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Abstract

The consideration of individual equivalence provides an essential alternative to average

equivalence in two-group comparative studies. A common procedure for declaring individual

equivalence adopts the tolerance intervals of the designated proportions of measurement

differences. This statistical practice is a direct generalization of the widely used two one-

sided tests (TOST) for average equivalence. Such TOST extensions often do not have ade-

quate control of Type I error and result in excessively conservative tests. To signify and

resolve the underlying issues of existing methods, this paper presents exact tests for

assessing individual equivalence between two treatments under parallel group and cross-

over designs. Rigorous evaluations are conducted to clarify the discrepancy of critical val-

ues and Type I error probabilities between the equivalence procedures. The findings

elucidate the shortcoming of the TOST technique and the advantage of the proposed

approach. The associated power and sample size calculations are also justified through

simulation studies.

Introduction

The two one-sided tests (TOST) procedure of mean equivalence, first described by Schuir-

mann [1] and Westlake [2], is the most common method in equivalence methodology. The

conceptual simplicity and technical feasibility of TOST provide an important reform to apply

appropriate statistical tools for equivalence, rather than relying on failure to reject the conven-

tional hypothesis of no difference between treatment effects. Meyners [3] presented a compre-

hensive review of different types of equivalence tests. Moreover, Hauschke, Steinijans, and

Pigeot [4], Chow and Liu [5], Wellek [6], and Choudhary and Nagaraja [7] discussed the con-

cepts and techniques for the design and analysis of equivalence studies. The TOST for mean

equivalence focuses on the mean parameters of the target populations and represents a vital

method within the general scope of average equivalence. It is important to note that mean

equivalence testing specifies only the population mean difference and does not concern the

other characteristics associated with the underlying distribution of measurement differences.

Accordingly, the principle of average equivalence only demands similar average bioavailability
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and does not guarantee equivalence in intra-subject variability and closeness of the response

distribution between the test and reference formulations.

In view of the practical issue and important problem about the interchangeability of bio-

equivalence drug products, the notion of individual equivalence has been proposed to ensure

switchability when a large proportion of individuals need to be sufficiently similar on the two

drug formulations. The basic concept and rationale of individual equivalence are described in

Anderson and Hauck [8], Hauck and Anderson [9], Sheiner [10], Schall and Luus [11], and

Anderson [12]. Various individual equivalence principles and techniques have been proposed

to evaluate exchangeability or switchability in terms of the desired proportion of the subject-

level differences between two formulations. In particular, the commonly used reference limits

of 95% proportion encompass the 2.5th percentile and 97.5th percentile for the distribution of

measurement differences. Accordingly, the normal percentile is a linear function of the mean

and standard deviation of the designated population. Statistical procedures and theoretical

investigations of normal percentiles are essential for assessing individual equivalence.

For the mean equivalence appraisals considered in the TOST, the duality between decision

rules and confidence intervals is well documented. Specifically, the null hypothesis of no mean

equivalence is rejected if and only if the confidence limits of the corresponding equal-tail two-

sided 100(1–2α)% confidence interval of mean difference are contained in the designated

equivalence bounds. Within the context of individual equivalence, the target parameters are

the lower and upper percentiles for describing the desired population proportion. It is appeal-

ing to apply the confidence interval procedure to the normal percentiles of the distribution of

subject-level differences. The one-sided confidence intervals of normal percentiles have a close

link to the one-sided tolerance bounds of a normal distribution. This technical correspondence

reveals that tolerance interval estimation has an extended utility in assessing individual bio-

equivalence. The notion of confidence intervals for mean equivalence or average equivalence

has been extended to the appraisals of individual equivalence, such as the TOST methods pre-

sented in Esinhart and Chinchilli [13], Liu and Chow [14], and Tsong and Shen [15], among

others. Accordingly, tolerance intervals are constructed for the desired proportions of mea-

surement differences and individual equivalence is claimed if the resulting interval limits are

within the selected equivalence range. General discussions of tolerance interval estimation are

available in Krishnamoorthy and Mathew [16] and Meeker, Hahn, and Escobar [17].

Due to the close resemblance between tolerance intervals and confidence intervals, the

TOST method for assessing individual equivalence is presumed to share the same desirable

properties of the counterpart TOST for establishing mean equivalence. However, Berger and

Hsu [18] showed that size-α bioequivalence tests do not generally correspond to 100(1–2α)%

confidence sets. It is strongly advocated in Berger and Hsu [18] that statistically sound tech-

niques should be employed to derive a test with the specified Type I error rate. Notably, the

prescribed TOST methods for individual equivalence were conducted with respect to tolerance

interval estimation. The corresponding numerical results did not directly evaluate their Type I

error control in hypothesis testing. Although the assessment of individual equivalence mainly

focuses on biopharmaceutical applications, the concept and analysis are pertinent to compara-

tive studies across virtually all scientific disciplines. It is of great interest to clarify the potential

deficiency and implications of current methods in equivalence testing.

Following the two-sided sampling plan in Owen [19], this article presents a unified

approach for evaluating individual equivalence between two treatment formulations. Exact

test procedures are described for the parallel group and crossover designs. Extensive numerical

investigations are conducted to demonstrate the underlying features the suggested and TOST

procedures. The comparisons and findings reveal their essential discrepancy on critical values

and Type I error rates that have not been addressed in the literature. The results update the
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less-recognized problems of the current TOST methods for examining individual equivalence

in Liu and Chow [14], and Tsong and Shen [15]. To enhance the usefulness of the proposed

approach, the associated power and sample size calculations are also demonstrated for plan-

ning individual equivalence studies. Computer algorithms for computing the critical value, sta-

tistical power, and sample size of the suggested test procedures are available as supplemental

material. It should be noted that Owen [19] did not address hypothesis testing, power analysis

and sample size determination for appraising individual equivalence. Moreover, the technical

arguments presented here are more analytically transparent than the formulation based on the

bivariate noncentral t distribution in Owen [19].

Methods

Parallel group design

Consider independent random samples from two normal populations with the following for-

mulations:

Xij � Nðμi; σ
2Þ; ð1Þ

where μi, σ2 are unknown parameters, j = 1, . . ., Ni, and i = 1 and 2. To establish individual

equivalence between two treatments, the central portion of the difference between the individ-

ual measurements of two treatments X1j–X2j0 needs to lie within a reasonable range around

zero. The 100�pth percentile of the distribution N(μD, σ2
D) of X1j–X2j0 is denoted by

θp ¼ μD þ zpσD; ð2Þ

where μD = μ1– μ2, σ2
D = 2σ2, zp is the 100�pth percentile of the standard normal distribution N

(0, 1), and 0< p< 1. The null and alternative hypotheses of the individual equivalence test are

expressed as

H0 : θ1� p � DLor DU � yp versus H1 : DL < θ1� p and θp < DU ; ð3Þ

where p> 0.5 and the two designated constants ΔL and ΔU represent the lower and upper

thresholds of the percentile range for declaring individual equivalence between two treat-

ments. The alternative hypothesis indicates that there is at least p� = 2p – 1 central proportion

of the distribution N(μD, σ2
D) in the range (ΔL, ΔU).

Unlike the individual equivalence problem concerns the central proportion of a target dis-

tribution in terms of the pair of percentiles (θ1-p, θp), a comparison of alternative approaches

for difference, noninferiority, and equivalence testing of a single normal percentile was pre-

sented in Shieh [20]. Similar to the widely used TOST for mean equivalence, Shieh [20]

showed that the TOST procedure for the comparability of a designated percentile also main-

tains good control the Type I error rate at the specified value. These promising results suggest

that TOST principle can be useful for similar problems in more advanced designs and complex

scenarios. However, a critical exposition of the TOST extensions for individual equivalence is

presented to demonstrate that such generalizations do not have adequate control of Type I

error and result in overly conservative tests.

The TOST procedure for parallel group design. To demonstrate average equivalence

between two treatment means, the TOST procedure rejects the null hypothesis of incompara-

bility if the ordinary 100(1–2α)% equal-tailed confidence interval of mean difference is entirely

included in the equivalence range. The same principle was extended to individual equivalence

assessment for exchangeability between the test and standard treatments in Tsong and Shen
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[15]. A concise illustration is presented to simplify the complicated results in Tsong and Shen

[15].

The usual two-sample t statistic has the form

T ¼
�X1 �

�X2

S2=Mð Þ
1=2
;

where �X1 ¼
XN1

j¼1
X1j=N1, �X2 ¼

XN2

j¼1
X2j=N2,M = 1/(1/N1 + 1/N2), S2 = {(N1−1) S2

1
+ (N2−1)

S2
2
}/v, S2

1
¼
XN1

j¼1
X1j �

�X1

� �2

= N1 � 1ð Þ, S2
2
¼
XN2

j¼1
X2j �

�X2

� �2

= N2 � 1ð Þ, and v = N1 +

N2−2. The ordinary interval limits (bμDL, bμDU) of a 100(1–2α)% equal-tailed confidence interval

of μD are

bμDL ¼ ð�X1 �
�X2Þ � tn;1� a S=M

1=2
� �

and bμDU ¼ ð�X1 �
�X2Þ þ tn;1� aðS=M

1=2Þ; ð4Þ

respectively, where tv,1−α is the 100(1 – α)th percentile of the t distribution with degrees of free-

dom v. In addition to the practical usefulness for interval estimation, the range {bμDL, bμDU} has

an interesting connection to equivalence assessment. A well-known simple approach to con-

duct the TOST for mean equivalence is by examining whether the 100(1–2α)% confidence

interval (bμDL, bμDU) of μD falls within the designated range (δL, δU) where δL and δU are a priori

constant and represent the sensible bounds for declaring mean equivalence.

It is straightforward to show that the pivotal quantity for θ1-p has a noncentral t distribution

�X1 �
�X2 � θ1� p

S2=Mð Þ
1=2

� t n; zp 2Mð Þ
1=2

� �
; ð5Þ

where t(v, zp(2M)1/2) is a noncentral t distribution with degrees of freedom ν and noncentrality

zp(2M)1/2. The exact lower confidence limit of an upper 100(1 – α)% one-sided confidence

interval {bθTL,1} of θ1−p can be obtained as

bθTL ¼ �X1 �
�X2 � τT S=M

1=2
� �

; ð6Þ

where τT = t1−α(v, zp(2M)1/2) is the 100(1 – α)th percentile of a noncentral t distribution t(v,
zp(2M)1/2). Similarly, the pivotal quantity for θp is distributed as

�X1 �
�X2 � θp

S2=Mð Þ
1=2
� t n; � zp 2Mð Þ

1=2
� �

: ð7Þ

Using the important property of a noncentral distribution as in Johnson, Kotz, and Balak-

rishnan [21, Chapter 31] that t1−α(v, zp(2M)1/2) = −tα(v, −zp(2M)1/2) for 0< α< 1, the exact

upper confidence limit of a lower 100(1 – α)% two-sided confidence interval {–1, bθTU} of θp
can be expressed as

bθTU ¼ �X1 �
�X2 þ τT S=M

1=2
� �

: ð8Þ

Note that the one-sided confidence intervals of normal percentiles are technically identical

to the one-sided tolerance bounds of a normal distribution as noted in Hahn [22, 23]. The

derived confidence limits bθTL and bθTU assure that P{bθTL < θ1−p<1} = P{P[bθTL < (X1j–X2j0) |

(�X1 – �X2, S2)] > p} = 1 – α and P{–1< θp< bθTU} = P{P[(X1j–X2j’)< bθTU | (�X1 – �X2, S2)] > p}

= 1 – α, respectively. Accordingly, for p> 0.5, a lower 100(1 – α)% confidence limit for the

100(1–p)-th percentile θ1−p is equivalent to a lower tolerance limit to be exceeded by at least a
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proportion p of the population with probability 1 – α. Likewise, an upper 100(1 – α)% confi-

dence limit for the 100 p-th percentile θp for p> 0.5 is equivalent to an upper tolerance limit to

exceed at least a proportion p of the population with probability 1 – α.

As an extension to the use of tolerance intervals for the assessment of individual bioequiva-

lence, Tsong and Shen [15] suggested that the null hypothesis H0: θ1-p� ΔL or ΔU� θp is

rejected if

DL <
bθTL and bθTU < DU ; ð9Þ

or

TL ¼
�X1 �

�X2 � DL

S2=Mð Þ
1=2

> τT and TU ¼
�X1 �

�X2 � DU

S2=Mð Þ
1=2

< � τT: ð10Þ

The strong resemblance between (bμDL, bμDU) and {bθTL, bθTU} in formulation and testing sug-

gests that the rejection region {bθTL, bθTU} for individual equivalence may possess similar statisti-

cal properties with the confidence interval (bμDL, bμDU) for mean equivalence. Specifically, the

TOST of mean equivalence based on (bμDL, bμDU) adequately controls the Type I error rate at the

specified value. However, Berger and Hsu [18] exemplified that an equivalence procedure in

terms of a 100(1–2α)% confidence interval can lead to a liberal or conservative test. The Type I

error rate associated with the TOST of individual equivalence is evaluated by αTOST = P{τT<
TL and TU< −τT} when the boundary values (θ1-p, θp) = (ΔL, ΔU). It follows from ΔL = θ1-p =

μD−zpσD and ΔU = θp = μD + zpσD that TL ~ t(v, zp(2M)1/2) and TU = TL− 2zpσD/(S2/M)1/2.

Thus, the Type I error rate is rewritten as αTOST = P{τT< TL and TU< −τT} = P{τT< TL<
2zpσD/(S2/M)1/2 – τT}� P{τT< TL} = α. Note that the size of the TOST is the supremum

Sup

H0

P DL �
bθTL and bθTU � DU

n o
= α which is attained as σ2

D or σ2 goes to zero. However, the

Type I error rate of the TOST procedure is generally less than the nominal level. The succeed-

ing empirical investigations reveal that the discrepancy is of considerable concern. An

improved procedure is proposed next to facilitate research practice in assessing individual

equivalence.

The proposed procedure for parallel group design. By extending the two-sided sampling

plan in Owen [19], the suggested exact rejection region for declaring individual equivalence is

of the form

DL <
bθEL and bθEU < DU ð11Þ

where bθEL ¼ �X1 �
�X2 þ tEðS=M1=2Þ, bθEU ¼ �X1 �

�X2 þ tEðS=M1=2Þ, and the quantity τE is

selected so that the Type I error rate
Sup

H0

P DL �
bθEL and bθEU � DU

n o
= α. Note that the supre-

mum
Sup

H0

P DL �
bθEL and bθEU � DU

n o
is attained when the two percentiles coincide the

boundary values (θ1-p, θp) = (ΔL, ΔU) or alternatively, μD = (ΔU + ΔL)/2 and σ2
D = (ΔU− ΔL)

2/(4z2
p).

Accordingly, the designated critical value τE is obtained by

Pðθ1� p �
bθEL and bθEU � θpÞ ¼ a: ð12Þ

It follows from the normal assumption defined in Eq 1 that Z = (�X1 – �X2 – μD)/(σ2/M)1/2 ~

N(0, 1) and K = vS2/σ2 ~ χ2(v) where χ2(v) is a chi-square distribution with degrees of freedom
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v. Also, Z and K are independent. Then, the probability evaluation in Eq 12 can be expressed

as

P � G � Z � Gð Þ ¼ a; ð13Þ

where G = zp(2M)1/2 – τE(K/v)1/2. It is computationally transparent to adopt the formulation

EK ½2F G0ð Þ � 1� ¼ a; ð14Þ

where G0 = G if K< k0 and G0 = 0 if K� k0 with k0 = (2vMz2
p)/τ

2
E, F is the cumulative density

function of the standard normal distribution, and the expectation EK[�] is taken with respect to

the distribution of K. A special-purpose computer program is required to calculate the critical

value τE for the chosen model settings. Consequently, the null hypothesis is rejected if

TL > τE and TU < � τE: ð15Þ

Note that the critical values τE of the suggested approach and τT of the TOST procedure

generally differ. For example, when (N1, N2) = (20, 20), α = 0.05, p� = 0.80, the critical values

are τE = 6.4527 and τT = 7.9987 for the suggested and TOST procedures, respectively. Accord-

ing to the rejection rules in Eqs 10 and 15, the TOST is less likely to reject the null hypothesis

than the exact procedure because of τT> τE. Therefore, the two critical regions (bθEL, bθEU) and

(bθTL, bθTU) do not necessarily lead to the same conclusion.

On the other hand, with the definitions of the two random variables Z and K, it can be

shown that the corresponding power function is

CE ¼ P GL < Z < GUð Þ; ð16Þ

where GL = (ΔL− μD)/(σ2/M)1/2 + τE(K/v)1/2 and GU = (ΔU− μD)/(σ2/M)1/2 – τE(K/v)1/2.

Note that the power calculation is meaningful only when GL< GU or K < k1 where k1 =

{vM(ΔU− ΔL)2}/(4σ2τ2
E). A transparent and convenient expression of the power function is

CE ¼ EK ½F GU1ð Þ � F GL1ð Þ�; ð17Þ

where GL1 = GL and GU1 = GU if K < k1, and GL1 = 0 and GU1 = 0 if K � k1. The power for-

mula CE is useful for computing the achieved power with the given sample sizes, and for

determining the required sample sizes to attain the nominal power under the selected con-

figurations (ΔL, ΔU, p�, α, μ1, μ2, σ2).

Crossover design

In bioequivalence studies, a common scenario for comparing treatments is the two-period

crossover design. Consider the standard two-sequence and two-period crossover design in

terms of the model

Yijk ¼ μþ Fij þ Pj þ Sik þ εijk ð18Þ

where Yijk is the outcome for the kth subject in the ith sequence and jth period, μ is the grand

mean, Fij is the formulation effect, Pj is the fixed period effect, Sik is the random subject effect,

and εijk is the random error for i = 1 and 2, j = 1 and 2, and k = 1, . . ., Ni. The formulation

effects are expressed as F11 = F22 = μR and F12 = F21 = μT for the reference product and test

product, respectively, {Sik} are independent N(0, σ2
S) variables, and {εijk} are independent

N(0, σ2
ij) variables with σ2

11
= σ2

22
= σ2

R and σ2
12

= σ2
21

= σ2
T . Moreover, it is assumed that P1 + P2 =

μR + μT = 0.
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To establish individual equivalence between two treatments in the crossover design, the

central portion of the contrast for the individual measurements of two treatments (C1k–C2k0)/2

needs to be within a reasonable range around zero where Cik = (Yi2k–Yi1k)/2 for i = 1 and 2.

Accordingly, (C1k–C2k0) ~ N(μC, σ2
C) where μC = μT− μR, σ2

C = 2σ2, and σ2 = (σ2
R + σ2

T)/4. The

100�pth percentile for the distribution of (C1k–C2k0) is denoted by

θp ¼ μC þ zpσC ð19Þ

for 0< p< 1 as in Eq 2. An unbiased estimator of the difference between the two

treatments μC is the sample mean difference �C1 �
�C2 where �C1 =

XNi

k¼1
Cik=Ni for i = 1 and 2.

It is clear that E(�C1) = μC/2, E(�C2) = –μC/2, Var(�C1) = σ2/N1, and Var(�C2) = σ2/N2. Hence, the

mean difference �C1 – �C2 has the distribution

�C1 �
�C2 � NðμC; σ

2=MÞ;

whereM = 1/(1/N1 + 1/N2). Moreover, S2 =
X2

i¼1

XNi

k¼1
Cik � �Cið Þ

2
=n is an unbiased estima-

tor of σ2 and K = (vS2)/σ2 has a chi-square distribution with degrees of freedom v = N1 + N2−2.

The formulations and properties for the crossover design show close resemblance to those of

the parallel group design. Accordingly, the conceptual and statistical similarities enable the

conversion of the individual equivalence inference of the parallel group design into that of the

crossover design.

The TOST procedure for crossover design. By analogy to the parallel group design, the

individual equivalence problem within the context of crossover design can be conducted with

respect to the null and alternative hypotheses given in Eq 3. Following the TOST principle for

assessing equivalence of mean effects, Liu and Chow [14] proposed an extension for declaring

individual equivalence based on the lower confidence limit of a upper 100(1 – α)% one-sided

confidence interval of θ1−p and the upper confidence limit of a lower 100(1 – α)% one-sided

confidence interval of θp. Specifically, Liu and Chow [14] suggested that the null hypothesis of

no individual equivalence is rejected if

DL <
bθCTL and bθCTU < DU ; ð20Þ

or

TCL ¼
�C1 �

�C2 � DL

S2=Mð Þ
1=2

> τCT and TCU ¼
�C1 �

�C2 � DU

S2=Mð Þ
1=2

< � tCT: ð21Þ

where bθCTL ¼ �C1 �
�C2 � tCT S=M1=2ð Þ, bθCTU ¼ �C1 �

�C2 þ tCT S=M1=2ð Þ and the critical value

τCT = τT = t1−α(v, zp(2M)1/2).

The proposed procedure for crossover design. In this case of crossover design, the pro-

posed exact rejection region for declaring individual equivalence is of the form

DL <
bθCEL and bθCEU < DU ð22Þ

where bθCEL ¼ �C1 �
�C2 � tCE S=M1=2ð Þ, bθCEL ¼ �C1 �

�C2 þ tCE S=M1=2ð Þ, and the quantity τCE is

selected so that the Type I error rate
Sup

H0

P DL �
bθCEL and bθECU � DU

n o
= α. This evaluation

of the Type I error rate has the same statistical property as that of the parallel group design.

The critical value can be obtained with the identical technique. Consequently, with the similar

argument and notation, it can be shown that the critical value τCE is identical to that of the
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parallel group design: τCE = τE. Alternatively, the null hypothesis is rejected if

TCL > τCE and TCU < � τCE: ð23Þ

The corresponding power function is

CCE ¼ P GCL < Z < GCUf g; ð24Þ

where GCL = (ΔL− μC)/(σ2/M)1/2 + τCE(K/v)1/2, GCU = (ΔU− μC)/(σ2/M)1/2 – τCE(K/v)1/2, Z ~ N
(0, 1), and K ~ χ2(v). For computational ease, an alternative formulation of CCE is

CCE ¼ EK ½F GCU1ð Þ � F GCL1ð Þ�; ð25Þ

where GCL1 = GCL and GCU1 = GCU if K< kC1, GCL1 = 0 and GCU1 = 0 if K� kC1, kC1 = {vM
(ΔU− ΔL)

2}/(4σ2τ2
CE). For ease of illustration, the endpoints of the prescribed test procedures

for parallel group and crossover designs are summarized in Table 1.

Results

Type I errors

The suggested test procedures are derived by controlling the Type I error at the nominal level.

Although the critical values do not have an explicit analytic expression, they can be determined

with the designated configurations (N1, N2, p�, α, ΔL, ΔU). On the other hand, the TOST proce-

dures generalize the results for mean equivalence assessment and tolerance interval estimation.

The resulting critical values and rejection regions are not directly obtained with respect to the

Type I error control in hypothesis testing. It is of theoretical and practical importance to evalu-

ate the potential discrepancy between the proposed approach and benchmark TOST method.

Accordingly, simulation study was conducted to examine the Type I error rates under the par-

allel group designs.

For the numerical investigations, the selected central proportions of the individual equiva-

lence tests are p� = 0.80, 0.90 and 0.95. The mean and variance of the null distribution N(μD0,

σ2
D0

) for the individual measurement difference are chosen as μD0 = 0 and σ2
D0

= 1. The desig-

nated thresholds (ΔL, ΔU) are determined by ΔL = μD0–zpσD0 and ΔU = μD0 + zpσD0. The result-

ing similarity bounds are (ΔL, ΔU) = (–1.2816, 1.2816), (–1.6449, 1.6449), and (–1.9600, 1.9600)

for p = 0.90, 0.95, and 0.975, respectively. Four sets of sample sizes are considered: (N1, N2) =

(20, 20), (50, 50), (100, 100), and (200, 200). Throughout the empirical examination, the signif-

icance level is fixed as α = 0.05. Under the combined twelve structures of central proportions

and sample sizes, an important step is to compute the critical values τE and τT of the proposed

Table 1. The endpoints of the proposed and TOST rejection rules.

Methods Endpoints Equation

The TOST procedure by Tsong and Shen [15]: {bθTL, bθTU} bθTL ¼ �X 1 �
�X 2 � τT S=M1=2ð Þ

bθTU ¼ �X 1 �
�X 2 þ τT S=M1=2ð Þ

9

The proposed procedure: {bθEL, bθEU} bθEL ¼ �X 1 �
�X 2 � τE S=M1=2ð Þ

bθEU ¼ �X 1 �
�X 2 þ τEðS=M1=2Þ

11

The TOST procedure by Liu and Chow [14]: {bθCTL, bθCTU} bθCTL ¼ �C1 �
�C2 � τCT S=M1=2ð Þ

bθCTU ¼ �C1 �
�C2 þ τCT S=M1=2ð Þ

20

The proposed procedure: {bθCEL, bθCEU} bθCEL ¼ �C1 �
�C2 � τCEðS=M1=2Þ

bθCEU ¼ �C1 �
�C2 þ τCEðS=M1=2Þ

22

https://doi.org/10.1371/journal.pone.0269128.t001
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and TOST procedures for the specified settings. According to the results presented in Table 2,

the two critical values have a systematic order that τE is consistently less than τT. Hence, the

TOST method has smaller rejection rate than the suggested approach.

The simulated Type I error rates of the individual equivalence tests were computed via

Monte Carlo simulation of 10,000 independent data sets. For the two test procedures, the sim-

ulated Type I error rates were the proportion of the 10,000 replicates whose critical intervals

(bθEL, bθEU) and (bθTL, bθTU) were within the range of (ΔL, ΔU). The simulated Type I error proba-

bilities under the four different sample sizes are summarized in Tables 3–5 for the three central

portions p� = 0.80, 0.90, and 0.95, respectively. The adequacy of the two procedures is deter-

mined by the difference between the simulated Type I error rate and the nominal level 0.05 as

summarized in the tables. To visualize the differences between the two procedures, the simu-

lated results for p� = 0.90 in Table 4 are also plotted in Fig 1. It is evident that the simulated

Type I error rates of the suggested approach are almost identical to the nominal value 0.05. In

contrast, the simulated Type I error probabilities of the TOST method are less than 0.01 for

the 12 settings considered here. These findings suggest that the proposed procedure has ade-

quate Type I error control, whereas the TOST procedure is extremely conservative.

Power and sample size calculations

A related and important issue of the individual equivalence test is the power and sample size

calculations. The power functions derived in Eqs 17 and 25 facilitate the desired power and

sample size planning of the parallel group and crossover designs. The algorithms for comput-

ing the critical value, achieved power, and sample size are implemented in the supplementary

programs. Accordingly, numerical studies were conducted to explicate the behavior of derived

power function and the usefulness of accompanying computer algorithm in sample size

determinations.

Sample size determination requires test configurations of Type I error rate α, nominal power

1 – β, equivalence bounds (ΔL, ΔU), null central portion p�, and the alternative settings include

the mean values (μ1, μ2), error variance σ2, and sample size allocation ratio r =N2/N1. Note that

the resulting percentiles θ1-p and θp need to be within the designated bounds (ΔL, ΔU) under the

alternative distribution N(μD, σ2
D). For illustration, two central portions are considered: p� =

0.90 and 0.95 (p = 0.95 and 0.975). By fixing the null distribution N(μD, σ2
D) asN(0, 1), the result-

ing two sets of threshold bounds are (ΔL, ΔU) = (–1.6449, 1.6449), and (–1.9600, 1.9600). The

alternative distributions are chosen to have the treatment means (μ1, μ2) = (0, 0), (0.05, 0), and

(0.10, 0), and variance σ2
D = 0.6, 0.7 and 0.8. Under the specified configurations, the minimum

total sample size NT =N1 +N2 is computed for balanced design r = 1 (N1 =N2), significance

level α = 0.05, and nominal power 1 – β = 0.9. The estimated sample sizes and attained power

levels are summarized in Table 6 for the combined 18 cases. The minimum sample size for

Table 2. The critical values of the proposed and TOST procedures for individual equivalence when the significance level α = 0.05.

Sample sizes (N1, N2)

Test procedure Central proportion p� (20, 20) (50, 50) (100, 100) (200, 200)

The proposed approach 0.80 6.4527 9.7099 13.4337 18.7232

TOST method 7.9987 11.1886 14.8840 20.1553

The proposed approach 0.90 8.4041 12.5728 17.3474 24.1334

TOST method 9.8812 13.9793 18.7236 25.4901

The proposed approach 0.95 10.1084 15.0664 20.7517 28.8354

TOST method 11.5352 16.4203 22.0744 30.1377

https://doi.org/10.1371/journal.pone.0269128.t002
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attaining the nominal power increases with increasing mean difference μD or increasing vari-

ance σ2
D when all other factors remain fixed. It is essential to see that the magnitudes of the com-

puted sample sizes are substantially different for the settings considered here. The smallest

sample size is 80 for two the settings of (p�, μD, σ2
D) = (0.95, 0, 0.6). On the other hand, the largest

sample size 1852 is required for the situation with (p�, μD, σ2
D) = (0.90, 0.10, 0.8). The results

indicate that the prescribed test configurations have unique and distinct influence on the power

function. Conceivably, it is unlikely that a simple guideline will give accurate sample size

determination.

Furthermore, under the prescribed model configurations, simulation study was conducted

to justify the accuracy of the proposed power and sample size procedures. Specifically, the sim-

ulated power of the proposed test procedure was computed via Monte Carlo simulation of

10,000 independent data sets. The simulated power and the difference between the simulated

power and estimated power are also presented in Table 6. For each of the 18 scenarios, the

small difference reveals that the simulated power is nearly identical to the estimated power.

The accuracy of the described power and sample size procedures is fairly consistent under var-

ious sample size and parameter configurations. Consequently, these findings suggest that the

developed power and sample size algorithms are reliable for practical applications.

An application

A bioequivalence study was presented in Liu and Chow [14] to demonstrate the assessment of

individual equivalence between two drug formulations. Under the standard setting of two-

sequence two-period cross over design, the responses are the area under the plasma concentra-

tion-time curve (AUC). The sample sizes, sample mean difference, and residual error variance

of the logarithmic transformation of AUC are N1 = N2 = 10, �C1 – �C2 = 0.05331, and S2 =

0.0378, respectively. To declare individual equivalence between the test and reference formula-

tions, it is assumed that at least p� = 0.75 of the difference between two individual formulation

measurements are within the bounds ΔL = ln(0.80) = –0.2231 and ΔU = ln(1.25) = 0.2231.

Table 3. The simulated Type I error rates of individual equivalence tests for central proportion p� = 0.80, equivalence bounds (ΔL, ΔU) = (–1.2816, 1.2816), and the

significance level α = 0.05.

Sample sizes (N1, N2)

(20, 20) (50, 50) (100, 100) (200, 200)

Test procedure Simulated alpha Difference Simulated alpha Difference Simulated alpha Difference Simulated alpha Difference

The proposed approach 0.0541 0.0041 0.0486 –0.0014 0.0506 0.0006 0.0496 –0.0004

TOST procedure 0.0011 –0.0489 0.0008 –0.0492 0.0004 –0.0496 0.0004 –0.0496

Note: ΔL = μD−zpσD and ΔU = μD + zpσD where μD = 0, σ2
D = 1, p = 0.90, and zp = 1.2816.

https://doi.org/10.1371/journal.pone.0269128.t003

Table 4. The simulated Type I error rates of individual equivalence tests for central proportion p� = 0.90, equivalence bounds (ΔL, ΔU) = (–1.6449, 1.6449), and the

significance level α = 0.05.

Sample sizes (N1, N2)

(20, 20) (50, 50) (100, 100) (200, 200)

Test procedure Simulated alpha Difference Simulated alpha Difference Simulated alpha Difference Simulated alpha Difference

The proposed approach 0.0530 0.0030 0.0492 –0.0008 0.0489 –0.0011 0.0514 0.0014

TOST procedure 0.0029 –0.0471 0.0026 –0.0474 0.0019 –0.0491 0.0014 –0.0486

Note: ΔL = μD−zpσD and ΔU = μD + zpσD where μD = 0, σ2
D = 1, p = 0.95, and zp = 1.6449.

https://doi.org/10.1371/journal.pone.0269128.t004
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Accordingly, the test statistics in Eq 21 can be computed as TCL = 3.1801 and TCU = –1.9537.

With α = 0.05, the critical values of the TOST and proposed procedures are τCT = 6.0173 and

Table 5. The simulated Type I error rates of individual equivalence tests for central proportion p� = 0.95, equivalence bounds (ΔL, ΔU) = (–1.9600, 1.9600), and the

significance level α = 0.05.

Sample sizes (N1, N2)

(20, 20) (50, 50) (100, 100) (200, 200)

Test procedure Simulated alpha Difference Simulated alpha Difference Simulated alpha Difference Simulated alpha Difference

The proposed approach 0.0518 0.0018 0.0502 0.0002 0.0493 –0.0007 0.0522 0.0022

TOST procedure 0.0056 –0.0444 0.0041 –0.0459 0.0032 –0.0468 0.0031 –0.0469

Note: ΔL = μD−zpσD and ΔU = μD + zpσD where μ = = 0, σ2
D = 1, p = 0.975, and zp = 1.9600.

https://doi.org/10.1371/journal.pone.0269128.t005

Fig 1. Simulated Type I error rates for central proportion 0.90 and α = 0.05.

https://doi.org/10.1371/journal.pone.0269128.g001
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τCE = 4.3436, respectively. Also, the two associated critical regions are (bθCTL, bθCTU) = (–0.4698,

0.5764) and (bθCEL, bθCEU) = (–0.3243, 0.4309). Thus, the two test procedures conclude that the

null hypothesis of no individual equivalence cannot be rejected at the significance level 0.05.

Under the normal assumptions, the difference between two individual formulation mea-

surements has the distribution (C1k–C2k’) ~ N(μC, σ2
C). Using the summary statistics as exem-

plifying parameter values (μC, σ2
C) = (0.05331, 0.0756), the proportion between the two bounds

(ΔL, ΔU) = (–0.2231, 0.2231) for the normal distribution N(μC, σ2
C) is the probability P(ΔL<

C1k–C2k’< ΔU) = 0.5744. Note that the coverage probability is substantially less than the nomi-

nal value 0.75 for declaring individual equivalence. For illustration, the working parameters

are chosen as μC = 0.02, 0.03, 0.04, and 0.05 and σ2
C = 0.0756/4. To meet the nominal power

0.80, the estimated sample sizes are (N1, N2) = (25, 25), (37, 37), (69, 69), and (183, 183) with

the achieved power levels 0.8017, 0.8035, 0.8024, and 0.8002, respectively. Evidently, the mag-

nitudes are larger than the sample sizes (N1, N2) = (10, 10) of the previous analysis. This indi-

cates the importance and accuracy of power and sample size procedures for efficient

computations in individual equivalence study. The accompanying computer algorithms are

also presented for conducting the suggested power and sample size calculations.

Conclusions

The conventional TOST of mean focuses only on the equivalence of population means

between the test and reference formulations. Therefore, the TOST of mean equivalence or

average equivalence does not take into account the variability of formulation difference in bio-

availability across subjects. In view of the limitation of average equivalence, Chen [24] identi-

fied several desirable features of bioequivalence criteria. The criteria include the assurance of

switchability between formulations, the control of Type I error rate at 5%, determination of

appropriate sample size, and user-friendly software application for the statistical method.

Table 6. Estimated sample size, estimated power, and simulated power of the proposed individual equivalence test for balanced design N1 = N2, σ2 = s2
D/2, the nomi-

nal power 0.90, and the significance level α = 0.05.

Null proportion p� Equivalence bounds (ΔL, ΔU) Mean μD Variance σ2
D Sample size NT Simulated power Estimated power Difference

0.90 (–1.6449, 1.6449) 0 0.6 86 0.9020 0.9008 0.0012

0.7 182 0.8973 0.9004 –0.0031

0.8 482 0.9034 0.9009 0.0025

0.05 0.6 92 0.9026 0.9005 0.0021

0.7 210 0.9019 0.9020 –0.0001

0.8 678 0.9012 0.9005 0.0007

0.10 0.6 116 0.9013 0.9027 –0.0014

0.7 322 0.8961 0.9005 –0.0044

0.8 1852 0.9032 0.9001 0.0031

0.95 (–1.9600, 1.9600) 0 0.6 80 0.8981 0.9006 –0.0025

0.7 168 0.9036 0.9007 0.0029

0.8 440 0.9029 0.9003 0.0026

0.05 0.6 86 0.9075 0.9057 0.0018

0.7 186 0.9021 0.9008 0.0013

0.8 566 0.8988 0.9002 –0.0014

0.10 0.6 100 0.9039 0.9029 0.0010

0.7 256 0.9033 0.9012 0.0021

0.8 1170 0.8999 0.9000 –0.0001

https://doi.org/10.1371/journal.pone.0269128.t006
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Related considerations of individual equivalence can be found in the additional discussion in

Chen et al. [25] and Chen and Lesko [26]. To address these issues, this article presents exact

tests for assessing individual equivalence under parallel group and crossover designs. The

numerical results showed that the TOST procedures based on tolerance intervals are overly

conservative. More importantly, the exact approach has excellent Type I error control and can

be recommended for routine use. Computer programs are also developed to implement the

proposed equivalence test, power calculation, and sample size determination. The research

designs and test procedures considered here are valid only if the homogeneous variance

assumption is satisfied. The degree of robustness presumably depends on the extent of how

badly the homogeneity of variance assumption is violated. Future research can explore possible

extensions to accommodate heterogeneity of variance settings.
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