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ABSTRACT

Gene fusion represents a class of molecular aber-
rations in cancer and has been exploited for thera-
peutic purposes. In this paper we describe Tumor-
Fusions, a data portal that catalogues 20 731 gene
fusions detected in 9966 well characterized cancer
samples and 648 normal specimens from The Cancer
Genome Atlas (TCGA). The portal spans 33 cancer
types in TCGA. Fusion transcripts were identified via
a uniform pipeline, including filtering against a list of
3838 transcript fusions detected in a panel of 648
non-neoplastic samples. Fusions were mapped to
somatic DNA rearrangements identified using whole
genome sequencing data from 561 cancer samples
as a means of validation. We observed that 65% of
transcript fusions were associated with a chromo-
somal alteration, which is annotated in the portal.
Other features of the portal include links to SNP
array-based copy number levels and mutational pat-
terns, exon and transcript level expressions of the
partner genes, and a network-based centrality score
for prioritizing functional fusions. Our portal aims to
be a broadly applicable and user friendly resource
for cancer gene annotation and is publicly available
at http://www.tumorfusions.org.

INTRODUCTION

One of the consequences of genomic rearrangements in can-
cer is the generation of chimeric genes where segments of

two distinct genes are aberrantly fused together. These fu-
sions can be truncating, disrupting the function of one or ei-
ther genes, or they can activate proto-oncogenes thus drive
neoplasia growth (1). Transcript fusions are relatively in-
frequent compared to somatic single nucleotide variants
and DNA copy number alterations but are among the
most commonly targeted molecular abnormalities in can-
cer. Approved therapies such as crizotinib (ALK and ROS
in non-small cell lung cancer), sunitinib (RET in renal cell
carcinoma), all-trans retinoic acid (PML-RAR« in acute
myeloid leukemia) and dasatinib (ABL in chronic myeloid
leukemia) target genes activated as a result of transcript fu-
sions. Pertinent fusions for which clinical trials are ongo-
ing include those targeting ETS family members in prostate
cancer, TRK family members in various cancers, FGFR2/3
in various cancers and BRAF in multiple cancer types.
Traditional methods to identify gene fusion were mostly
through cytogenetics, fluorescence in situ hybridization and
PCR (1). Over the past decades, high throughput mea-
surement of RNA expression and RNA structural varia-
tion through microarrays and sequencing have opened up
ways to detect somatic transcript chimeras in a comprehen-
sive manner, leading to numerous novel oncogenic fusions
were discovered including but not limited to TMPRSS2-
ERG, FGFR3-TACC3 and DNAJBI-PRKACA (2-5). The
datasets made available through The Cancer Genome Atlas
(TCGA) research network represent an unparalleled public
resource for fusion discovery. In fact, fusion identification
has become a standard analysis performed by every work-
ing group for every cancer type included in TCGA (6-8).
Our group and others have previously reported pan-cancer
analysis of transcript fusion frequencies (9—-11). Here, we
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describe our results on expanding our pan-cancer analy-
sis from 13 to 33 tumor types, including a large cohort of
non-neoplastic tissues and whole genome sequencing on
>500 cancer samples to validate our findings. Our results
can be accessed through our TumorFusions web data portal
(http://www.tumorfusions.org), which enables researchers
to query and review fusions in an interactive manner.

MATERIALS AND METHODS

TCGA DNA and RNA sequencing data were downloaded
from Cancer Genomics Hub (CGHub, https://cghub.ucsc.
edu). Copy number segmentation data and gene expres-
sion data were downloaded from Firehose (https://gdac.
broadinstitute.org/). Of 689 normal samples, we excluded 41
samples because they clustered with tumor samples in unsu-
pervised hierarchical clustering (all genes, ward’s method).
The resulting panel of normal samples (n = 648) were sub-
jected to the same fusion detection pipeline and were used
as controls to filter out potential germline fusion events and
artifacts. We applied PRADA (12) to all RNAseq samples
for data preprocessing and fusion calling. We required at
least two discordant read pairs and one junction spanning
read as the minimum criteria to call a fusion candidate.
All fusion candidates were subject to six additional filters
(Supplementary Methods). We integrated three resources
including Mitelman (13), ChimerPub (11) and Cosmic fu-
sions (14) to build a positive control fusion list (the white
list). Each fusion on the list had support from at least three
independent publications, leading to a list of 321 unique
gene—gene fusions. Of these 321, 38 fusions were detected
in our dataset. The 283 gene—gene combinations that were
not detected in the TCGA dataset may reflect the relatively
small diversity of cancer types profiled by TCGA compared
to the literature.

Of the 9966 tumor samples included in our RNAseq anal-
ysis, TCGA has performed whole genome sequencing on
561 tumor samples and their matching germlines. We used
SpeedSeq to process whole genome sequencing data and
called DNA structural variants with default parameters on
all 561 tumor samples and matching normal (15). Germline
events were filtered out by comparing with matched normal
samples. We scanned the intersection between the edge of
confident interval from structure variants and fusion events.
Three confidence levels were assigned once the structural
variant was found in the proximity of a fusion. When using
copy number data from SNP arrays to validate fusions, we
required a 100 Kb window to the expected orientation for
both partner genes. More details can be found in the Sup-
plementary Methods.

Fusion transcript centrality score was calculated based
on domain-based fusion model using default parameters
(https://bmsr.usc.edu/software/targetgene/), to predict the
oncogenic driver in which partner genes act as hubs in a
cancer pathway network (16).

RESULTS
Fusion identification and validation

We analyzed mRNA sequencing data from 9966 cancer
samples and 689 non-neoplastic samples from The Cancer
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Genome Atlas (TCGA) (Figure 1 and Supplementary Ta-
ble S1). We included non-neoplastic samples in our analy-
sis to establish a list of transcript fusions detected due to
sequencing artefacts and germline copy number polymor-
phisms. Non-neoplastic samples in TCGA are frequently
obtained through tissue biopsy adjacent to the location of
the cancer and is therefore at risk of being contaminated
with tumor cells. We used unsupervised clustering of can-
cer and normal samples to identify 41 normal samples that
were at risk for cancer cell contamination, which were ex-
cluded from further analysis. Preprocessing, including read
alignment to both genome and transcriptome, and fusion
detection were carried out using our Pipeline for RNAseq
Data Analysis (PRADA) (12). Processing of the 55 terabyte
TCGA dataset resulted in the identification a total of 56
198 and 3838 raw fusion events in 9966 cancer samples and
648 normal samples, respectively. The inclusion of panel of
normal samples was important as this resulted in the filter-
ing of 13 844 fusion predictions, likely resulting from pu-
tative germline events or common artifacts introduced by
misalignment. An example of a germline polymorphism re-
sulting in fusions between TFG and GPRI28 (n = 9, 1%)
on chr3q12.2 which were associated with focal copy num-
ber changes in the germline and represent an example of a
germline polymorphism (17) resulting in a transcribed fu-
sion gene. Following the filtering of fusions detected in nor-
mal samples, we applied six filters controlling for sequence
similarity of the partner genes, transcriptional allelic frac-
tion, dubious junctions, germline events and presence in
non-neoplastic tissue. This finally resulted in a list of 20
731 high confidence fusion events, averaging two fusions per
sample (Supplementary Table S2).

We next used two sources of DNA data to validate the fu-
sion calls. In the first approach we called somatic DNA rear-
rangements from whole genome sequencing (WGS) data for
561 cancer samples and their matched normal. Raw reads
alignment and structural variant calling were performed us-
ing the SpeedSeq suite with the same parameters across the
cases (15). We aligned the genomic coordinates of transcript
fusion junctions to the DNA coordinates of structural vari-
ant junctions. In the case of the 5 partner, if the fusion
junction was located between the structural variant junc-
tion and the start of the gene, we considered the fusion
junction matching with the structural variant. Similarly for
the 3’ partner, if the fusion junction fell between the struc-
tural variant junction and the end of the gene, we consid-
ered the transcript fusion to match the structural variant.
We found 1679 of 2585 fusions (65%) observed in these
561 samples to be associated with structural variants. Of
these fusion related structural variants, the majority were
translocations (50%), followed by deletions (20%), inver-
sions (20%) or duplication (10%) (Supplementary Figure
S1). In the second validation step, we used DNA copy num-
ber profiles estimated by Affymetrix SNP 6.0 arrays, mak-
ing use of the property of structural variants to be associ-
ated with changes in DNA copy number levels. Changes
in DNA copy number are reflected as different DNA seg-
ments in the SNP6 data. We mapped the genomic posi-
tion of transcript fusions and compared these to the ge-
nomic coordinates of DNA segment boundaries. While the
accuracy of this method may be less than WGS-inferred
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Figure 1. The diagram of TumorFusions portal and its main features. The portal can be separated into three components, and the major features of each
component are highlighted in rectangle. ‘Tissue’ in INPUT represents a TCGA cancer type.

genomic rearrangements, we took advantage of the large
number of cases with an available Affymetrix SNP6.0 ar-
ray profile (n = 9825). We found that 54% of fusions were
supported by at least one DNA breakpoint near the fusion
junction (100 kb window). The difference in percentages of
fusions supported by a DNA level alteration likely reflected
the sensitivity differences between SNP arrays and DNA se-
quencing. For benchmarking purposes, we curated a list of
321 known fusions (Supplementary Table S1) by integrating
Mitelman (13), ChimerPub (11) and Cosmic fusions (14).
We applied the same validation strategies to this list and
observed validation rates of 68 and 52%, respectively, for
sequencing-based and array-based approaches. These sim-
ilar rates suggest our fusion calls were likely enriched for
bona fide fusions. We note that the absence of DNA evidence
may result from events such as trans-splicing (18), or may
reflect the complexity of calling structural variants leading
to reduced sensitivity and specificity (19). Improving the ac-
curacy and sensitivity of structural variant and transcript
fusion detection methods may further impact the percent-
age of fusions associated with structural variants.

Portal update

In Table 1 we summarize data volume and new features of
the portal. Notably all cases, including those analyzed in
our original paper (10), were processed in a uniform pipeline
thus the updated portal did not just inherit calls from the
previous version (Supplementary Table S3). The increased
number of normal samples gave us better ability to differ-
entiate somatic from germline fusions.

The portal provides four search modes, by fusion, gene,
sample and cancer type. The set of fusion transcripts de-
tected in the 648 non-neoplastic samples is separately avail-
able for querying. Once a fusion of interest is selected, the
portal displays all instances of this fusion found in the 9966
cancer samples. The full list of fusions in cancer and non-
cancer samples is available as a supplementary table to this
paper (Supplementary Table S2) and through the down-

Table 1. A summary of portal update since its first publication in 2015

FusionPortal
Cancer types 33
Number of cancer samples 9966
Number of normal samples 648
Number of fusions 20731
WGS validation included yes
Centrality score yes
Fusions found in normal searchable yes
IGV link provided yes
Mutation pattern link provided yes
Partner gene expression provided yes
Exon expression provided yes

IGV: lintegrative Genomic Viewer.

load option on the portal. The returned table provides links
to copy number and somatic mutation patterns hosted at
cBio portal (http://www.cbioportal.org) and the Broad In-
stitute (http://www.tumorportal.org), a feature that allows
users to intuitively assess the significance of alterations in
the partner genes in the specific cancer type. The detail
page contains all supporting evidence of the fusion found
in RNAseq, including the number of discordant read pairs
and junction spanning reads. Two images embedded in the
page illustrate the expression abundances of the two part-
ner genes and their exon level expressions, respectively. An
example page is shown in Supplementary Figure S2. An im-
portant addition to the fusion detail page is centrality score,
a metric calculated based on a neighboring gene network to
reflect the functional consequence of a fusion gene (16).

Another addition to the portal is a summary page where
the top frequent fusions and partner genes are highlighted
and ready for browsing. The list includes several recurrent
fusions that are currently under intensive clinical testing
such as FGFR3-TACC3 and ETV6-NTRK3. This page also
hosts quick guide links to the most frequent fusion events
for each cancer type.
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Figure 2. Frequency of recurrent fusions across 33 cancer types. Y-axis represents percentage of cohort wherein the fusion is found. Only recurrent fusions
are shown in the figure. The top frequent fusion in each cancer type is labeled and space permitting known cancer fusions are additionally shown.

Novel insights from the new fusion portal

Since all fusions were identified by the same criteria, we
had the opportunity to examine their distributions across
human cancer. The median number of fusions per sample
was generally low, however, cases with high number of fu-
sions were observed in many cancer types such as sarcoma,
stomach cancer, breast cancer and endometrial carcinoma
(Supplementary Figure S3). The majority of the 20 731 fu-
sions were singletons (n = 17 238, 83.2%). Among the 1205
recurrent fusions, 850 were found in only two cases. These
data suggest that gene fusions are frequently not selected for
but represent collateral DNA rearrangement damage. The
most frequent recurrent fusions were lineage specific, such
as TMPRSS2-ERG in prostate cancer, CCDC6-RET in thy-
roid cancer, and PML-RARA and CBFB-MYHI in acute
leukemia. In contrast FGFR3-TACC3 (n = 36), PTPRK-
RSPO3 (n=9)and EML4-ALK (n = 7) were found across
multiple originating tissues (Figure 2 and Supplementary
Table S2). We identified 2003 fusions involving a kinase,
which included 1130 fusions in which the kinase gene was
the 5’ partner, 914 where kinase was the 3’ partner, and 41
fusions in which both partners were a kinase. For those
fusions (n = 1052) were we were able to retrieve the rel-
ative position of the kinase domains to the fusion break-
point from the Human Protein Reference Database (20),
90% (366/405) of the 3’ partners lost their kinase domains,
in contrast to 50% (326/647) for 5 partners. The differ-
ence was statistically different (P < 2.2e-16, chi-square test).
Transcript fusions of kinase genes that result in loss of the
kinase domain may have the purpose of (de-) activating
other gene functionalities, and possible biases in our anal-
ysis as a result of the lack of kinase domain position infor-

mation needs to be considered. The most frequent, novel ki-
nase fusion was TMEMS87B-MERTK found in seven cases.
Mutations in MERTK has been associated with retinal de-
generation as well as various human cancers (21).

Breaking fusions down into their separate gene part-
ners, we found that other than TMPRSS2 and ERG, re-
curring fusion partner genes were usually found in more
than one tissue of origin (Figure 3). TRK fusions, target-
ing of which by larotrectinib has recently shown promising
clinical efficacy (22), were found in 28 cases across 11 can-
cer types. Other fusions with potential clinical relevance in-
cluded BRAF associated fusions in 30 cases from 11 can-
cer types, for which sorafenib may provide a therapeutic
advantage (23); MET fusions in 20 cases from 10 tumor
types which may respond to crizotinib (24), and ROS! fu-
sions in six cases of lung adenocarcinoma and glioblastoma
(25). In aggregate 7470 genes were found in fusions in more
than one sample, as either 5’ or 3’ partner gene, representing
about 30% of the annotated genes in the human genome.

The centrality score measures the functional effects fu-
sion genes and we found that known driver fusions from
our curated list had significantly higher centrality scores
than other fusions (P < 2.2e-16, t-test; Supplementary Fig-
ure S4). Notable novel recurrent fusions with high centrality
scores include ERCI-RET (n = 3), ERBB2-PPPIRIB (n =
4) and KLK2-FGFR2 (n = 3).

To gain insight into the underlying DNA mechanisms,
we examined the mapping between fusions and DNA rear-
rangements in cases where both data were available. While
57% of fusions (n = 962) were mapped to a single struc-
tural variant, 21% (n = 348) were associated with three
or more structural variants. Such fusion events likely re-
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Figure 3. Top frequent partner genes in recurrent fusion transcripts across 33 cancer types. Y-axis represents frequency of partner genes in the pan-cancer

cohort.

sulted from complex DNA rearrangement events. We found
a significant enrichment for chromosome arm 12q fusions
in sarcoma (adjusted P < 0.001, Chi-square test) (Supple-
mentary Figure S5), seen previously in glioblastoma (26).
The 12q13-15 growth factor signaling gene FRS2 was fre-
quently involved as the 5’ partner (Supplementary Figure
S6), nominating FRS2 as a relevant target in this disease
(27). Pertaining to sarcomas with a complex 12q (21%), we
counted how many cases harbored excessive fusions since
this complex karyotype may generate more fusion tran-
scripts. The median number of fusions per case across the
pan-cancer dataset was two and we applied a conservative
arbitrary cutoff (n > 20) to designate samples as having an
excessive number of fusions. In the sarcoma cohort, 9% of
cases showed more fusions than 20 fusions, compared to
2% in other cancers, identifying sarcoma as especially tran-
script fusion-prone (P = 1.78e-21, Chi-square test; Supple-
mentary Figure S3).

DISCUSSION

Technological advances allow testing the oncogenicity of
these fusion events in a high throughput manner (28) and
clinical trial design is evolving towards adaptive design
across cancer baskets (29), supported by our ongoing char-
acterization of transcript fusions. The fusion portal serves
as an interface for researchers to access our rigorously and
conservatively attained fusion list. It allows users to query
a gene of interest as to whether it is involved in a fusion,
and if so how the gene is mutated in both nucleotide se-
quence and copy number; it allows the assessment of the
frequency of a fusion in adult cancer thus informs basket
trials; it enables the inspection of breakpoints of the fusion,
and links copy number alteration to transcriptional con-
sequences. Our portal provides an important layer of an-
notation to samples included in The Cancer Genome At-
las that to date has been difficult to access. The portal pin-
points fusions to specific TCGA cases thus facilitates inte-

grative analyses wherein fusions can be taken into account
(30). This feature distinguishes our fusion portal from sev-
eral other fusion databases as it complements alterations
such as nucleotide mutation and DNA dosage alteration on
the same set of samples cataloged by other resources such
as cBio (http://www.cbioportal.org) and the tumor portal of
the Broad Institute (http://www.tumorportal.org). Recently
ChimerDB was updated to include more than 5000 TCGA
cases (11). Our portal almost doubles that size, and our uni-
form identification pipeline could provide an independent
source of querying TCGA for fusion events. Although the
tumor fusion portal is currently built upon TCGA data, it is
not bound to TCGA and expansion beyond TCGA is cur-
rently being scheduled. This includes but is not limited to
pediatric cancers, in which fusion genes frequently are tu-
mor initiating events, cancer cell lines available through the
cancer cell line encyclopedia (31) and to integrate with pub-
lished cancer cell line fusion resources (32). The future ad-
dition of cell line data will help researchers identify model
systems wherein an endogenous fusion can be tested and
manipulated.

We anticipate to add more features to the portal, in ad-
dition to data volume expansion. A particularly intriguing
direction is to include details of the DNA rearrangement
events underlying each fusion in contrast to just using the
DNA data as a validation approach. This direction entails
better integration of more whole genome sequencing data,
a task that can be further facilitated by the continuous de-
velopment of rearrangement calling tools.

AVAILABILITY

The TumorFusions web data portal is publicly available at
http://www.tumorfusions.org. No registration is required.
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