T_L* and $T_U < -\tau_T$ when the boundary values $(\theta_{1-p}, \theta_p) = (\Delta_L, \Delta_U)$. It follows from $\Delta_L = \theta_{1-p} =$ $μ_D$ −*z_p*σ_{*D*} and $Δ_U = θ_p = μ_D + z_p σ_D$ that $T_L ~lt; t(v, z_p(2M)^{1/2})$ and $T_U = T_L - 2z_p σ_D/(S^2/M)^{1/2}$. Thus, the Type I error rate is rewritten as $\alpha_{TOST} = P{\tau_T < T_L}$ and $T_U < -\tau_T$ } = $P{\tau_T < T_L < T_T}$ $2z_p \sigma_D/(S^2/M)^{1/2}$ – τ_{*T*}} $\leq P\{\tau_T < T_L\}$ = α. Note that the size of the TOST is the supremum *Sup* $H_0^{\text{sup}} P\Big\{\Delta_L \leq \widehat{\theta}_{TL} \text{ and } \widehat{\theta}_{TU} \leq \Delta_U\Big\}$ n o = α which is attained as σ_D^2 or σ^2 goes to zero. However, the Type I error rate of the TOST procedure is generally less than the nominal level. The succeeding empirical investigations reveal that the discrepancy is of considerable concern. An

improved procedure is proposed next to facilitate research practice in assessing individual equivalence.

The proposed procedure for parallel group design. By extending the two-sided sampling plan in Owen [[19](#page-13-0)], the suggested exact rejection region for declaring individual equivalence is of the form

$$
\Delta_L < \widehat{\theta}_{EL} \text{ and } \widehat{\theta}_{EU} < \Delta_U \tag{11}
$$

 $\hat{\Theta}_{EL} = \bar{X}_1 - \bar{X}_2 + \tau_E(S/M^{1/2}), \widehat{\Theta}_{EU} = \bar{X}_1 - \bar{X}_2 + \tau_E(S/M^{1/2}),$ and the quantity τ_E is selected so that the Type I error rate *Sup* $H^{\,}_{0}$ $P\left\{\Delta_{L}\le\widehat{\theta}_{\text{\tiny{EL}}} \text{\ and\ } \widehat{\theta}_{\text{\tiny{EU}}}\le\Delta_{U}\right\}$ n order and the contract of th $= \alpha$. Note that the supremum *Sup* $H^{\,}_{0}$ $P\left\{\Delta_{L}\le\widehat{\theta}_{\text{\tiny{EL}}} \text{\ and\ } \widehat{\theta}_{\text{\tiny{EU}}}\le\Delta_{U}\right\}$ n o is attained when the two percentiles coincide the boundary values $(\theta_{1-p}, \theta_p) = (\Delta_L, \Delta_U)$ or alternatively, $\mu_D = (\Delta_U + \Delta_L)/2$ and $\sigma_D^2 = (\Delta_U - \Delta_L)^2/(4z_p^2)$. Accordingly, the designated critical value τ_E is obtained by

$$
P(\theta_{1-p} \le \widehat{\theta}_{EL} \text{ and } \widehat{\theta}_{EU} \le \theta_p) = \alpha. \tag{12}
$$

It follows from the normal assumption defined in <u>[Eq](#page-2-0) 1</u> that $Z=(\bar{X}_1-\bar{X}_2-\mu_D)/(\sigma^2/M)^{1/2}\sim$ *N*(0, 1) and $K = vS^2/\sigma^2 \sim \chi^2(v)$ where $\chi^2(v)$ is a chi-square distribution with degrees of freedom *v*. Also, *Z* and *K* are independent. Then, the probability evaluation in [Eq](#page-4-0) 12 can be expressed as

$$
P(-G \le Z \le G) = \alpha,\tag{13}
$$

where $G = z_p (2M)^{1/2} - \tau_E (K/v)^{1/2}$. It is computationally transparent to adopt the formulation

$$
E_K[2\Phi(G_0) - 1] = \alpha,\tag{14}
$$

where $G_0 = G$ if $K < k_0$ and $G_0 = 0$ if $K \ge k_0$ with $k_0 = (2\nu M z_p^2)/\tau_E^2$, Φ is the cumulative density function of the standard normal distribution, and the expectation $E_K[\cdot]$ is taken with respect to the distribution of *K*. A special-purpose computer program is required to calculate the critical value τ_E for the chosen model settings. Consequently, the null hypothesis is rejected if

$$
T_L > \tau_E \text{ and } T_U < -\tau_E. \tag{15}
$$

Note that the critical values τ_E of the suggested approach and τ_T of the TOST procedure generally differ. For example, when $(N_1, N_2) = (20, 20)$, $\alpha = 0.05$, $p^* = 0.80$, the critical values are τ_E = 6.4527 and τ_T = 7.9987 for the suggested and TOST procedures, respectively. According to the rejection rules in Eqs [10](#page-4-0) and 15, the TOST is less likely to reject the null hypothesis than the exact procedure because of $\tau_T > \tau_E$. Therefore, the two critical regions $(\hat{\theta}_{EL}, \hat{\theta}_{EU})$ and $(\hat{\theta}_{\tau I}, \hat{\theta}_{\tau U})$ do not necessarily lead to the same conclusion.

On the other hand, with the definitions of the two random variables *Z* and *K*, it can be shown that the corresponding power function is

$$
\Psi_{E} = P(G_{L} < Z < G_{U}),\tag{16}
$$

where $G_L = (\Delta_L - \mu_D) / (\sigma^2 / M)^{1/2} + \tau_E (K/v)^{1/2}$ and $G_U = (\Delta_U - \mu_D) / (\sigma^2 / M)^{1/2} - \tau_E (K/v)^{1/2}$. Note that the power calculation is meaningful only when $G_L < G_U$ or $K < k_1$ where $k_1 =$ $\{vM(\Delta_U - \Delta_L)^2\}/(4\sigma^2 \tau_E^2)$. A transparent and convenient expression of the power function is

$$
\Psi_E = E_K[\Phi(G_{U1}) - \Phi(G_{L1})],\tag{17}
$$

where $G_{L1} = G_L$ and $G_{U1} = G_U$ if $K < k_1$, and $G_{L1} = 0$ and $G_{U1} = 0$ if $K \geq k_1$. The power formula Ψ_E is useful for computing the achieved power with the given sample sizes, and for determining the required sample sizes to attain the nominal power under the selected configurations $(\Delta_L, \Delta_U, p^*, \alpha, \mu_1, \mu_2, \sigma^2)$.

Crossover design

In bioequivalence studies, a common scenario for comparing treatments is the two-period crossover design. Consider the standard two-sequence and two-period crossover design in terms of the model

$$
Y_{ijk} = \mu + F_{ij} + P_j + S_{ik} + \varepsilon_{ijk} \tag{18}
$$

where *Yijk* is the outcome for the *k*th subject in the *i*th sequence and *j*th period, μ is the grand mean, *Fij* is the formulation effect, *Pj* is the fixed period effect, *Sik* is the random subject effect, and ε_{ijk} is the random error for $i = 1$ and 2, $j = 1$ and 2, and $k = 1, \ldots, N_i$. The formulation effects are expressed as $F_{11} = F_{22} = \mu_R$ and $F_{12} = F_{21} = \mu_T$ for the reference product and test product, respectively, $\{S_{ik}\}$ are independent $N(0, \sigma_S^2)$ variables, and $\{\epsilon_{ijk}\}$ are independent *N*(0, σ_{ij}^2) variables with $\sigma_{11}^2 = \sigma_{22}^2 = \sigma_R^2$ and $\sigma_{12}^2 = \sigma_{21}^2 = \sigma_T^2$. Moreover, it is assumed that $P_1 + P_2 =$ $\mu R + \mu_T = 0.$

To establish individual equivalence between two treatments in the crossover design, the central portion of the contrast for the individual measurements of two treatments $(C_{1k}-C_{2k})/2$ needs to be within a reasonable range around zero where $C_{ik} = (Y_{i2k} - Y_{i1k})/2$ for $i = 1$ and 2. Accordingly, $(C_{1k}-C_{2k'}) \sim N(\mu_C, \sigma_C^2)$ where $\mu_C = \mu_T - \mu_R$, $\sigma_C^2 = 2\sigma^2$, and $\sigma^2 = (\sigma_R^2 + \sigma_T^2)/4$. The 100 *p*th percentile for the distribution of $(C_{1k}-C_{2k})$ is denoted by

$$
\theta_p = \mu_C + z_p \sigma_C \tag{19}
$$

for $0 < p < 1$ as in [Eq](#page-2-0) 2. An unbiased estimator of the difference between the two treatments μ_C is the sample mean difference $\bar{C}_1 - \bar{C}_2$ where $\bar{C}_1 = \sum_{k=1}^{N_i}$ C_{ik} / N_i for *i* = 1 and 2. It is clear that $E(\bar{C}_1) = \mu_C/2$, $E(\bar{C}_2) = -\mu_C/2$, $Var(\bar{C}_1) = \sigma^2/N_1$, and $Var(\bar{C}_2) = \sigma^2/N_2$. Hence, the mean difference $\overline{C}_1 - \overline{C}_2$ has the distribution

$$
\bar{C}_1-\bar{C}_2\sim N(\mu_C, \sigma^2/M),
$$

where $M = 1/(1/N_1 + 1/N_2)$. Moreover, $S^2 = \sum_{i=1}^{N_1}$ $i=1$ $\sum\nolimits_{k = 1}^{N_i}\left({{C_{ik}} - {\bar C_i}} \right)^2$ /*v* is an unbiased estimator of σ^2 and $K = (vS^2)/\sigma^2$ has a chi-square distribution with degrees of freedom $v = N_1 + N_2 - 2$. The formulations and properties for the crossover design show close resemblance to those of the parallel group design. Accordingly, the conceptual and statistical similarities enable the conversion of the individual equivalence inference of the parallel group design into that of the crossover design.

The TOST procedure for crossover design. By analogy to the parallel group design, the individual equivalence problem within the context of crossover design can be conducted with respect to the null and alternative hypotheses given in [Eq](#page-2-0) 3. Following the TOST principle for assessing equivalence of mean effects, Liu and Chow [\[14\]](#page-13-0) proposed an extension for declaring individual equivalence based on the lower confidence limit of a upper $100(1 - \alpha)$ % one-sided confidence interval of θ_{1-p} and the upper confidence limit of a lower 100(1 – α)% one-sided confidence interval of θ_p . Specifically, Liu and Chow [\[14\]](#page-13-0) suggested that the null hypothesis of no individual equivalence is rejected if

$$
\Delta_L < \widehat{\theta}_{\text{CTL}} \text{ and } \widehat{\theta}_{\text{CTU}} < \Delta_U,\tag{20}
$$

or

$$
T_{CL} = \frac{\bar{C}_1 - \bar{C}_2 - \Delta_L}{\left(S^2 / M\right)^{1/2}} > \tau_{CT} \text{ and } T_{CU} = \frac{\bar{C}_1 - \bar{C}_2 - \Delta_U}{\left(S^2 / M\right)^{1/2}} < -\tau_{CT}.
$$
 (21)

where $\hat{\theta}_{\text{CTL}} = \bar{C}_1 - \bar{C}_2 - \tau_{\text{CT}}(S/M^{1/2}), \hat{\theta}_{\text{CTU}} = \bar{C}_1 - \bar{C}_2 + \tau_{\text{CT}}(S/M^{1/2})$ and the critical value $\tau_{CT} = \tau_T = t_{1-\alpha} (v, z_p (2M)^{1/2}).$

The proposed procedure for crossover design. In this case of crossover design, the proposed exact rejection region for declaring individual equivalence is of the form

$$
\Delta_L < \widehat{\theta}_{\text{CEL}} \text{ and } \widehat{\theta}_{\text{CEU}} < \Delta_U \tag{22}
$$

where $\widehat{\theta}_{\text{CEL}} = \overline{C}_1 - \overline{C}_2 - \tau_{\text{CE}}(S/M^{1/2}), \widehat{\theta}_{\text{CEL}} = \overline{C}_1 - \overline{C}_2 + \tau_{\text{CE}}(S/M^{1/2}),$ and the quantity τ_{CE} is selected so that the Type I error rate *Sup* $H^{\,}_{0}$ $P\Big\{\Delta_L\leq \widehat{\Theta}_{\textit{\tiny CEL}}~and~\widehat{\Theta}_{\textit{\tiny ECU}}\leq \Delta_U$ n o $=$ α. This evaluation

of the Type I error rate has the same statistical property as that of the parallel group design. The critical value can be obtained with the identical technique. Consequently, with the similar argument and notation, it can be shown that the critical value τ*CE* is identical to that of the

parallel group design: $\tau_{CE} = \tau_E$. Alternatively, the null hypothesis is rejected if

$$
T_{CL} > \tau_{CE} \text{ and } T_{CU} < -\tau_{CE}. \tag{23}
$$

The corresponding power function is

$$
\Psi_{CE} = P\{G_{CL} < Z < G_{CU}\},\tag{24}
$$

where $G_{CL} = (\Delta_L - \mu_C)/(\sigma^2/M)^{1/2} + \tau_{CE}(K/\nu)^{1/2}$, $G_{CU} = (\Delta_U - \mu_C)/(\sigma^2/M)^{1/2} - \tau_{CE}(K/\nu)^{1/2}$, $Z \sim N$ (0, 1), and $K \sim \chi^2(\nu)$. For computational ease, an alternative formulation of Ψ_{CE} is

$$
\Psi_{CE} = E_K[\Phi(G_{CU1}) - \Phi(G_{CL1})],\tag{25}
$$

where $G_{CL1} = G_{CL}$ and $G_{CU1} = G_{CU}$ if $K < k_{C1}$, $G_{CL1} = 0$ and $G_{CU1} = 0$ if $K \ge k_{C1}$, $k_{C1} = \{vM\}$ $(\Delta_U - \Delta_L)^2$ }/($4\sigma^2 \tau_{CE}^2$). For ease of illustration, the endpoints of the prescribed test procedures for parallel group and crossover designs are summarized in Table 1.

Results

Type I errors

The suggested test procedures are derived by controlling the Type I error at the nominal level. Although the critical values do not have an explicit analytic expression, they can be determined with the designated configurations $(N_1, N_2, p^*, \alpha, \Delta_L, \Delta_U)$. On the other hand, the TOST procedures generalize the results for mean equivalence assessment and tolerance interval estimation. The resulting critical values and rejection regions are not directly obtained with respect to the Type I error control in hypothesis testing. It is of theoretical and practical importance to evaluate the potential discrepancy between the proposed approach and benchmark TOST method. Accordingly, simulation study was conducted to examine the Type I error rates under the parallel group designs.

For the numerical investigations, the selected central proportions of the individual equivalence tests are $p^* = 0.80$, 0.90 and 0.95. The mean and variance of the null distribution $N(\mu_{D0}$, $σ_{D0}²$) for the individual measurement difference are chosen as $μ_{D0} = 0$ and $σ_{D0}² = 1$. The designated thresholds (Δ_L , Δ_U) are determined by $\Delta_L = \mu_{D0} - z_p \sigma_{D0}$ and $\Delta_U = \mu_{D0} + z_p \sigma_{D0}$. The resulting similarity bounds are (Δ*L*, Δ*U*) = (–1.2816, 1.2816), (–1.6449, 1.6449), and (–1.9600, 1.9600) for $p = 0.90, 0.95,$ and 0.975, respectively. Four sets of sample sizes are considered: (N_1, N_2) (20, 20), (50, 50), (100, 100), and (200, 200). Throughout the empirical examination, the significance level is fixed as α = 0.05. Under the combined twelve structures of central proportions and sample sizes, an important step is to compute the critical values τ_E and τ_T of the proposed

<https://doi.org/10.1371/journal.pone.0269128.t001>

and TOST procedures for the specified settings. According to the results presented in Table 2, the two critical values have a systematic order that τ_E is consistently less than τ_T . Hence, the TOST method has smaller rejection rate than the suggested approach.

The simulated Type I error rates of the individual equivalence tests were computed via Monte Carlo simulation of 10,000 independent data sets. For the two test procedures, the simulated Type I error rates were the proportion of the 10,000 replicates whose critical intervals $(\hat{\theta}_{EII}, \hat{\theta}_{EII})$ and $(\hat{\theta}_{TI}, \hat{\theta}_{TI})$ were within the range of (Δ_L , Δ_U). The simulated Type I error probabilities under the four different sample sizes are summarized in Tables [3](#page-9-0)[–5](#page-10-0) for the three central portions $p^* = 0.80$, 0.90, and 0.95, respectively. The adequacy of the two procedures is determined by the difference between the simulated Type I error rate and the nominal level 0.05 as summarized in the tables. To visualize the differences between the two procedures, the simulated results for $p^* = 0.90$ in [Table](#page-9-0) 4 are also plotted in [Fig](#page-10-0) 1. It is evident that the simulated Type I error rates of the suggested approach are almost identical to the nominal value 0.05. In contrast, the simulated Type I error probabilities of the TOST method are less than 0.01 for the 12 settings considered here. These findings suggest that the proposed procedure has adequate Type I error control, whereas the TOST procedure is extremely conservative.

Power and sample size calculations

A related and important issue of the individual equivalence test is the power and sample size calculations. The power functions derived in Eqs [17](#page-5-0) and [25](#page-7-0) facilitate the desired power and sample size planning of the parallel group and crossover designs. The algorithms for computing the critical value, achieved power, and sample size are implemented in the supplementary programs. Accordingly, numerical studies were conducted to explicate the behavior of derived power function and the usefulness of accompanying computer algorithm in sample size determinations.

Sample size determination requires test configurations of Type I error rate α , nominal power 1 – β, equivalence bounds (Δ*L*, Δ*U*), null central portion *p*�, and the alternative settings include the mean values (μ_1, μ_2), error variance σ^2 , and sample size allocation ratio $r = N_2/N_1$. Note that the resulting percentiles $θ_{1-p}$ and $θ_p$ need to be within the designated bounds ($Δ_L, Δ_U$) under the alternative distribution $N(\mu_D, \sigma_D^2)$. For illustration, two central portions are considered: p^* = 0.90 and 0.95 ($p = 0.95$ and 0.975). By fixing the null distribution $N(\mu_D, \sigma_D^2)$ as $N(0, 1)$, the resulting two sets of threshold bounds are (Δ*L*, Δ*U*) = (–1.6449, 1.6449), and (–1.9600, 1.9600). The alternative distributions are chosen to have the treatment means $(\mu_1, \mu_2) = (0, 0)$, $(0.05, 0)$, and (0.10, 0), and variance σ_D^2 = 0.6, 0.7 and 0.8. Under the specified configurations, the minimum total sample size $N_T = N_1 + N_2$ is computed for balanced design $r = 1$ ($N_1 = N_2$), significance level α = 0.05, and nominal power 1 – β = 0.9. The estimated sample sizes and attained power levels are summarized in [Table](#page-11-0) 6 for the combined 18 cases. The minimum sample size for

<https://doi.org/10.1371/journal.pone.0269128.t002>

[Table](#page-8-0) 3. The simulated Type I error rates of individual equivalence tests for central proportion $p^* = 0.80$, equivalence bounds (Δ_L , Δ_U) = (-1.2816, 1.2816), and the **significance level** $\alpha = 0.05$.

Note: $\Delta_L = \mu_D - z_p \sigma_D$ and $\Delta_U = \mu_D + z_p \sigma_D$ where $\mu_D = 0$, $\sigma_D^2 = 1$, $p = 0.90$, and $z_p = 1.2816$.

<https://doi.org/10.1371/journal.pone.0269128.t003>

attaining the nominal power increases with increasing mean difference μ_D or increasing variance σ_D^2 when all other factors remain fixed. It is essential to see that the magnitudes of the computed sample sizes are substantially different for the settings considered here. The smallest sample size is 80 for two the settings of $(p^*, \mu_D, \sigma_D^2) = (0.95, 0, 0.6)$. On the other hand, the largest sample size 1852 is required for the situation with $(p^*, \mu_D, \sigma_D^2) = (0.90, 0.10, 0.8)$. The results indicate that the prescribed test configurations have unique and distinct influence on the power function. Conceivably, it is unlikely that a simple guideline will give accurate sample size determination.

Furthermore, under the prescribed model configurations, simulation study was conducted to justify the accuracy of the proposed power and sample size procedures. Specifically, the simulated power of the proposed test procedure was computed via Monte Carlo simulation of 10,000 independent data sets. The simulated power and the difference between the simulated power and estimated power are also presented in [Table](#page-11-0) 6. For each of the 18 scenarios, the small difference reveals that the simulated power is nearly identical to the estimated power. The accuracy of the described power and sample size procedures is fairly consistent under various sample size and parameter configurations. Consequently, these findings suggest that the developed power and sample size algorithms are reliable for practical applications.

An application

A bioequivalence study was presented in Liu and Chow [\[14\]](#page-13-0) to demonstrate the assessment of individual equivalence between two drug formulations. Under the standard setting of twosequence two-period cross over design, the responses are the area under the plasma concentration-time curve (AUC). The sample sizes, sample mean difference, and residual error variance of the logarithmic transformation of AUC are $N_1 = N_2 = 10$, $\overline{C}_1 - \overline{C}_2 = 0.05331$, and $S^2 =$ 0.0378, respectively. To declare individual equivalence between the test and reference formulations, it is assumed that at least $p^* = 0.75$ of the difference between two individual formulation measurements are within the bounds $\Delta_L = ln(0.80) = -0.2231$ and $\Delta_U = ln(1.25) = 0.2231$.

Note: $\Delta_L = \mu_D - z_p \sigma_D$ and $\Delta_U = \mu_D + z_p \sigma_D$ where $\mu_D = 0$, $\sigma_D^2 = 1$, $p = 0.95$, and $z_p = 1.6449$.

<https://doi.org/10.1371/journal.pone.0269128.t004>

[Table](#page-8-0) 5. The simulated Type I error rates of individual equivalence tests for central proportion $p^* = 0.95$, equivalence bounds (Δ_L , Δ_U) = (-1.9600, 1.9600), and the **significance** level α = 0.05.

Note: Δ_L = μ_D−*z_p*σ_D and Δ_U = μ_D + *z_p*σ_D where μ = = 0, σ²_D = 1, *p* = 0.975, and *z_p* = 1.9600.

<https://doi.org/10.1371/journal.pone.0269128.t005>

Accordingly, the test statistics in $\underline{Eq\ 21}$ $\underline{Eq\ 21}$ $\underline{Eq\ 21}$ can be computed as $T_{CL} = 3.1801$ and $T_{CU} = -1.9537$. With α = 0.05, the critical values of the TOST and proposed procedures are τ_{CT} = 6.0173 and

<https://doi.org/10.1371/journal.pone.0269128.g001>

Null proportion p^*	Equivalence bounds (Δ_L, Δ_U)	Mean μ_D	Variance $\sigma_{\bf p}^2$	Sample size N_T	Simulated power	Estimated power	Difference
0.90	$(-1.6449, 1.6449)$	$\mathbf{0}$	0.6	86	0.9020	0.9008	0.0012
			0.7	182	0.8973	0.9004	-0.0031
			0.8	482	0.9034	0.9009	0.0025
		0.05	0.6	92	0.9026	0.9005	0.0021
			0.7	210	0.9019	0.9020	-0.0001
			0.8	678	0.9012	0.9005	0.0007
		0.10	0.6	116	0.9013	0.9027	-0.0014
			0.7	322	0.8961	0.9005	-0.0044
			0.8	1852	0.9032	0.9001	0.0031
0.95	$(-1.9600, 1.9600)$	$\boldsymbol{0}$	0.6	80	0.8981	0.9006	-0.0025
			0.7	168	0.9036	0.9007	0.0029
			0.8	440	0.9029	0.9003	0.0026
		0.05	0.6	86	0.9075	0.9057	0.0018
			0.7	186	0.9021	0.9008	0.0013
			0.8	566	0.8988	0.9002	-0.0014
		0.10	0.6	100	0.9039	0.9029	0.0010
			0.7	256	0.9033	0.9012	0.0021
			0.8	1170	0.8999	0.9000	-0.0001

[Table](#page-9-0) 6. Estimated sample size, estimated power, and simulated power of the proposed individual equivalence test for balanced design N_1 = N_2 , σ^2 = $\sigma_D^2/2$, the nomi**nal power** 0.90, and the significance level $\alpha = 0.05$.

<https://doi.org/10.1371/journal.pone.0269128.t006>

 τ_{CE} = 4.3436, respectively. Also, the two associated critical regions are $(\hat{\theta}_{CT}$, $\hat{\theta}_{CTU})$ = (–0.4698, 0.5764) and $(\hat{\theta}_{\text{CEL}}, \hat{\theta}_{\text{CEU}})$ = (-0.3243, 0.4309). Thus, the two test procedures conclude that the null hypothesis of no individual equivalence cannot be rejected at the significance level 0.05.

Under the normal assumptions, the difference between two individual formulation measurements has the distribution $(C_{1k}-C_{2k'}) \sim N(\mu_C, \sigma_C^2)$. Using the summary statistics as exemplifying parameter values (μ _{*C*}, σ ²_{*C*}) = (0.05331, 0.0756), the proportion between the two bounds $(\Delta_L, \Delta_U) = (-0.2231, 0.2231)$ for the normal distribution $N(\mu_C, \sigma_C^2)$ is the probability $P(\Delta_L <$ $C_{1k}-C_{2k'} < \Delta_{U}$ = 0.5744. Note that the coverage probability is substantially less than the nominal value 0.75 for declaring individual equivalence. For illustration, the working parameters are chosen as μ_C = 0.02, 0.03, 0.04, and 0.05 and σ_C^2 = 0.0756/4. To meet the nominal power 0.80, the estimated sample sizes are $(N_1, N_2) = (25, 25)$, $(37, 37)$, $(69, 69)$, and $(183, 183)$ with the achieved power levels 0.8017, 0.8035, 0.8024, and 0.8002, respectively. Evidently, the magnitudes are larger than the sample sizes $(N_1, N_2) = (10, 10)$ of the previous analysis. This indicates the importance and accuracy of power and sample size procedures for efficient computations in individual equivalence study. The accompanying computer algorithms are also presented for conducting the suggested power and sample size calculations.

Conclusions

The conventional TOST of mean focuses only on the equivalence of population means between the test and reference formulations. Therefore, the TOST of mean equivalence or average equivalence does not take into account the variability of formulation difference in bioavailability across subjects. In view of the limitation of average equivalence, Chen [\[24\]](#page-13-0) identified several desirable features of bioequivalence criteria. The criteria include the assurance of switchability between formulations, the control of Type I error rate at 5%, determination of appropriate sample size, and user-friendly software application for the statistical method.

Related considerations of individual equivalence can be found in the additional discussion in Chen et al. [[25](#page-13-0)] and Chen and Lesko [\[26\]](#page-13-0). To address these issues, this article presents exact tests for assessing individual equivalence under parallel group and crossover designs. The numerical results showed that the TOST procedures based on tolerance intervals are overly conservative. More importantly, the exact approach has excellent Type I error control and can be recommended for routine use. Computer programs are also developed to implement the proposed equivalence test, power calculation, and sample size determination. The research designs and test procedures considered here are valid only if the homogeneous variance assumption is satisfied. The degree of robustness presumably depends on the extent of how badly the homogeneity of variance assumption is violated. Future research can explore possible extensions to accommodate heterogeneity of variance settings.

Supporting information

S1 [File.](http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0269128.s001) SAS/IML programs for performing the suggested procedures. (PDF)

S2 [File.](http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0269128.s002) R programs for performing the suggested procedures. (PDF)

Author Contributions

Conceptualization: Gwowen Shieh.

Formal analysis: Gwowen Shieh.

Funding acquisition: Gwowen Shieh.

Investigation: Gwowen Shieh.

Methodology: Gwowen Shieh.

Software: Gwowen Shieh.

Validation: Gwowen Shieh.

Writing – original draft: Gwowen Shieh.

Writing – review & editing: Gwowen Shieh.

References

- **[1](#page-0-0).** Schuirmann D. L. (1981). On hypothesis testing to determine if the mean of a normal distribution is contained in a known interval. Biometrics, 37, 617.
- **[2](#page-0-0).** Westlake W. J. (1981). Response to T.B.L. Kirkwood: Bioequivalence testing |a need to rethink. Biometrics, 3, 589–594.
- **[3](#page-0-0).** Meyners M. (2012). Equivalence tests-A review. Food Quality and Preference, 26, 231–245.
- **[4](#page-0-0).** Hauschke D., Steinijans V., & Pigeot I. (2007). Bioequivalence studies in drug development: Methods and applications. Chichester: John Wiley & Sons.
- **[5](#page-0-0).** Chow S. C., & Liu J. P. (2008). Design and analysis of bioavailability and bioequivalence studies (3rd ed.). New York, NY: Chapman & Hall/CRC.
- **[6](#page-0-0).** Wellek S. (2010). Testing statistical hypotheses of equivalence and noninferiority (2nd ed.). New York, NY: CRC Press.
- **[7](#page-0-0).** Choudhary P. K., & Nagaraja H. N. (2017). Measuring agreement: Models, methods, and applications. Hoboken, NJ: John Wiley & Sons.
- **[8](#page-1-0).** Anderson S., & Hauck W. W. (1990). Consideration of individual bioequivalence. Journal of Pharmacokinetics and Biopharmaceutics, 18, 259–273. <https://doi.org/10.1007/BF01062202> PMID: [2380920](http://www.ncbi.nlm.nih.gov/pubmed/2380920)
- **[9](#page-1-0).** Hauck W. W., & Anderson S. (1992). Types of bioequivalence and related statistical considerations. International Journal of Clinical Pharmacology, Therapy and Toxicology, 30, 181–187. PMID: [1592546](http://www.ncbi.nlm.nih.gov/pubmed/1592546)
- **[10](#page-1-0).** Sheiner L. B. (1992). Bioequivalence revisited. Statistics in Medicine, 11, 1777–1788. [https://doi.org/](https://doi.org/10.1002/sim.4780111311) [10.1002/sim.4780111311](https://doi.org/10.1002/sim.4780111311) PMID: [1485060](http://www.ncbi.nlm.nih.gov/pubmed/1485060)
- **[11](#page-1-0).** Schall R., & Luus G. H. (1993). On population and individual bioequivalence. Statistics in Medicine, 12, 1109–1124. <https://doi.org/10.1002/sim.4780121202> PMID: [8210816](http://www.ncbi.nlm.nih.gov/pubmed/8210816)
- **[12](#page-1-0).** Anderson S. (1993). Individual bioequivalence: A problem of switchability (with discussion). Biopharmaceutical Report, 2, 1–11.
- **[13](#page-1-0).** Esinhart J. D., & Chinchilli V. M. (1994). Extension to the use of tolerance intervals for the assessment of individual bioequivalence. Journal of Biopharmaceutical Statistics, 4, 39–52. [https://doi.org/10.1080/](https://doi.org/10.1080/10543409408835071) [10543409408835071](https://doi.org/10.1080/10543409408835071) PMID: [8019583](http://www.ncbi.nlm.nih.gov/pubmed/8019583)
- **[14](#page-7-0).** Liu J. P., & Chow S. C. (1997). A two one-sided tests procedure for assessment of individual bioequivalence. Journal of Biopharmaceutical Statistics, 7, 49–61. <https://doi.org/10.1080/10543409708835169> PMID: [9056588](http://www.ncbi.nlm.nih.gov/pubmed/9056588)
- **[15](#page-3-0).** Tsong Y., & Shen M. (2007). An alternative approach to assess exchangeability of a test treatment and the standard treatment with normally distributed response. Journal of Biopharmaceutical Statistics, 17, 329–338. <https://doi.org/10.1080/10543400601177301> PMID: [17365227](http://www.ncbi.nlm.nih.gov/pubmed/17365227)
- **[16](#page-1-0).** Krishnamoorthy K., & Mathew T. (2009). Statistical tolerance regions: Theory, applications, and computation (Vol. 744). New York, NY: Wiley.
- **[17](#page-1-0).** Meeker W. Q., Hahn G. J., & Escobar L. A. (2017). Statistical intervals: A guide for practitioners and researchers. Hoboken, NJ: Wiley.
- **[18](#page-1-0).** Berger R. L., & Hsu J. C. (1996). Bioequivalence trials, intersection-union tests and equivalence confidence sets (with discussion). Statistical Science, 11, 283–319.
- **[19](#page-4-0).** Owen D. B. (1965). A special case of a bivariate non-central t-distribution. Biometrika, 52, 437–446.
- **[20](#page-2-0).** Shieh G. (2020). Comparison of alternative approaches for difference, noninferiority, and equivalence testing of normal percentiles. BMC Medical Research Methodology, 20, 59. [https://doi.org/10.1186/](https://doi.org/10.1186/s12874-020-00933-z) [s12874-020-00933-z](https://doi.org/10.1186/s12874-020-00933-z) PMID: [32169043](http://www.ncbi.nlm.nih.gov/pubmed/32169043)
- **[21](#page-3-0).** Johnson N. L., Kotz S., & Balakrishnan N. (1995). Continuous univariate distributions (2nd ed., Vol. 2). New York, NY: Wiley.
- **[22](#page-3-0).** Hahn G. J. (1970). Statistical intervals for a normal population, Part I. Tables, examples and applications. Journal of Quality Technology, 2, 115–125.
- **[23](#page-3-0).** Hahn G. J. (1970). Statistical intervals for a normal population, Part II. Formulas, assumptions, some derivations. Journal of Quality Technology, 2, 195–206.
- **[24](#page-11-0).** Chen M. L. (1997). Individual bioequivalence-A regulatory update. Journal of Biopharmaceutical Statistics, 7, 5–11. <https://doi.org/10.1080/10543409708835162> PMID: [9056581](http://www.ncbi.nlm.nih.gov/pubmed/9056581)
- **[25](#page-12-0).** Chen M. L., Patnaik R., Hauck W. W., Schuirmann D. J., Hyslop T., Williams R. (2000). An individual bioequivalence criterion: Regulatory considerations. Statistics in Medicine, 19, 2821–2842. [https://doi.](https://doi.org/10.1002/1097-0258(20001030)19:20<2821::aid-sim548>3.0.co;2-l) [org/10.1002/1097-0258\(20001030\)19:20](https://doi.org/10.1002/1097-0258(20001030)19:20<2821::aid-sim548>3.0.co;2-l)<2821::aid-sim548>3.0.co;2-l PMID: [11033578](http://www.ncbi.nlm.nih.gov/pubmed/11033578)
- **[26](#page-12-0).** Chen M. L., & Lesko L. J. (2001). Individual bioequivalence revisited. Clinical pharmacokinetics, 40, 701–706. <https://doi.org/10.2165/00003088-200140100-00001> PMID: [11707058](http://www.ncbi.nlm.nih.gov/pubmed/11707058)