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Most mammalian RNA polymerase II initiation events occur at CpG islands, which are rich in CpGs and devoid of DNA

methylation. Despite their relevance for gene regulation, it is unknown to what extent the CpG dinucleotide itself actually

contributes to promoter activity. To address this question, we determined the transcriptional activity of a large number of

chromosomally integrated promoter constructs and monitored binding of transcription factors assumed to play a role in

CpG island activity. This revealed that CpG density significantly improves motif-based prediction of transcription factor

binding. Our experiments also show that high CpG density alone is insufficient for transcriptional activity, yet results in

increased transcriptional output when combined with particular transcription factor motifs. However, this CpG contribu-

tion to promoter activity is independent of DNA methyltransferase activity. Together, this refines our understanding of

mammalian promoter regulation as it shows that high CpG density within CpG islands directly contributes to an environ-

ment permissive for full transcriptional activity.

[Supplemental material is available for this article.]

Gene regulation establishes correct spatio-temporal expression
patterns essential for cellular function. Expression is controlled
atmultiple levels, including recognitionof specificDNA sequences
by transcription factors (TFs), chromatin structure, modifications
of nucleosomes, and methylation of DNA. While the majority of
transcription factors recognize complex motifs of several nucleo-
tides, it is unclear whether lower complexity sequence features,
such as dinucleotides, contribute independently to gene activity.
CpG is the most studied dinucleotide in mammalian genomes
and the site of cytosine methylation (Bird 1980; Lister and Ecker
2009; Stadler et al. 2011). In mammals, the majority of CpGs are
methylated, while unmethylated CpGs are concentrated in specif-
ic regions called CpG islands (CGIs) (Bird et al. 1985). CGIs are de-
fined as being 200 bp or longer with a G+C content of >50% and a
CpG observed over expected (OE) ratio of at least 0.6 (Gardiner-
Garden and Frommer 1987). Here, we will refer to the OE ratio as
“normalized CpG density.” CGIs make up two thirds of all mam-
malian promoters, reflected in a bimodal distribution of their nor-
malized CpG density (Fig. 1A; Mohn and Schübeler 2009). They
display higher transcriptional activity than non-CGI promoters
(Fig. 1B) and tend to be active across many cell types (Larsen
et al. 1992). Consequently,most initiation events of RNApolymer-
ase II in mammalian cells occur at CGI promoters.

WhyCpGdensity is increased inCGIs remainsunclear, aswell
as whether the CpG dinucleotide plays a role in transcriptional
and/or epigenetic regulation. One explanation portrays CGIs as a
footprintof evolutiondue to lowermutation rates of unmethylated
CpGs (Bird 1980). In support of this, unmethylated cytosines

deaminate to uracil (Barnes and Lindahl 2004), an improper DNA
base that is efficiently repaired. In contrast, methylated cytosines
deaminate to thymidine, a proper genomic base that is less effi-
ciently repaired, resulting in a higher C→T mutation rate. While
this model is supported by comparative genomics (Cohen et al.
2011) and could explain the presence of CGIs, it does not address
a regulatory function of CpG dinucleotides. Some CpGs operate
as part of larger motifs and thus serve to recruit TFs. Furthermore,
TF binding can keep CpGs unmethylated, as suggested for SP1
(Brandeis et al. 1994; Macleod et al. 1994), while methylated
CpGs can repel or even enhance binding (Domcke et al. 2015;
Kribelbauer et al. 2017; Yin et al. 2017). There is limited evidence
for evolutionary selection of CpGs to reside in defined positions
(Cohen et al. 2011), arguing that only a minority of CpGs are
part of larger motifs. This suggests a neutral evolutionary regime
in which CpGs come and go in a mostly random fashion within
CGIs. Importantly, the latter does not exclude a functional contri-
bution. CpG density alone can protect DNA from methylation
(Lienert et al. 2011; Krebs et al. 2014; Wachter et al. 2014; Long
et al. 2016), and CpG dinucleotides have been suggested to further
act as a signaling module (Bird 2011). A possible mechanism in-
volves ZF-CxxC domain proteins, which bind unmethylated
CpGs (Long et al. 2013). Several chromatin modifying enzymes
contain CxxC domains, and some are proposed to counteract
methyltransferase activity (Ooi et al. 2007; Cedar and Bergman
2009).

Taken together, CpGs couldhave a general effect on promoter
activity that is distinct fromtheiroccurrenceas apart of complexTF
motifs. Distinguishing these scenarios is not trivial. It requires
knowledge of TF bindingwithinCGIs and testing the contribution
ofCpGs topromoteractivity.While the formercanbeaddressedus-
ing ChIP-seq, the latter requires a reporter assay that quantifies
transcriptional output as a function of sequence mutations. Due
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to the high frequency of the CpG dinucleotide, this requires many
mutations and measuring many variants. Thus far, most high-
throughput transcriptional reporter assays in higher eukaryotes
used transient transfection (Patwardhan et al. 2009, 2012;
Kwasnieski et al. 2012; Melnikov et al. 2012; Mogno et al. 2013;
White et al. 2013; Shen et al. 2015). Chromosome integration is,
however, desirable given the reporteddifferences in transcriptional
activity from episomes or varied chromosomal location (Inoue
et al. 2017).

Here, we investigate the contribution of CpGs to transcrip-
tional activity and binding of transcription factors to their motifs
in CGIs.We contrast hundreds ofmutant sequences after inserting
them into the same genomic site in mouse embryonic stem cells
(ESCs). The resulting loss- and gain-of-function experiments reveal
that CpGs contribute to transcriptional output independent of
DNA methylation.

Results

Parallel reporter assay at a defined chromosomal site

Investigating CpG function necessitates an approach that
systematically compares different sequences in parallel and in the

context of chromosomal DNA. This re-
quires a sequencing strategy that links
RNA molecules (i.e., expression counts)
to upstream regulatory regions that are
not part of the transcript. Toward this
goal, we designed a parallel reporter assay
called TrAC-seq (Transcriptional Activity
inChromatin).With TrAC-seq, promoter
sequences are cloned in a pooled format
and inserted into a defined genomic lo-
cus. The resulting transcripts are se-
quenced and assigned to their specific
promoters using barcodes (BCs) (Fig.
1C). BC frequencies are quantified by iso-
lating RNA and DNA and sequencing the
BCs from both. Resulting barcode fre-
quencies in the RNA are then normalized
to the frequency of the actual template
using the representation of the same BC
in the DNA of the cell population (Fig.
1C; Methods).

To control for the contribution of
chromatin and the local genetic en-
vironment, we integrated the library of
promoter-barcode constructs into the
beta-globin locus in ESCs using recombi-
nase-mediated cassette exchange (RMCE)
(Lienert et al. 2011; Krebs et al. 2014).
This region is transcriptionally silent out-
side the erythroid lineage (Fromm and
Bulge 2009).

The mean signal of all BCs corre-
sponding to one promoter allowed us to
reproducibly quantify the relative activi-
ty of promoters within a pool (Supple-
mental Figs. S1A,B, S4A,B, S4E–G, S5A,
B), enabling the measurement of up to
∼3100 promoter-BC constructs within a
single experiment. In total, we tested

more than 10,000 promoter-BC constructs representing ∼270
unique promoter sequences.

High density of CpGs alone does not confer CGI activity

Normalized CpG density correlates well with transcriptional activ-
ity of endogenous promoters (Fig. 1B), but whether or not this is a
direct consequence of CpG density remains unclear. High CpG
density coincides with features of transcriptionally permissive
chromatin, such as trimethylation at lysine 4 on histone H3
(H3K4me3) and a lack of DNAmethylation at endogenous and ar-
tificial sequences (Lienert et al. 2011; Krebs et al. 2014; Wachter
et al. 2014). To assess if high CpG density alone is sufficient for
transcriptional activity, we tested the activity of sequences from
a prokaryotic genome (Escherichia coli). These have a CpG density
comparable to CGIs but have not evolved binding sites for eukary-
otic TFs. Combined with a minimal promoter, their activity, how-
ever, is barely detectable by TrAC-seq compared to a selection of
active housekeeping gene promoters (Fig. 1D), showing that
high CpG density is insufficient for transcriptional activity on
chromatin. Even if insufficient for activity, CpGs could neverthe-
less contribute to CGI activity. To test this requires mutating CpGs
and monitoring the effect on activity. A careful design of such
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Figure 1. High normalized CpG density alone is not sufficient for transcriptional activity. (A) Histogram
of CpG densities of all promoters in the mouse genome (400 bp upstream to 200 bp downstream from
TSS). Normalized CpG density is distributed in a bimodal fashion. CpG density was calculated as the ob-
served to expected ratio (OE = [number of CpGs/{number of Cs × number of Gs}] × length of the region in
nucleotides). The red line indicates the threshold in OE used in the standard definition of CpG islands
(Gardiner-Garden and Frommer 1987). (B) Box plot displaying transcriptional activity of CpG-poor
(OE <0.6) and CpG-rich (OE >0.6) promoters, as measured by RNA sequencing in embryonic stem cells
(data fromDomcke et al. 2015). (FPKM) Fragments per kilobase permillionmapped reads. (C) Schematic
representation of the procedure used to perform parallel reporter assays in a defined genomic locus.
Promoter mutants are batch-cloned in front of GFP as a spacer sequence and a unique barcode. The ex-
pression cassette is flanked by loxP sites that allow integration into the beta-globin locus of the embryonic
stem cell line, replacing a selection cassette. After selection for cells containing the reporter construct,
DNA and RNA are isolated and the latter reverse-transcribed. Barcodes are PCR-amplified and sequenced.
Normalization of RNA barcode frequency to DNA barcode frequency results in relative expression levels
between constructs. (D) CpG density versus transcriptional activity of sequences from the Escherichia coli
genome (black dots) and active housekeeping genes (HKG, red dots) inserted into embryonic stem cells.
The CMV promoter is indicated for reference as an example of a lowly active promoter. The histogram
above the scatter plot depicts the normalized CpG density distribution of CGI promoters.
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mutations is needed to distinguish between CpGs that are part of
complex TF motifs (motif-CpGs) and those that are not (non-
motif-CpGs). Since binding motifs are generally poor predictors
of actual TF binding due to many unoccupied motif occurrences
(Biggin 2011), we determined actual binding of selected TFs using
ChIP-seq.

TF motifs within CpG islands are preferentially bound

We profiled four TFs with CpGs in their canonical motifs and rel-
atively broad expression pattern (Fig. 2A; Supplemental Fig. S2A–
D; data from Shen et al. 2012). Among these, SP1 and SP3 were im-
plicated in regulating a CGI promoter (Brandeis et al. 1994;
Macleod et al. 1994), while we previously profiled NRF1, revealing
its binding inhibition by DNA methylation (Domcke et al. 2015).
We profiled SP1, SP3, and GABPA in mouse embryonic stem cells
using the “Rambio” approach (Supplemental Fig. S2E–G; Baubec
et al. 2013), yielding reproducible ChIP-seq data for all factors
(Supplemental Fig. S2H). Binding was indistinguishable between
SP1 and SP3, which recognize similar low complexity motifs and
displayed comparably low enrichments (Supplemental Fig. S2I).
This limited an in-depth analysis of binding sites but allowed the
classification of promoters as bound or unbound (Fig. 2B). Local
enrichments were considerably higher for NRF1 and GABPA, en-
abling a detailed analysis (Fig. 2C,D; Supplemental Fig. S3A).

As expected, presence of motifs of at least intermediate motif
score are a poor predictor of binding for these two factors, since
only 10% and ∼5% of all genomic windows with NRF1 and
GABPA motifs are bound, respectively (Fig. 2C,D; Supplemental
Fig. S3A). To test howCpG frequency relates to binding,we contrast-
ed CpG density with TF binding independent of motif. For both fac-
tors, binding is more prevalent in windows with higher CpG density
(OE≥0.6) (Fig. 2C,D). ForGABPA, enrichments inhighCpGdensi-
ty windows are larger than in those that harbor a motif of at least
intermediate score (Fig. 2D; Supplemental Fig. S3A). Windows
with both high CpG density and motif occurrence are bound at
high frequency, with NRF1 occupying ∼45% and GABPA ∼70%
of thesewindows (Fig. 2C,D; Supplemental Fig. S3A). Theyaccount
for∼40%ofallbindingevents forNRF1and∼15%–20%forGABPA.

To move beyond this binarized comparison, we explored the
predictive power of CpG and motif over a continuous range. This
revealed that binding increases with CpG density and starts to
diminish around the CGI threshold (Supplemental Fig. S3B,C).
For GABPA, CpG density predicts binding better thanmotif alone,
which is not the case for NRF1 (Supplemental Fig. S3B,C).
Combining motif score and regional CpG density in an additive
model using logistic regression improves the predictive power
over individual measures (Supplemental Fig. S3B,C; Methods). If
only windows with OE≥0.6 are considered, almost all windows
with top-scoring motifs are bound (roughly 90% for GABPA and

80% for NRF1) (Supplemental Fig. S3B,
C). Taken together, this suggests that in-
creasingCpGdensity does not simply en-
rich for bound motifs because the motifs
themselves contain a CpG, but that CpG
density itself contributes to binding,
which, in turn, might affect transcrip-
tional output of CGI promoters.

CpG density contributes to CGI activity

To test the contribution of CpGs to tran-
scription, we measured 78 broadly active
CGI promoters with TrAC-seq (Supple-
mental Fig. S4A,B), which displayed vari-
able expression (Supplemental Fig. S4C,
D). We focused on two promoters with
high activity (Snx3 [∼400 bp] and Pwp2
[∼460 bp]) and systematically mutated
their CpGs. To reduce the likelihood of
changing motif-CpGs, we used the bind-
ing data described above to identify
boundmotifs.We divided each promoter
into four (Pwp2) or five (Snx3) regions
and generated all possible combinations
of regions with either wild-type (WT) se-
quence or regions in which all CpGs out-
side of bound TF binding sites of SP1,
SP3, GABPA, and NRF1 were mutated
(Fig. 3A). TrAC-seq of this library revealed
for both promoters that activity decreas-
es with decreased CpG density (Fig. 3B,
C), suggesting that non-motif-CpGs con-
tribute to transcriptional activity.

To ask if this observation can be
generalized, we mutated 11 addition-
al CGI promoters spanning a range of
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Figure 2. Bound TF motifs are enriched in CpG islands. (A) Position weight matrices of SP1, SP3,
GABPA, and NRF1 as inferred from the respective ChIP-seq peaks. (B) Browser screenshot of SP1, SP3,
GABPA, and NRF1 ChIP-seq data sets at the Pwp2 promoter. Predicted TFmotifs for the respective factors
are highlighted as colored squares; the green bar indicates a CpG island. (C) High CpG density and TF
motif occurrence combined result in the largest enrichment of bound TF motifs. Pie charts show, for dif-
ferent subsets, the percentage of NRF1-bound genomic windows (600-nt tiling windows, log2 enrich-
ment over input >2.5), with the percentage indicated above the pie chart (bound); (recall)
percentage of all bound genomic windows that are part of each subset. Corresponding box plots of
log2 ChIP enrichments are shown below the pie charts. (All) All windows, (motif) windows containing
a motif that has a log-odds score≥12 (log2 scale), (OE≥0.6) windows with an OE≥0.6, (motif +OE≥
0.6) windows with both a motif with a log-odds score≥12 and an OE≥0.6. (D) Same as in C for the first
replicate of GABPA.
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normalized CpG density and transcriptional activity (Fig. 3D;
Supplemental Fig. S4H). This time, CpGs were randomly chosen
to generate elements with 100%, 75%, 50%, 25%, and 0% of
non-motif-CpGs. Here, we included an additional 17 published
ChIP-seq data sets to define non-motif-CpGs (Supplemental
Table S3). Moreover, CpGs to be mutated were randomly selected
for each CpG density to ensure that effects are not due to absence
of the same set of mutated CpGs of a particular promoter. This
more comprehensive set of promoters shows a similar response; re-
moving non-motif-CpGs lowers the transcriptional activity in
most cases (Fig. 3D).

While these experiments argue for a general contribution of
non-motif-CpGs to CGI transcriptional activity, we cannot ex-
clude that some of the effect may be due to mutations of CpGs
that reside within nonverified TF motifs.

An indication of this may be the higher spread of activities at
similar CpG densities for the Pwp2 promoter compared to Snx3
(Fig. 3B,C). Since we mutate windows of CpGs in different combi-
nations (Fig. 3A–C) or individual CpGs in a random fashion (Fig.

3D), this seems unlikely. Nonetheless,
we applied a more controlled mutation
approach to the Pwp2 promoter to test
this possibility.

Dissecting CpGs from TF motifs

To delineate functionally relevant motifs
in the Pwp2 promoter, we first located
bound and unbound motifs of GABPA,
SP1, MYC, and NRF1 using ChIP-seq
data andmeasured transcriptional activi-
ty in constructs withmutatedmotifs (Fig.
4A). Upon mutation of GABPA and SP1,
activity strongly decreases for one out of
two motifs. For both factors, ChIP-seq
signal is highest closer to the motif caus-
ing decreased activity when mutated.
Especially for closely spaced SP1 motifs,
it is unclear whether the resolution of
ChIP-seq is sufficient to assign binding.
For MYC and NRF1 motifs, activity de-
creases weakly upon mutation irrespec-
tive of binding. Thus, although binding
does not predict activity, masking of
CpGs that lead to large changes in activ-
ity when mutated appears a reasonable
rationale to enrich for non-motif-CpGs.
Since mutating all CpGs is not feasible,
we divided the Pwp2 promoter into tiling
windows of 10 bp and generated all pos-
sible constructs with one of the windows
replaced by a random 10-bp CpG-free se-
quence. Measuring the resulting 42 mu-
tants after genomic insertion revealed
variable effects on promoter activity.
About half of the mutated 10-bp win-
dows did not have a clear effect on ex-
pression (Fig. 4B). Some windows,
however, showed a clear reduction in ac-
tivity when mutated. While there is no
general correspondence between predict-
ed motifs in windows and reduced activ-

ity, the replacement with the strongest effect overlaps one GABPA
motif (GABPA_2) and partially one SP1 motif (SP1_2), both of
which reduce activity when mutated individually (Fig. 4A). The
window with the second strongest reduction does not contain a
predictedmotif indicating other binding events. Motifs withmod-
erate effects on activity when mutated individually tend to lie in
windows with moderate decreases in activity. Comparison of
SP1/SP3 ChIP-seq signal at the endogenous Pwp2 promoter and
transcriptional activity of mutants shows that ChIP-seq, as expect-
ed, lacks the spatial resolution to correctly discriminate binding
between closely spacedmotifs and, in turn, predict the effect on ac-
tivity (Fig. 4B,C). If motifs are located at a larger distance, like for
GABPA, ChIP-seq can indeed be sufficient to predict if specific mo-
tifs are bound (Fig. 4B,C).

Additionally, activity also decreases when mutating regions
downstream from the dominant initiation site of the endogenous
promoter as measured by CAGE (cap analysis by gene expression)
(Fig. 4B; The FANTOM Consortium and the RIKEN PMI and CLST
[DGT] 2014), suggesting that these regions contribute to initiation.
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Figure 3. Normalized CpG density correlates with transcriptional activity. (A) Mutation strategy.
Promoters weremutated in windows, in which all Cs within CpGs that were not a part of a complexmotif
of TFs with a ChIP-seq peak at the promoter were mutated to Ts (for Snx3) or As (for Pwp2). WT and mu-
tant windows were assembled in all possible combinations and assayed for transcriptional activity. The
windows in the Snx3 promoter had 5, 10, 6, 9, and 12 CpGs, respectively, and ranged from 50–120
bp in size. For Pwp2, windows of 70–150 bp with 8, 7, 7, and 7 CpGs, respectively, were mutated.
The numbers 32 and 16 indicate the number of constructs for Snx3 and Pwp2, respectively, the large ma-
jority of which led to a transcriptional read-out. (B) Presence of CpGs positively correlates with transcrip-
tional activity. Scatter plot of normalized CpG density versus transcriptional activity of Snx3 promoter
mutants. The histogram above the scatter plot depicts the normalized CpG density distribution
within promoters overlapping CGIs. The average Spearman’s correlation coefficient of all three replicates
(±1 SD) and its significance is indicated in the upper left part of the plot. P-values were determined based
on an approximate permutation test (see Methods). (C) Same as in B for the Pwp2 promoter. Due to low
coverage of BCs for this promoter series, in this case we adjusted the threshold on theminimal number of
required BCs per promoter mutant to 1. (D) Positive correlation of normalized CpG density with tran-
scriptional activity is a general feature in promoter mutant libraries. Scatter plot showing normalized
CpG density versus transcriptional activity in the reporter assay for 11 promoters. Mutant promoters
were generated by random mutation of Cs to As within CpGs if they were not part of complex motifs
of TFs that have a ChIP-seq peak at the promoter. Different numbers of CpGs were mutated to generate
five different normalized CpG densities per promoter.
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Having characterized the regulatory function of the Pwp2 pro-
moter at 10-bp resolution enabled us to define regions critical for
transcriptional activity due to TF binding and non-motif-CpGs
for further mutational analysis.

Mutation of CpGs within regions not critical for transcriptional

activity

Next, we mutated only CpGs of the Pwp2 promoter lying in re-
gions with minor or no effect on activity. We randomly selected
subsets of these CpGs, generated 11 mutants with different CpG
densities (Fig. 5A), and tested their activity. This revealed that re-
moving non-motif-CpGs decreases transcriptional activity, result-
ing in a general positive correlation between CpG density and
activity. More specifically, a decrease in activity relative to WT
can be observed at CpG densities around 0.6–0.7 OE (Fig. 5B),
where 0.7 corresponds to 12 CpGs mutated out of 35. Here, the
construct with highest CpG density has up to ∼50% lower activity

than other constructs with slightly lower CpG density (Fig. 5B).
While this appears to be the case for a small number of additional
tested constructs (Fig. 3B,D), further experiments would be re-
quired to clarify if this is a general effect.

Taken together, these findings again suggest that non-motif-
CpGs contribute to transcriptional output. Finally, we wanted to
test this model in a gain-of-function assay.

Increasing CpGs within an artificial sequence context enhances

promoter activity

To directly examine if CpGs alone contribute to transcriptional ac-
tivity, we increased CpG density in a random sequence context.
More specifically, we exchanged regions of the Pwp2 promoter
with no role or a minimal role in transcriptional activity with
CpG-free sequences (Fig. 5C). This replaced∼60%of the sequence,
decreasing CpG density from∼1 to∼0.6 OE ratio. Using this as our
baseline sequence, we reintroduced CpGs into the CpG-free re-
gions at the same positions as inWT but in random combinations
and quantified the effect on transcriptional activity. This revealed
that increasing CpG density alone resulted in a gradual activity in-
crease (Fig. 5D).Wewere able to regain up to ∼26% ofWT promot-
er activity when reintroducing an equal number of CpGs as inWT
(n= 20) and increased the activity as high as ∼54% of WT by add-
ing more CpGs (Fig. 5D). As in Figure 5B, the construct with the
highest CpG density does not have the highest activity (Fig. 5D).

When these findings are taken together, we conclude that in-
creasing CpG density enhances promoter activity, providing fur-
ther support for CpG density contributing to CGI activity.

DNA methyltransferase activity does not account

for transcriptional effect

Since high CpG density antagonizes DNAmethylation of chromo-
somally inserted sequences (Lienert et al. 2011; Krebs et al. 2014),
reducing CpGs could lead to DNA methylation, which, in turn,
might account for activity reduction.

To test this, we repeated selected activity measures (Figs.
3B–D, 5B,D) in cells that lack DNA methyltransferase activity.
We generated a Dnmt1, Dnmt3a, and Dnmt3b triple-knockout
(TKO) from our parental line and performed the same genomic in-
tegration (Supplemental Fig. S5C,D). We then tested CpG density
promotermutants and compared their activity to thewild-type pa-
rental cells. This revealed that CpG contribution to promoter activ-
ity is independent of DNA methyltransferases (Fig. 6).

Next, we measured the actual DNA methylation of several
mutant CGI promoters (constructs in Fig. 3D) by bisulfite sequenc-
ing of individual clones. This revealed that sequences with low
CpG density indeed show an increase in DNA methylation
(Supplemental Fig. S5E), in line with our previous findings that
CpGs indeed protect against DNA methylation. These CpG-poor
promoters (i.e., non-CGIs) show very low to no transcriptional ac-
tivity in both wild-type and DNAmethyltransferase TKO cells. We
conclude that within the tested constructs, de novo methylation
occurs at already inactive CpG-poor promoters but does not ac-
count for differential expression of CpG-rich and CpG-poor
promoters.

Discussion

By combining genome-wide profiling of TFs with high-through-
put genomic insertion of promoter mutants, this study shows
that CpGs are not sufficient but necessary for full activity of CGIs.
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Figure 4. Characterization of the Pwp2 promoter. (A) Mutation of spe-
cific TFmotifs leads to decreased transcriptional activity. Bar plots showing
log2 activity relative to WT constructs with single TF motif mutations or
mutations of all motifs of each TF. Due to low coverage of BCs per promot-
er, we adjusted the threshold on the minimal number of required BCs per
promoter mutant to 1. (B) Mutation of 10-bp windows reveals highly var-
iable effects on promoter activity. Bar plots showing transcriptional activity
relative to the WT construct of promoters with mutated windows near the
TSS (top), where most changes are seen, compared to the entire promoter
(bottom). Tiling 10-bp windows were mutated to a random CpG-free se-
quence to assess the contribution of each window to transcriptional activ-
ity. Error bars show ±1 SD of three replicates. A schematic view of a region
of the Pwp2 promoter that contains TF motifs (shown in colored boxes)
and the TSS (indicated by arrow) is shown between the bar plots. (C) TF
binding partially overlaps with regions important for transcriptional activ-
ity. Heat map displaying reads per 10-bp window for mRNA 5′ ends
(CAGE), GABPA, NRF1, SP1, SP3 ChIP-seq, and DNase I hypersensitivity
mapping at the endogenous Pwp2 promoter (DHS). Scale is equal to pro-
moter representation at the bottom of panel B.
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In order to obtain such comprehensive data, the develop-
ment of a parallel reporter assay proved essential. Previous studies
described substantial differences in transcriptional activity of con-
structs depending on chromosomal/episomal context (Inoue et al.
2017) or genomic location (Akhtar et al. 2013). In the current
study, we introduce TrAC-seq, which enabled reproducible and
sensitive measurements from constructs after insertion into the
same genomic locus. As a result, only one construct is tested per
cell, yet multiple measurements were obtained for each tested se-
quence within the cell population. This sensitivity allowed quan-
tification of subtle changes in transcriptional activity. This assay
can also be utilized to explore other sequence features of promoters
or enhancers. Combined with two other approaches tomeasure in
parallel at the same genomic site which were reported following
submission of our work (Maricque et al. 2018; Weingarten-
Gabbay et al. 2019), this largely extends the toolset to study cis-act-
ing sequences.

Here, TrAC-seq allowed us to iterate sufficient mutant con-
structs to show unequivocally that CpG dinucleotides contribute
to activity regardless of being in a complex motif. This is evident
when removing CpGs in regions that are not critical for activity

but also when adding CpGs in an other-
wise random sequence context. This pro-
vides functional evidence to correlative
observations linking high CpG density
to active chromatin marks and high ex-
pression (Guenther et al. 2007; Weber
et al. 2007; Thomson et al. 2010; Deaton
and Bird 2011; Fenouil et al. 2012; van
Arendsbergen et al. 2016), as well as the
findings that CpG-dense sequences are
free of DNA methylation when inserted
into the genome (Lienert et al. 2011;
Krebs et al. 2014).

A previous study suggested that the
open chromatin structure of CGIs de-
pends on high G and C content as well
as high CpG density (Wachter et al.
2014). Since we focused on CpGs in our
study, we cannot formally exclude a con-
tributionofG andC content to transcrip-
tional activity. However, we observe clear
transcriptional effects upon mutations
of CpGs that cause only small changes
of G+C content (Supplemental Fig.
S4I), strongly arguing that primarily
CpG density increases activity.

CpGsmight support transcriptional
activity indirectly, by increasing DNA ac-
cessibility and thereby facilitating TF
binding. In agreement with this model,
accessibility of genomic regions corre-
lates with CpG density (Supplemental
Fig. S3D). This is consistent with studies
showing that CpG-rich artificial se-
quences display marks of open chroma-
tin (Lienert et al. 2011; Krebs et al.
2014; Wachter et al. 2014) and the fact
that the TFs tested in our study preferen-
tially bind their motif when located in
CpG-rich regions. This relationship rais-
es the question of whether or not accessi-

BA

C D

Figure 5. CpGs outside of TF motifs contribute to transcriptional activity of CGIs. (A) Mutation strat-
egy. Cs in CpGs were mutated to As within 10-bp windows that showed small or no effect on activity
when mutated. CpGs were mutated in random combinations within mutant promoter constructs.
(B) CpGs outside of regions with a strong effect on transcriptional activity contribute to transcriptional
activity. Scatter plot of normalized CpG density versus transcriptional activity relative toWT Pwp2 for pro-
moter mutants. Normalized CpG density correlates significantly with transcriptional activity. The average
Spearman’s correlation coefficient for all three replicates ±1 SD) and its significance is indicated in the
upper left part of the scatter plot. P-values were determined based on an approximate permutation
test (seeMethods). (C) Mutation strategy to generate an artificial sequence context and strategy for add-
ing back CpGs. We first determined all 10-bp sequence blocks of the Pwp2 promoter with no effect or a
weak effect on their activity whenmutated and replaced themwith randomCpG-free sequences to retain
correct spacing. Subsequently, different numbers of CpGs were re-introduced into the randomCpG-free
sequences at the same spatial locations as in the WT Pwp2 promoter. (D) Normalized CpG density itself
contributes to CGI activity. Scatter plot of normalized CpG density versus transcriptional activity relative
to the activity of WT Pwp2 for constructs in C. Normalized CpG density positively correlates with tran-
scriptional activity. The average Spearman’s correlation coefficient of all three replicates (±1 SD) and
its significance is indicated in the upper left part of the scatter plot. P-values were calculated as in B.

Figure 6. DNA methylation does not affect transcriptional activity of
mutant promoters with low normalized CpG density. Scatter plot showing
normalized CpG density versus log2 activity fold change of WT compared
to Dnmt TKO cells. No significant dependence is observed. The
Spearman’s correlation coefficient and its significance are indicated in
the upper left part of the figure. P-values were determined based on an ex-
act permutation test (see Methods).
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bility decreases upon CpG depletion in the tested promoter mu-
tants. While of interest, current accessibility techniques employ
nucleases or transposases and thus are not suitable for studying li-
braries that are heterogeneous between cells and would require lo-
cus-specific PCR for detection.

While it remains open how CpGs mediate increased activity,
recruitment of binders of unmethylated CpGs such as ZF-CxxC
domain-containing proteins is one option. These are present at
CGIs and correlate with their accessible chromatin environment
(Blackledge et al. 2010; Clouaire et al. 2012, 2014; Boulard et al.
2015). They include CFP1, which is part of the H3K4methyltrans-
ferase complexes SETD1A and SETD1B (Clouaire et al. 2012), and
KDM2A, which removes H3K36me2 (Blackledge et al. 2010), a
chromatin mark that interferes with transcriptional initiation
(Strahl et al. 2002; Carrozza et al. 2005; Youdell et al. 2008; Li
et al. 2009). In addition, the ZF-CxxC domain-containing protein
FBXL19 has been linked to CDK-Mediator complex recruitment,
representing another potential pathway (Dimitrova et al. 2018).
Since the mouse and human genomes encode at least 12 different
ZF-CxxC domain-containing proteins, it is challenging to func-
tionally test their role (Long et al. 2013; Xu et al. 2018).
Moreover, additional proteins can recognize unmethylated CpGs
such as the zinc finger and BTB domain containing protein 2
(ZBTB2) (Karemaker and Vermeulen 2018).

Mutation to very low CpG densities increases DNA methyla-
tion, in line with previous transgenic experiments, where DNA
methylation occursmost frequently at lowCpG densities and rare-
ly at CpG-rich DNA sequences (Lienert et al. 2011; Krebs et al.
2014). However, removal of DNA methyltransferase activity does
not lead to specific up-regulation of the tested constructs, indicat-
ing that DNAmethylation is not responsible for decreased activity
upon CpG depletion in this setting.

We previously argued that DNA methylation is generally re-
pressive at high CpG density (Schübeler 2015), while at CpG-
poor sequences a repressive effect likely requires DNA methyla-
tion-sensitivity of TFs as shown for NRF1 (Domcke et al. 2015). A
protective function of high CpG density against DNAmethylation
is a potential explanation why high CpG density together with
motif occurrence is such a good predictor for TF binding for
GABPA and NRF1. Protection from DNA methylation at CGIs
could again be mediated by ZF-CxxC domain-containing proteins
like KDM2B. Its deletion results in slow yet cumulatingDNAmeth-
ylation at inactive CGIs in stem cells (Boulard et al. 2015).

The transcriptional effects of mutating CpGs were rather
uniform, regardless if positioned upstream or within the site of
transcriptional initiation. Together, this supports a model where
most CpGs within CGIs have no local function, while the overall
CpG density in the promoter nevertheless enhances transcription-
al activity.

How does this finding relate tomodels of the evolutionary or-
igin of CGIs? Previous analysis indicated that the high CpG con-
tent in CGIs can be explained by a neutral effect of slow
deamination associated with the lack of methylation, revealing
no evidence for purifying selection on CpGs (Cohen et al. 2011).
This is fully compatiblewith our observation that overall CpGden-
sity is important, rather than individual positions. It is further
tempting to speculate that methylation of CpGs in the context
of CGIs would interfere with their enhancing activity, which
might in part account for the transcriptional repression of methyl-
ated CGIs.

The link reported here between CpG density and transcrip-
tional activity at CGI promoters exposes a function of dinucleotide

frequencies outside of complex TF motifs. Given the different
structure of CpG-poor promoters and enhancers, other low-com-
plexity motifs or resulting sequence features such as DNA shape
(Zhou et al. 2015) might also operate as an additional means of
fine-tuning regulation.

Taken as a whole, our study underlines the importance and
complexity of sequence context beyond complex TF motifs for
transcriptional activity and provides an experimental framework
for rigorous testing of putative regulatory roles.

Methods

Cell culture

Mouse ES cells were cultured as described (Lienert et al. 2011). For
detailed descriptions of cell lines, see Supplemental Methods.

Reporter assay

Generation of a barcoded reporter vector

A cassette containing a loxP site, multiple cloning site, poly(A) sig-
nal, and another loxP site was synthetized and cloned into a plas-
mid backbone containing ampicillin resistance (Lienert et al.
2011). Barcodes were generated by annealing CGCCGAANNN
NWNNNNWNNNNNAGCTCGG and TCGACCGAGCTNNNNN
WNNNNWNNNNTTCGGCGCATG. The vector was cut using
SphI and SalI and ligated with the annealed barcodes using T4.
The ligation was precipitated, and 100 ng were transformed into
MegaX DH10BT1R Electrocomp Cells (Thermo Fisher Scientific).
A dilution of 1:10,000 was distributed on a LB agar plate contain-
ing 50 mg/L ampicillin to estimate transformation efficiency. The
rest was incubated in 50 mL LB containing 50 mg/L ampicillin
shaking at 300 rpmat 37°Covernight. Plasmidswere isolated using
a Qiagen Plasmid Midi kit.

Library cloning and RMCE

Promoter libraries were cloned into the expression vector using
ClaI and NheI restriction enzymes, aiming for at least 10× more
colonies than unique promoters. To link barcodes and promoters,
the promoter-BC fragment was amplified with primer DH.P39
(Supplemental Table S1) and one of the indexing primers contain-
ing the Illumina flow cell annealing sequences using Phusion Hot
Start II polymerase (Thermo Fisher Scientific). PCR products were
purified using AmPure XP beads (Beckman Coulter, #A63880)
and directly sequenced using MiSeq 500- or 600-cycle kits
(Illumina). The vector was cut with SphI and PacI or NheI, and a
sequence containing a CpG-free eGFP and the annealing sequence
for primer DH.P6 (Supplemental Table S1) was inserted. For an al-
ternative construct, the insert contained a 31-bpminimal promot-
er in front of eGFP. RMCE was performed as described (Krebs et al.
2014).

RNA/DNA isolation and preparation for next-generation sequencing

RNAwas isolated from cell lines containing the expression libraries
with a Qiagen RNeasy Mini kit with on-column DNase digestion
and reverse-transcribed using Takara PrimeScript RT Reagent kit
(#RR047A). For DNA isolation, cell pellets were suspended in
Bradley Buffer, 6 μL RNase A (10 mg/mL) was added, and samples
were incubated (1 h at 37°C). Subsequently, 30 μL Proteinase K
(1 mg/mL) was added, and samples were incubated at 50°C over-
night. Then, DNA was extracted using Phenol:Chloroform. DNA
and cDNA barcodes were amplified with KAPA HiFi HotStart using
primer DH.P6 and indexing primer (Supplemental Table S1). PCR
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products were purified using AmPure XP beads (Beckman Coulter,
#A63880) and sequenced using a 50-cycle kit on HiSeq 2500.

Promoter methylation analysis

Cells containing integrated mutant CGI promoter libraries were
plated at low density, 96 clones picked and expanded to a mini-
mum of 20,000 cells before lysing with Bradley Buffer (10 mM
Tris-HCl (pH 7.5), 10 mM EDTA (pH 8.0), 0.5% SDS, 10 mM
NaCl), and DNA extracted. DNA was bisulfite-converted using a
Zymo lightning conversion kit (D5046) and cleaned up using
MagBeads (Zymo). Converted DNA was amplified with primers
RSG353 and RSG354 (Supplemental Table S1). Amplified DNA
was purified with Ampure beads, and sequencing libraries were
prepared using the Illumina NEBNext ChIP-seq library prep kit
with 96 dual indexing and sequenced on a MiSeq (600 cycles).

Generation of biotin-tagged TF cell lines

Biotin-tagged TF cell lines were generated as described (Baubec
et al. 2013). Bio-GABPA was expressed under control of a CAG as
well as a CMVpromoter, while Bio-SP1 and Bio-SP3were expressed
using Tet-inducible promoters induced with 1 mg/L doxycycline
for 24 h.

ChIP

Bio-ChIP was performed as described (Baubec et al. 2013).

Immunoprecipitation and western blotting

Immunoprecipitation and western blotting was performed as de-
scribed (Baubec et al. 2013; Domcke et al. 2015).

Generation of Dnmt1, Dnmt3a, Dnmt3b knockout cell line

Deletions were generated from TC-1 ES cells as described (Domcke
et al. 2015).

Reporter assay data analysis

For additional description on this section, see Supplemental
Methods.

Barcode to promoter assignment

FASTQ fileswere trimmed to the promoter sequence and aligned to
mm9 using Bowtie (Langmead et al. 2009) for libraries where the
design allowed efficient alignment (see Supplemental Table S2).
Formutant promoter libraries, reads werematched to the reference
sequences using the “stringdistmatrix” function in R (van der Loo
2014), which, unlike Bowtie, does not limit the number of allowed
mismatches. This was necessary due to the high error rate toward
the end of very long (2× 300 nt) Illumina reads.We allowed a total
of 20% errors in both reads (i.e., in 600 bp sequenced) and applied
a cutoff on the minimum distance (i.e., the number of mismatch-
es) to the next closest reference of 3 (Supplemental Fig. S1C).

Barcodes were extracted from each second read and matched
to the aligned reads by read ID. Only barcodes that were associated
with one unique sequence or with a sequence where the ratio of
the second most abundant sequence to the most abundant se-
quence was below 0.3 were used for the analysis (Supplemental
Fig. S1C).

Quantification of transcriptional activity

Transcriptional analysis was performed in triplicate following ge-
nomic insertion. Barcode sequences were extracted, and the fre-

quency of each barcode sequence was calculated to get counts
for each sample. Genomic DNA and RNA samples were scaled to
each other by normalizing to the smaller total number of counts.
Only barcodes that were sufficiently represented on genomic
DNA (more than 20 reads after normalization) were used for fur-
ther analysis. In case a barcode was sufficiently represented on ge-
nomic DNA but not sequenced in the RNA fraction, we assumed
that this reflects lack of activity and assigned 0 counts to the
RNA barcode. Enrichments of barcodes in the RNA sample were
then calculated as nr/nd +α, where nr are the RNA counts and nd
the DNA counts for a particular barcode and α represents a pseudo-
count (for a derivation, see Supplemental Methods). The first ratio
can be understood as being proportional to the RNA counts per
single cell, to which a constant pseudocount of α is added. α was
set to 0.05 as this was the smallest value of α that roughly stabilized
the variance in all libraries. Log2 promoter activities were calculat-
ed as the mean of the log2 enrichments of all barcodes assigned to
the particular promoter. All plots displaying expression data show
mean log2 activities of three replicates unless indicated otherwise.

Significance calculations

The significance of Spearman’s correlations was calculated using
permutation tests.

ChIP-seq data analysis

Samples were mapped to themm9 assembly of themouse genome
using the R packageQuasR (Gaidatzis et al. 2015), which internally
uses Bowtie (Langmead et al. 2009). We do not expect changes to
our conclusions if we used the more recent version of the mouse
genome assembly, mm10, instead of mm9, as our analysis is fo-
cused on regions outside of repeats. These nonrepetitive regions
were already well sequenced in mm9.

Peaks were called using Peakzilla with default parameters
(Bardet et al. 2013). Position weight matrices of motifs were gener-
ated based on called peaks in the bio-ChIP-seq data using HOMER
on all peaks with default parameters (Heinz et al. 2010). The motif
score was defined as the commonly used log-odds score (in log2
scale) with respect to a uniform background. For more details,
see Supplemental Methods.

Precision-recall analysis

For a given cut-off on either CpGdensity (observed over expected),
motif score, or the probability of being bound predicted by a logis-
tic regression that uses both CpG density andmotif score as input,
the fraction of genomic windows larger or equal to the cut-off that
are bound (precision) and the number of bound genomicwindows
larger or equal to the cut-off divided by the total number of bound
windows (recall) were calculated. Precision-recall curves were de-
termined by varying the corresponding cut-offs over the entire
range of values (100 values fromminimum to maximum in equal-
ly sized steps). For more details, see Supplemental Methods.

Methylation data processing

Sequences were aligned to mutant promoter libraries using QuasR
(Gaidatzis et al. 2015) default settings for bisulfite-converted sam-
ples. DNA methylation was quantified using the QuasR function
qMeth, and promotermethylation levels were calculated as the av-
erage methylation of all CpGs per promoter.

Published data sets

The following ChIP-seq data sets were downloaded from GEO:
NANOG, MYCN, POU5F1 (OCT4), SMAD1, SOX2, STAT3,
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TFCP2L1, ZFX (GSE11431) (Chen et al. 2008), REXO1 (GSE36417)
(Gontan et al. 2012), TBX3 (GSE19219) (Han et al. 2010), TCF3
(GSE11724) (Marson et al. 2008), YY1 (GSE31786) (Vella et al.
2012), ZIC2 (GSE61188) (Luo et al. 2015), CTCF (GSE30206/
GSM747534) (Stadler et al. 2011), NFYA (GSE25533/GSM6
32038) (Tiwari et al. 2011), NRF1 (GSE67867/GSM1891641)
(Domcke et al. 2015), REST (GSE27148/GSM671093) (Arnold
et al. 2013).

DNase hypersensitivity data set was retrieved from GEO un-
der the accession number (GSE67867) (Domcke et al. 2015).

The CAGE data set was downloaded from the FANTOMCon-
sortium homepage (http://fantom.gsc.riken.jp) (The FANTOM
Consortium and the RIKEN PMI and CLST [DGT] 2014).

For a complete overview, see Supplemental Table S3.

Data access

The raw sequencing data generated in this study have been submit-
ted to the NCBI Gene Expression Omnibus (GEO; https://www
.ncbi.nlm.nih.gov/geo/) under accession number GSE116704.
Sequences and primers of expression libraries are provided in
Supplemental Files.
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