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ABSTRACT 

Many of the environments that we navigate through every day are hierarchically organized—they consist 

of spaces nested within other spaces. How do our mind/brains represent such environments? To address 

this question, we familiarized participants with a virtual environment consisting of a building within a 

courtyard, with objects distributed throughout the courtyard and building interior. We then scanned them 

with fMRI while they performed a memory task that required them to think about spatial relationships 

within and across the subspaces. Behavioral responses were less accurate and response times were longer 

on trials requiring integration across the subspaces compared to trials not requiring integration. fMRI 

response differences between integration and non-integration trials were observed in scene-responsive 

and medial temporal lobe brain regions, which were correlated the behavioral integration effects in 

retrosplenial complex, occipital place area, and hippocampus. Multivoxel pattern analyses provided 

additional evidence for representations in these brain regions that reflected the hierarchical organization 

of the environment. These results indicate that people form cognitive maps of nested spaces by dividing 

them into subspaces and using an active cognitive process to integrate the subspaces. Similar mechanisms 

might be used to support hierarchical coding in memory more broadly.  
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INTRODUCTION 

Our navigable world consists of spaces at different scales: rooms, buildings, neighborhoods, cities, 

countries. These spaces are often hierarchically nested within each other—rooms are contained within 

buildings, which in turn are contained within neighborhoods. How do our minds/brains represent this 

hierarchical organization? And how do they mediate the relationship between different levels of the 

hierarchy, to allow us to navigate from place to place? 

One possibility is that our minds create spatial representations of the environment (“cognitive maps”) 

that are themselves hierarchically organized. Previous work in cognitive psychology provides evidence for 

this idea: we mentally divide large environments into subspaces and represent the spatial relationships 

between subspaces separately from the spatial relationships within subspaces. Evidence for hierarchical 

coding is observed in geographical spaces (Stevens & Coupe, 1978), real-world navigable spaces (Hirtle & 

Jonides, 1985; McNamara, 1986), and 2-d figural spaces (Huttenlocher et al., 1991). It is observed across 

multiple behavioral paradigms, including directional judgements (Stevens & Coupe, 1978), position 

estimates (Huttenlocher et al., 1991), distance estimates (Hirtle & Jonides, 1985), free recall (Hirtle & 

Jonides, 1985; Taylor & Tversky, 1992) and navigational planning (Wiener et al., 2004; Wiener & Mallot, 

2003). It is observed when subspaces are physically bounded by walls and barriers (McNamara, 1986) and 

when subspace divisions are mentally imposed top-down in the absence of any physical boundaries 

(Huttenlocher et al., 1991; McNamara, 1986). 

Some of the most compelling evidence for hierarchical coding comes from the fact that people find 

integration across levels of the hierarchy to be challenging. For example, in one study, participants found 

it very difficult to point to campus landmarks while inside a campus building, even though they could do 

so accurately if they exited the building, thus putting themselves in the same hierarchical level as the 

landmarks (Wang & Brockmole, 2003a). In another study, a switching cost was observed when 
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participants were required to recall spatial relationships at different hierarchical levels (room, building, 

campus) in successive trials ((Brockmole & Wang, 2002); see also (Wang & Brockmole, 2003b)). Results 

such as these suggest the existence of separate spatial representations for different levels of the 

hierarchy, which can only be integrated with an active mental process that is sometimes prone to failure. 

Integration across levels may be particularly difficult when the levels have principal axes that are angularly 

offset from each other; when this happens, people can develop different reference frames for each level, 

as evidence by alignment effects in judgment of relative direction tasks (Adamou et al., 2014; Greenauer 

& Waller, 2010; Kelly et al., 2018; Meilinger et al., 2014; Strickrodt et al., 2019; H. Zhang et al., 2014).  

Despite this extensive behavioral evidence, little is known about how hierarchical spaces are encoded in 

the brain, or how the brain integrates across different levels of a spatial hierarchy. The majority of studies 

in spatial neuroscience have little to say about this issue, because they examine brain responses in 

environments that have a single uniform scale and/or a single space (e.g., a single room, or a continuous 

city region). A few studies have looked at where different scales of space are represented by examining 

memory recall in differently-sized spaces (Peer et al., 2019), the intrinsic dynamics of fMRI responses 

during navigation (Brunec et al., 2018; Brunec & Momennejad, 2022), or activity during navigation related 

to use of local vs. global spatial strategies (Evensmoen et al., 2013). These studies have demonstrated 

gradients of responses in the hippocampus, scene-selective regions, and prefrontal cortex related to scale, 

with more posterior regions responding to smaller spatial scales and more anterior regions responding to 

larger scales (Brunec et al., 2018; Brunec & Momennejad, 2022; Evensmoen et al., 2013; Peer et al., 2019). 

However, these studies did not examine how these spaces at different scales are represented, or how the 

scales are integrated with each other. 

Other fMRI studies have used multivoxel pattern analysis and adaptation analyses to explore how the 

brain represents environments that are divided into subspaces. These studies have revealed evidence for 
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both “local” (within-subspace) and “global” (across-subspace) spatial codes. For example, “spatial 

schemas” representing the common local coordinate frame shared by geometrically similar subspaces 

have been observed in the hippocampus (Kim & Maguire, 2018; Peer & Epstein, 2021), 

retrosplenial/medial parietal region (Marchette et al., 2014) and the scene-selective occipital place area 

(Peer & Epstein, 2021), whereas global coordinate frames that span multiple subspaces have been 

observed in the retrosplenial/medial parietal region (Peer & Epstein, 2021). Heading codes anchored to 

the local reference frame have been observed in the retrosplenial/medial parietal region (Marchette et 

al., 2014; Shine & Wolbers, 2021), whereas heading codes anchored to the global reference frame have 

been identified in the thalamus (Shine et al., 2016). To our knowledge, however, no study has looked 

specifically at how our brains bridge across hierarchical levels at different spatial scales. 

In the current experiment, we addressed this issue by training participants on a hierarchically organized 

environment consisting of two nested subspaces – a building inside a courtyard. The two subspaces were 

visually distinct from each other and their main axes were rotated with respect to each other, thus 

encouraging the creation of separate local maps with different reference frames. Following learning, 

participants were scanned with fMRI while performing a judgment of relative direction task that required 

them to retrieve spatial relations within each subspace and across the two subspaces, thus allowing us to 

study the brain mechanisms involved in subspace integration. To anticipate, our findings show that people 

form separate cognitive maps of the two hierarchy levels (the building and its surrounding courtyard), use 

the hierarchical structure of the environment to make inferences about the relation between the levels, 

and integrate across the subspaces by using an active cognitive process mediated by scene-responsive 

and medial temporal lobe brain regions.  
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MATERIALS AND METHODS 

Participants 

32 healthy individuals (10 male, 21 female, 1 undisclosed sex; mean ± SD age 24.3 ± 4.4 y) from the 

University of Pennsylvania community participated in the experiment. This number was selected based 

on a power analysis on similar effects in our previous study which used similar methods (Peer & Epstein, 

2021). All participants had normal or corrected-to-normal vision and provided written informed consent 

in compliance with procedures approved by the University of Pennsylvania Institutional Review Board 

(approval ID 843764). Three additional participants started the experiment but were excluded before 

analysis: two for failing to complete the spatial learning task in the allotted time on day 1, and one for 

failing to arrive for the day 2 scan. 

Experimental Design 

Virtual environment 

We used Unity 3D software to construct a hierarchically organized virtual environment consisting of a 

smaller space (a building) nested within a larger space (a courtyard). The courtyard was 300 x 400 virtual 

meters, and its boundaries were defined by impenetrable barriers – cliffs on its two long sides (east and 

west), a snow-capped mountain at its northern end, and a forest at its southern end. The building was 75 

x 100 virtual meters, and its interior had brick walls, a ceiling, a concrete stripe on the floor extending 

from the door to the far (east) wall, and three columns in the center of the east wall. The courtyard and 

the building interior were connected by a single doorway on the “west” side of the building (Fig. 1A). The 

main (long) axes of the two spaces were perpendicular to each other, and both spaces contained elements 

that emphasized these axes (mountain and forest for the courtyard, door-stripe-columns for the 

buildings). 
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Sixteen objects were located within the environment, eight along the boundaries of the courtyard (two 

along each boundary) and eight inside the building along its interior walls (two along each wall). The 

objects were located on white pedestals that were surrounded on three sides by walls forming an alcove, 

so that they could only be viewed and approached from one direction (i.e., facing the boundary against 

which they were situated). The sixteen objects were: pyramid, chicken, statue of a person, umbrella, 

basket, motorcycle, barrel, traffic cone, guitar, treasure chest, hammer, mushroom, banana, chair, tree, 

and snowman. The assignment of these objects to the sixteen locations was randomized across 

participants. 

Experimental sequence 

The experiment consisted of two sessions, performed on consecutive days (except for one participant 

who had a four-day gap between scans due to MRI failure in the second day). Behavioral and MRI data 

were collected on both days (Fig. 1b and 1c). This subsection describes the sequence of tasks, while the 

following subsections describe each task in detail. 

On day 1, participants were familiarized with the objects used in the experiment (Object Familiarization 

Task). They were then scanned with fMRI. The MRI scanning included functional localizer scans, 

anatomical T1 acquisition scans, an object viewing task in which participants viewed the objects and made 

simple perceptual judgments, and a resting-state scan in which participants were instructed to keep their 

eyes open and make no response. (The object viewing and resting-state data were not analyzed in this 

report; hence these tasks are not described further.) After exiting the scanner, participants performed the 

Environmental Learning Task, which provided intensive training on the spatial layout of the environment 

and the locations of the objects within it. This was the first time they saw the objects in the context of the 

virtual environment. Finally, they were given brief initial training on the Judgment of Relative Direction 

(JRD) task, in preparation for using the task the next day (data from these day 1 training trials were not 
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analyzed). All told, session 1 lasted on average 80 minutes: 50 min for the fMRI session, 27 min for the 

post-scan environmental training and 3 min for the JRD training. 

On day 2, participants performed ten additional minutes of the Environmental Learning Task to refresh 

their memory of the spatial layout of the virtual environment. They then entered the MRI scanner and 

performed two runs of the JRD task, which served to elicit MRI activity corresponding to explicit retrieval 

of spatial information. The day 2 MRI session also included additional runs of the object viewing task. They 

then exited the scanner and performed the Free Recall and a Map Localization Tasks, to further query 

their spatial memories for the virtual environment, followed by a post-experiment questionnaire. All told, 

session 2 lasted approximately 80 minutes (45 min for the fMRI session and 35 min for the behavioral 

tests). 

Experimental tasks were programmed in Unity 3D and Psychopy 3 (Peirce, 2007), and stimuli sequences 

were selected using custom MATLAB code and using the webseq tool at 

https://cfn.upenn.edu/aguirre/webseq/ for carryover sequences (Aguirre, 2007). 

Object familiarization task 

To familiarize participants with the experimental objects they were shown each of the sixteen objects in 

random order on a black background. Participants were instructed to pay attention to the object images 

and names. 

Functional localizer task 

To enable identification of scene-selective brain regions, participants performed a 1-back repetition 

detection task while viewing 16 s blocks of faces, scenes, objects and scrambled objects, with each 

stimulus presented for 600ms followed by 400ms of fixation. 
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Environmental learning task 

This task was intended to teach participants the structure of the environment and the locations of the 

objects within it. Participants freely navigated the virtual environment from a first-person perspective at 

a constant speed, using button presses to indicate their direction of movement. On each trial, they were 

given the name and image of an object and navigated to its location. The task was divided into eight 

learning stages of increasing difficulty, where the first six stages focused on the objects in one subspace 

(either the building or the courtyard – eight objects per learning stage), while stages 7-8 included all 

sixteen objects across the whole environment.  

In stages 1 and 2, participants were instructed to look for eight objects in one of the subspaces (either the 

courtyard or building), while all objects were completely visible, in order to learn their locations. Stages 

3-4 were similar, but in each trial four out of the eight objects were covered by a wooden box, so that 

these objects were not visible. The objects that were covered varied randomly from trial to trial, but 

always included the goal object; therefore, participants had to identify the goal object’s location from 

memory. In stages 5-8, all objects were covered. The order of the goal objects was randomized with each 

stage, and the order of subspaces in each pair of stages was randomized across participants. Participants 

started each stage in the center of the southern environment boundary, with their backs to the forest and 

facing the building (global “north”).  

Each environmental learning stage began with short instructions, which indicated the location to search 

(building, courtyard, or the whole environment). The name and image of the first object was shown at the 

top of the screen. Participants were required to navigate to a position just facing the pedestal supporting 

this object and press the ‘‘down’’ key. If they selected the correct pedestal, a green light appeared, and 

the next goal object was indicated. If they selected an incorrect pedestal, a red light appeared, and the 

occluding box around the object was briefly removed to enable learning from the error. The trial then 
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continued until the correct pedestal was found. After all relevant objects were found (eight objects in 

stages 1-6, sixteen objects in stages 7-8), participants were re-tested on any objects that they had made 

errors on, until they had found each object at least once without making an error; only then did they pass 

to the next stage. In stage 8, all objects had to be found in sequence while making a maximum of one 

error; if more than one error was made, the whole stage started anew. A counter at the top of the screen 

indicated how many objects had been found successfully during the current stage. 

We established a pre-set limit of one hour overall to complete the task. Participants who exceeded this 

time limit were excluded from the rest of the experiment. The gradual learning, repetition of incorrectly 

remembered objects at the end of each stage, and requirement for near-perfect object-finding at the last 

stage were intended to ensure that participants accurately encoded all the object locations. Participants 

performed the full learning task to completion on day 1. On day 2, they performed 10 minutes of the task 

to refresh their memory of the environment, starting from stage 1. See Video S1 for a short demonstration 

of the environmental learning task. 

Judgment of Relative Direction (JRD) task 

Subsequent to environmental learning, participants performed a judgement of relative direction task, 

which was intended to elicit representations of spatial locations with the environment. On each trial, 

participants were presented with the names of two objects. They were instructed to imagine that they 

were standing facing the first object (starting object), and to indicate by button press whether the second 

object (target object) would be to the left or to the right given this imagined view. Each trial lasted 5 s and 

the names of the objects remained on the screen the entire time. Trials were followed by a variable inter-

stimulus interval of 1 s (3/8 of the trials), 3 s (3/8 of the trials), or 5 s (1/4 of the trials). Object names were 

padded with non-letter characters to eliminate any fMRI response differences related to the number of 

letters in each name. 
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There were two consecutive JRD runs within the fMRI session, each lasting 516 s, with 64 unique trials per 

scan run. Trials could be of four trial types – 1) both objects were in the building; 2) both objects were in 

the courtyard; 3) the starting object was in the building and the target object was in the courtyard; 4) the 

starting object was in the courtyard and the target object was in the building. Trials with the starting object 

and the target object in different subspaces were labeled integration trials, because they required 

participants to spatially integrate across the subspaces. Trials with the starting and target object in the 

same subspace were labeled non-integration trials. 

Sets of trials were constructed that fulfilled the following criteria: 1) there were an equal number of trials 

of each of the four trial types in each scan run (16 trials per trial type); 2) For each trial type, each object 

was used exactly two times per run as a starting object and two times as a target object; 3) The target 

object was never directly behind the starting object; 4) No trial was repeated throughout the experiment. 

Trials sets were randomly generated for each participant that met these four criteria. Trial sequences were 

then shuffled within each run, while controlling the order such that consecutive appearances of each of 

the four trial types (e.g., a trial of trial type 3 followed by trial type 1) occurred either 7 or 8 times, and 

consecutive trials never had the same facing object. These constraints on the transitions between trial 

types were intended to facilitate investigation of the switching costs related to subspace change between 

trials. During day 1 of the experiment, a training version of fifteen self-paced JRD trials followed by fifteen 

timed trials was performed outside the scanner, using object combinations that were not used in the main 

JRD task, which was performed in the scanner on day 2.  

Free recall task 

This task, performed at the end of the experiment, tested whether participants’ recall order was shaped 

by their subspace membership (Peer & Epstein, 2021). Participants were instructed to type the name of 

each object they could recall in the environment, in any order. They were instructed to press return after 
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entering each word and press a ‘‘finish’’ button when they had written down as many names as they could 

recall. Participants saw all the words they had already entered on the screen (on different lines), as well 

as a counter indicating the number of words they have entered, but they could not go back and erase 

previously entered words. The task was self-paced. 

Map localization task 

This task, also performed at the end of the experiment, measured participants’ explicit knowledge of the 

locations of objects in the environment. Participants saw a map of the environment showing the 

boundaries of the courtyard, the walls of the building, the mountain, the forest, and the building door. 

The locations of the objects (i.e. the pedestals) and the alcoves were not indicated. On each trial, they 

were presented with the image and name of one object. They were instructed to click the cursor within 

the map to indicate the location of the indicated item, at which point a red dot appeared in the clicked 

location. Participants could click again to reselect the location as many times as they wished before 

finalizing their answer by clicking a “continue” button. The dot then disappeared, and the next trial began. 

Each of the sixteen objects was queried once, in random order. The task was self-paced. 

Post-experiment questionnaire 

Participants were asked to write down their strategy for solving each task, rate the difficulty of each task, 

estimate the environment’s size, and rate on a scale of 1-10 for each subspace (the courtyard and the 

building): how well they felt they knew the environment, how much they used first-person (eye-level) 

imagination during the JRD questions, and how much they used a third-person (bird’s-eye, map-like) 

imagination of the environment. Finally, they were asked to describe whether they memorized and 

thought of object locations relative to any landmarks (e.g. mountain, forest, building door/walls). 
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MRI Acquisition and Preprocessing 

Scanning was performed at the Center for Functional Neuroimaging at the University of Pennsylvania on 

a Siemens 3.0 T Prisma scanner using a 64-channel head coil. T1-weighted images for anatomical 

localization were acquired using an MPRAGE protocol [repetition time (TR) = 2,200 ms, echo time (TE) = 

4.67 ms, flip angle = 80, matrix size = 192 X 256 X 160, voxel size = 1 X 1 X 1 mm]. Functional T2*-weighted 

images sensitive to blood oxygen level dependent contrasts were acquired using a gradient echo planar 

imaging (EPI – EPFID) sequence (TR = 2,000 ms, TE = 25 ms, flip angle = 700, matrix size = 96 X 96 X 81, 

voxel size = 2 X 2 X 2 mm). 

Preprocessing was performed using fMRIPrep 20.2.6 (Esteban et al., 2019) (RRID:SCR_016216), which is 

based on Nipype 1.7.0 (Gorgolewski et al., 2011) (RRID:SCR_002502). The T1-weighted (T1w) image was 

corrected for intensity non-uniformity (INU) using N4BiasFieldCorrection (ANTs 2.3.3) (Tustison et al., 

2010) (RRID:SCR_004757), and used as T1w-reference throughout the workflow. The T1w-reference was 

then skull-stripped using the antsBrainExtraction.sh workflow (ANTs 2.3.3), using OASIS30ANTs as target 

template. Brain parcellations into anatomical regions were defined using recon-all (FreeSurfer 6.0.1, 

RRID:SCR_001847) (Dale et al., 1999). Volume-based spatial normalization to MNI152NLin2009cAsym 

space was performed through nonlinear registration with antsRegistration (ANTs 2.3.3), using brain-

extracted versions of both T1w reference and the T1w template (Fonov et al., 2009). Brain tissue 

segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on 

the brain-extracted T1w using the fast tool (FSL 5.0.9, RRID:SCR_002823) (Y. Zhang et al., 2001). 

For functional T2*-weighted scan runs, the following preprocessing was performed. First, a reference 

volume and its skull-stripped version were generated using a custom methodology of fMRIPrep. A B0-

nonuniformity map (or fieldmap) was estimated based on a phase-difference map calculated with a dual-

echo GRE (gradient-recall echo) sequence, processed with a custom workflow of SDCFlows inspired by 
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the epidewarp.fsl script and further improvements in HCP Pipelines (Glasser et al., 2013). 

The fieldmap was then co-registered to the target EPI (echo-planar imaging) reference run and converted 

to a displacements field map (amenable to registration tools such as ANTs) with FSL’s fugue and 

other SDCflows tools. Based on the estimated susceptibility distortion, a corrected EPI (echo-planar 

imaging) reference was calculated for a more accurate co-registration with the anatomical reference. The 

T2* reference was then co-registered to the T1w reference using bbregister (FreeSurfer) which 

implements boundary-based registration (Greve & Fischl, 2009) using six degrees of freedom. Head-

motion was estimated using mcflirt (FSL 5.0.9) (Jenkinson et al., 2002). Gridded (volumetric) resamplings 

were performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize 

the smoothing effects of other kernels  (Lanczos, 1964). Functional runs were slice-time corrected to 

using 3dTshift from AFNI 20160207 (Cox & Hyde, 1997) (RRID:SCR_005927) and resampled to 

MNI152NLin2009cAsym space. To measure potential confound variables, head motion framewise 

displacement (FD) was calculated for each preprocessed functional run, using its implementation in 

Nipype (following the definitions by (Power et al., 2014)); average signals were also extracted from the 

CSF and the white matter. Finally, functional data runs were smoothed with a Gaussian kernel (3mm full 

width at half maximum) using SPM12 (Wellcome Trust Centre for Neuroimaging). 

Behavioral analyses 

Environmental learning task 

We examined behavior in this task for evidence of segmentation between the subspaces. To do this, we 

compared within-subspace errors (choosing an incorrect location, but in the correct subspace) to 

between-subspace errors (choosing a location in the incorrect subspace) using a two-tailed paired-

samples t-test. Trials were counted as correct if the first pedestal that participants selected was the 

location of the searched-for object. If it was not, the trial was counted as an error, even though the trial 
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would continue until the correct location was found. For this segmentation analysis, we only considered 

responses in stages 7 and 8, as these were the stages where participants were required to search for 

object locations across both subspaces. We also calculated overall accuracy (the number of correct trials 

divided by the number of trials) in stages 3-8 to verify the learning curve, and to compare performance 

between courtyard and building objects. Performance in stages 1 and 2 was not assessed, because all 

objects were visible in those stages, including the target objects. 

Judgment of Relative Direction (JRD) task 

We used a 2 x 2 repeated-measures ANOVA (with participant as the random effect) to test for integration 

and subspace effects in the accuracy and reaction time data. Integration effects were defined as 

differences between trials requiring integration (starting and target objects in different subspaces) and 

trials not requiring integration (starting and target objects in the same subspace). Subspace effects were 

defined as differences between trials with the starting object in the courtyard and trials with the starting 

object in the building. An additional analysis measured switching costs between the subspaces. For this 

analysis, we only considered accuracy and RT on non-integration trials that were preceded by other non-

integration trials (approximately 25% of all trials). This analysis used a repeated measures 2X2 ANOVA 

with factors of subspace (building vs. courtyard) and switch (whether the subspace on the preceding trial 

was the same or different). 

Free recall task 

We tested for subspace effects on object sequential recall probabilities, by using a two-tailed paired-

samples t-test to compare the number of consecutively recalled objects that were within the same 

subspace to the number of consecutively recalled objects that were in different subspaces. 

Map localization task 
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Localization errors were computed by assigning each object localization response to the nearest veridical 

location of an object. If this was the location of the queried object, then the trial was scored as correct. If 

it was a different object, then the trial was scored as an error. Error trials were then further classified as 

within-subspace errors (the assigned object was in the same subspace as the queried object) or between-

subspace errors (the assigned object and the queried object were in different subspaces). The number of 

within-subspace errors was compared to the number of between-subspace errors using a two-tailed 

paired-samples t-test. To test for subspace effects, the number of errors made when the queried object 

was in the building was compared to the number of errors made when the queried object was in the 

courtyard using a two-tailed paired-samples t-test. 

Post-experiment questionnaire 

Participants’ rankings of their knowledge of each subspace, use of first-person perspective in each 

subspace, and use of third-person perspective in each subspace were all compared between the two 

subspaces (building and courtyard) using two-tailed paired-samples t-tests. 

Functional MRI analysis 

Estimation of fMRI responses 

Voxelwise blood-oxygen level dependent responses during the JRD task were estimated using general 

linear models (GLMs) implemented in SPM12 (Wellcome Trust Centre for Neuroimaging) and MATLAB 

(2023a, Mathworks). Trials were assigned to conditions based on the starting object on each trial (which 

indicated the imagined location), and whether the target object was in the same subspace or different 

subspace (integration vs. non-integration trials), resulting in 32 total regressors. In addition, a separate 

GLM was performed in which trials were assigned based on the starting object alone, resulting in 16 

regressors. GLMs included regressors for each of the conditions, constructed as impulse functions 
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convolved with a canonical hemodynamic response function. Also included were regressors for the 

following variables of no interest: head motion parameters (6 regressors), overall framewise displacement 

of the head (Power et al., 2014), average signals from the CSF and white matter (2 regressors), and 

differences between scan runs. Temporal autocorrelations were modeled with a first-order 

autoregressive model. After estimation of the models, the variance-normalized voxelwise responses to 

each regressor were determined from a t-test contrasting the regressor’s parameter estimate against the 

resting baseline (Misaki et al., 2010). Functional localizer task runs were analyzed using a similar 

procedure, with assignment of blocks to four GLM conditions based on the picture category (places, 

objects, faces, scrambled). 

Regions of Interest (ROIs) 

We defined 5 regions of interest that have been identified in previous work as being involved in spatial 

memory and/or the perception of environmental scenes. These ROIs were the retrosplenial complex 

(RSC), parahippocampal place area (PPA), occipital place area (OPA), entorhinal cortex (ERC) and 

hippocampus (HPC). RSC, PPA, and OPA were defined using group-level masks (parcels) that specified 

these regions’ locations in 42 participants run in previous lab experiments, following the methodology 

developed in (Julian et al., 2012). Within these parcels, participant-specific ROIs were defined based on 

the functional localizer contrast places>objects, by selecting the 200 voxels with the highest contrast value 

within the corresponding parcel in each hemisphere and then combining across hemispheres to create 

bilateral ROIs (400 voxels per ROI). The hippocampus and entorhinal cortex ROIs were defined from each 

participant’s anatomical parcellation as obtained from Freesurfer. 

Univariate analyses 
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To test brain activity in the JRD task related to integration (integration vs. non-integration trials) and 

subspace (building vs. courtyard trials), we first averaged the t-values across all voxels within each ROI for 

each of the 32 regressors (16 objects x 2 integration conditions), and then averaged these values further 

across regressors corresponding to the 4 conditions of interest (building+integration, building+non-

integration, courtyard+integration, courtyard+non-integration). We then used a 2X2 repeated-measures 

ANOVA with participant as random effect on these ROI values. To test for relation between these neural 

effects and corresponding behavioral effects, Pearson correlation was computed between the JRD 

behavioral integration costs (integration vs. non-integration, for accuracy and RT) and the JRD neural 

integration costs (integration vs. non-integration in each ROI). Results of all analyses were FDR-corrected 

across ROIs. Finally, to test for effects across the whole brain, voxelwise SPM contrasts were computed 

for the main factors (integration vs. non-integration, building vs. courtyard) and corrected for multiple 

tests using SPM’s multiple comparison correction (random field correction, p=0.05). 

Multivariate analysis 

To explore the representational space within each ROI, we extracted multi-voxel fMRI activation patterns 

for each participant. These were constructed from the outputs of the 16 or 32 regressor GLMs. Activation 

patterns for each regressor were created by taking the regressor-specific t-values and then concatenating 

across all voxels within each ROI. These patterns were then compared to each other using one minus 

Pearson correlation to create 16x16 or 32x32 representational dissimilarity matrices (RDMs). Coding of 

spatial location and heading was then tested using these RDMs (see Supplementary Materials for details 

of heading coding analyses). 

We tested for coding of spatial location within each ROI by creating model RDMs where each cell indicated 

the spatial distance between the corresponding pair of objects (Marchette et al., 2014; Peer & Epstein, 

2021). We tested both a global location RDM (which included the distances between all 16 objects) and 
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two subspace-specific location RDMs (which included only the distances between the 8 objects in each 

subspace). These model RDMs were compared to the neural RDM in each ROI by measuring the Spearman 

correlation between them. The significance of each location code in each ROI was then estimated using 

one-tailed one-sample t-tests (with FDR-correction across ROIs). 

We then further decomposed the global code model into possible subcomponents. These included the 

two within-subspace location RDMs, as well as three additional RDMs: an RDM of between-subspace 

distances (containing only distances between pairs of objects in different subspaces), an RDM of 

segmentation between the subspaces (1 for between-subspace cells, 0 for within-subspace cells; positive 

loading corresponds to greater representational dissimilarity between subspaces than within subspaces), 

and an RDM of scale difference between the subspaces (1 for within-courtyard cells, 0 for within-building 

cells; positive loading corresponds to greater representational dissimilarity within the courtyard than 

within the building). We then took the elements from each RDM (within-building, within-courtyard, 

between-subspaces, segmentation, scale), z-scored each regressor, and performed a linear regression 

where these regressors are the predictors (plus a constant term) and the neural RDM elements are the 

result. We then tested each regressor’s beta value for significance across participants in each ROI using 

one-tailed one-sample t-tests (with FDR-correction across ROIs). Finally, to test if significant regressors 

could explain the fit to the global location model by themselves, partial correlation was used between 

each regressor, the neural RDM, and the global location code RDM. 

Next, we tested whether integration trials differed from non-integration trials. We constructed a model 

corresponding to a categorical difference between integration and non-integration trials (1 for different 

integration condition, 0 for same integration condition integration; positive loading corresponds to 

greater representational dissimilarity between integration and non-integration trials compared to trials 

with the same integration status) and compared this to the 32 x 32 neural RDM in each ROI by Spearman 
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correlation. We also separately tested this model for the subset of cells corresponding to representational 

dissimilarities between building patterns and the subset of cells corresponding to the representational 

dissimilarities between courtyard patterns (defined, in both cases, by their starting objects). We also 

performed a decomposition of the neural RDM into subcomponents, using the same five subcomponents 

described above, defined in this case on the 32 x 32 matrix, plus a subcomponent corresponding to the 

integration vs. non-integration distinction. 

Finally, we performed multidimensional scaling to visualize the representational codes within specific 

ROIs. Neural similarity matrices were averaged across participants and normalized to the range of zero to 

one. The cmdscale MATLAB function was used to calculate the multi-dimensional scaling of the data to 

two-dimensional space. 

Simulations examining the relationship between univariate and multivariate effects 

Finally, we performed simulations to explore the possibility that the observed multivariate effects might 

arise from differences in univariate activity between conditions. To this end, we simulated fMRI data that 

mimicked the observed univariate differences but had no underlying multivariate code, then tested 

whether effects emerged in the multivariate analyses.  

The simulations had several assumptions. First, we assumed that all conditions shared the same 

underlying multivariate pattern, i.e. some voxels are consistently more active than others, across all 

conditions. Second, we assumed that univariate activity differences between trials manifested as a 

multiplication of activity by a factor that was the same in all voxels: for example, if trial 1 activates an ROI 

twice as much as trial 2, then every voxel in the ROI will be twice as active in trial 1 than in trial 2. This 

assumption was based on the idea that the underlying multivariate pattern is caused by voxels having 

different numbers of neurons responding to the task, and univariate differences are caused by a 
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proportionate increase in firing that applies equally to all neurons. Thus, for example, a univariate 

difference between conditions might be caused by every neuron increasing its firing rate by 50%, which 

would lead to voxelwise response increases that would be proportionately the same across voxels 

(assuming a linear transform between aggregate neural activity with a voxel and its BOLD response). 

Finally, we assumed that there was an equivalent level of noise (either measurement or trial-related noise) 

for all conditions.  

Our hypothesis was that—if the assumptions above were true—then conditions with higher univariate 

response would have a higher signal-to-noise ratio than conditions with lower univariate response. 

Multivariate activation patterns for the higher-response conditions would then be more similar to each 

other than multivariate activation patterns for the lower-response conditions. To test this idea, we 

created “simulated ROIs” for each participant corresponding to each of our real ROIs. In each simulated 

ROI, we selected a random baseline underlying multivariate pattern. We then simulated response 

patterns in each condition, by taking each participant’s actual ratios of activity between conditions in the 

ROI (building+non-integration, building+integration, courtyard+non-integration, courtyard+integration) 

and multiplying our simulated patterns by these differences. We then generated 8 different patterns for 

each condition (corresponding to 8 “objects”) by taking the corresponding pattern (after multiplication 

according to the condition) and adding random noise. Finally, we created simulated neural RDMs by 

correlating the simulated patterns to each other, and we performed the RDM regression described in the 

previous section between the model RDMs (within-subspace distances, between-subspace distances, etc.) 

and the simulated neural RDM. We then tested the fit to the different regressors by one-tailed one-sample 

t-tests. 
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RESULTS 

Environmental learning 

To explore the neurocognitive mechanisms underlying the coding of hierarchical spaces, we familiarized 

participants with a virtual environment consisting of a courtyard containing a single building that could be 

entered through a doorway on its “West” side (Fig. 1). Thus, the environment was divided into two 

physically connected but visually separated subspaces (courtyard, building interior) that were organized 

in a hierarchical fashion (building contained within courtyard). Within the environment were 16 objects 

whose locations were learned by the participants—eight along the boundaries of the courtyard and eight 

along the interior walls of the building.  

We implemented a multi-stage Environmental Learning task to ensure that participants were familiarized 

with the layout of the environment and the locations of the objects within it. Initially, all objects were 

visible, but as training progressed, increasing numbers of the objects were covered by wooden boxes to 

induce reliance on spatial memory (see Materials and Methods). By the end of the learning procedure, all 

participants could successfully navigate to all object locations without making more than one error, even 

when all the objects were covered (Fig. S1). The Environmental Learning task took 27 min on average 

(range: 14–49 min). On day 2, participants repeated the learning task from the beginning and exhibited 

near-perfect accuracy (average of 99.4% correct object localizations).  
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Behavioral evidence for segmentation into subspaces 

To understand the mental representation that participants formed of the virtual environment, we 

examined behavioral performance during the Environmental Learning task and in two post-learning 

memory tasks (map localization and free recall). The first question we asked was whether participants 

formed a unitary, fully integrateds cognitive map of the whole environment, or if instead they mentally 

segmented it into two separate spatial parts for the two subspaces (i.e., building and courtyard). By 

design, our paradigm was intended to induce segmentation into subspaces: the courtyard and the building 

interior were perceptually distinct and visually separated from each other, with orthogonal principal axes; 

moreover, object learning was organized by subspaces in the first six stages of the learning task. Results 

 

Figure 1 – Experimental design and procedure. A) Participants were familiarized with a virtual environment 
consisting of a building (orange) inside a courtyard (green). The building interior could be accessed through a 
single doorway on the “West” side (marked by an arrow in the image). The building interior could not be 
perceived from the courtyard or vice versa. Sixteen objects (marked in the image by blue dots) were located in 
the environment, eight in each subspace (building and courtyard). Participants only saw the environment from 
a ground-level perspective (right) and never saw an overhead map (left). B) Experimental tasks. Images show 
the visual displays presented to the participants during the experimental tasks. C) Experimental procedure. 
Participants learned the locations of the objects in the environment (Environmental Learning) outside the fMRI 
scanner on Day 1, with a refresher on Day 2. Then the Judgment of Relative Direction (JRD) task was performed 
within the scanner, followed by free recall and map localization tasks outside the scanner. See the Methods 
section for full details on the tasks and procedure. 
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from three analyses suggested that participants did indeed form representations that reflected this 

subspace division.  

First, we analyzed participants’ errors in the last two stages of the learning task (Fig. 2A). In these stages, 

participants were required to navigate by memory to object locations that could either be in the building 

or the courtyard. Almost all errors (88.5%) were mis-localization of objects within the correct subspace—

that is, going to an incorrect location within the building when the target location was in the building, or 

going to an incorrect location in the courtyard when the target location was in the courtyard. Almost no 

errors involved going to locations in the wrong subspace. The difference between within-subspace and 

between-subspace errors was significant (p=0.009, two-tailed paired-samples t-test).  

Second, we examined errors in the map localization task (Fig. 2B). Similar to the pattern observed during 

learning, objects were sometimes mis-localized within the correct subspace, but they were never mis-

localized into the wrong subspace (0.6 and 0 errors on average respectively, marginal effect at p=0.053).  

Finally, we looked at transitions between objects in the free recall task (Fig. 2C). Consecutively recalled 

objects were more often in the same subspace than in different subspaces (12.7 vs. 2.2 consecutive 

recalls, respectively, p<0.0001), indicating that participants did not recall objects randomly, but instead 

organized their free recall based on subspaces. Indeed, the majority of participants (20 out of 32) recalled 

all the objects in one subspace and then all the objects in the other subspace, and therefore had only one 

between-subspace transition. Of these, 17 started their recall in the courtyard and completed in the 

building whereas 3 started their recall in the building and completed it in the courtyard. The remaining 12 

participants had more than one recall transition between the subspaces; in these participants, there was 

no bias toward transitions in either direction (p=0.72, two-tailed paired-samples t-test). 
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Together, these behavioral results suggest that participants did not form a unitary, fully-integrated 

representation extending across the building and the courtyard in an equipotential manner. Rather, they 

mentally segmented the environment into two subspaces. This division into subspaces was evident in 

spatial learning, spatial recall, and free recall. 

 

Behavioral evidence for integration across subspaces 

We next explored how participants integrated the building and the courtyard representations into a larger 

whole. In other words, how did they succeed in understanding the spatial relationships between locations 

in different subspaces, given that the two subspaces were represented—to some extent—separately? To 

address this question, we analyzed behavioral responses in the JRD task. On each trial, participants 

imagined themselves standing in front of one object (the starting object) and reported the relative 

location (left vs. right) of a second object (the target object). For half of the trials, the starting and target 

objects were in different subspaces (i.e., one object in the building and the other in the courtyard), while 

for the other half, both objects were in the same subspace (Fig. 3A). Thus, the first kind of trial required 

 

Figure 2: Behavioral evidence for segmentation into subspaces.  A) In the environmental learning task, 
participants made more within-subspace errors than between-subspace errors. B) A similar trend was observed 
in the map localization task. C) During free recall, within-subspace transitions between consecutively named 
objects were more frequent that between-subspace transitions. Grey points and lines indicate individual 
subjects, black points and lines indicate the group average. Error bars indicate standard error of the mean. * - 
p<0.05, ** - p<0.01, *** - p<0.001, + - marginal effect (0.05<p<0.1). 
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integration across the two subspaces, while the second kind of trial did not require integration. We 

reasoned that comparison between these two trial types might reveal behavioral signatures of a spatial 

integration mechanism that operated on integration (between-subspace) trials but not on non-integration 

(within-subspace) trials. 

 

Figure 3: Behavioral evidence for integration between the two subspaces. A) Example schematics of non-
integration (within-subspace) and integration (between-subspace) JRD trials; the red dot indicates the starting 
object, the full arrow indicates the facing direction, and the dashed arrow indicates the target object’s 
direction. B) Integration costs: integration trials show lower accuracy, with an interaction with starting 
subspace demonstrating asymmetric responses. This is consistent with a model in which people use the 
hierarchical relations to infer the object direction when they are in the higher hierarchy layer (courtyard) by 
pointing to the location of the building instead of the location of the object in it. Left – mean+-SE for each trial 
type. Right – effect sizes: integration – integration cost, non-integration minus integration trial accuracy. 
Subspace – subspace effect – courtyard minus building accuracy. Interaction – interaction between effects – 
(courtyard-non-integration minus courtyard-integration) minus (building-non-integration minus building-
integration). C) Integration costs in response times (RTs). Integration trials show higher RT than non-integration 
trials, and building trials show higher RT than courtyard trials, but there is no interaction. Elements similar to 
panel B, but effect size calculations reversed (integration minus non-integration and building minus courtyard). 
Other plot elements similar to Figure 2. 
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To test this idea, we performed 2x2 ANOVAs on response times (RT) and accuracies, with the main factors 

being integration (integration vs. non-integration) and the location of the starting object (building vs. 

courtyard; Fig. 3A). The results showed a clear integration effect: integration trials had lower accuracy 

than non-integration trials (accuracy=84%,92%, respectively, F=15.6, p=0.0004; Fig. 3B) and longer 

response times (RT=4.1,3.9, respectively, F=10.8, p=0.003; Fig. 3C). Thus, there was an integration cost 

that was evident in both accuracy and response time. This suggests that integration trials engaged an 

extra cognitive process that was not engaged on non-integration trials.  

 Notably, the integration cost on accuracy (but not RT) was asymmetric across the subspaces. The ANOVA 

on accuracy revealed a significant interaction between integration and starting subspace (F=11.8, 

p=0.002), reflecting the fact that the integration penalty was significant for starting objects in the building 

(paired t-test, p=0.0005) but not for starting objects in the courtyard (paired t-test, p=0.22). This 

asymmetry suggests that participants may have used their knowledge of the nested structure of the 

environment when making their responses. Specifically, because they knew that all targets in the building 

were contained inside the building, they could respond accurately on courtyard-integration trials by 

thinking about the position of the building within the courtyard without taking the further step of 

integrating the building interior space into the courtyard space. In contrast, they could not make the 

inference in the opposite direction, so building-integration trials could only be solved by integrating the 

two subspaces, and an integration penalty was observed. The ANOVA on RT did not reveal a similar 

interaction between integration and starting subspace (ANOVA F=1.96, p=0.17); for this measure, the 

integration cost was found for both building trials (paired t-test p=0.02) and courtyard trials (paired t-test 

marginal effect of p=0.08).  

 The main factor of location (building vs. courtyard) was also significant in the ANOVA: trials with the 

starting object in the building had lower accuracy (accuracy=83%,93%, respectively, F=29.0, p=0.000007) 
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and longer response times (RT=4.1,3.8, respectively, F=17.0, p=0.0003) than trials with the starting object 

in the courtyard. This echoes a similar effect that was observed in the Environmental Learning task: 

participants made more localization errors on day 1 for building objects than for courtyard objects, (4.8 

vs. 2.6 on average, p=0.006, two-tailed paired-samples t-test; Fig. S2A), and they also reported that their 

knowledge of locations was worse for building objects that for courtyard objects in post-learning 

questionnaires (average ranking=9.2, 8.5, respectively, p=0.003; Fig. S2B). These effects may relate to the 

fact that the courtyard was larger than the building: the average separation between the objects was 282 

virtual meters in the courtyard vs. 67 virtual meters in the building. Consequently, participants spent more 

time in the courtyard than in the building during learning (63% vs. 37%), giving them more time to encode 

the object locations, with greater temporal separation between the objects which may have made them 

more distinct. Alternatively, these effects may relate to differences in imagery between the subspaces, as 

participants reported they imagined the courtyard more from a third-person perspective and the building 

marginally more from a first-person perspective (p=0.004,0.06, respectively; Fig. S2B). 

Finally, we also analyzed the JRD task in terms of switching costs between the subspaces. Previous work 

used switching cost as evidence for representational distinction between hierarchical levels (Brockmole 

& Wang, 2002), and we wished to test for a similar effect. We restricted our analyses to responses on non-

integration trials, because these trials can be completed by thinking about one subspace alone without 

consideration of the other subspace. We tested whether accuracy and RT on these trials were affected by 

whether the locations accessed in the immediately preceding trial (in cases where this trial was also a 

non-integration trial) were in the opposite subspace (switch) or same subspace (no switch) (Fig. 4A). A 2x2 

ANOVA with factors of subspace (courtyard vs. building) and switch vs. no-switch found no significant 

effects on accuracy (ps>0.28; Fig. 4B). However, there was a significant switching cost in RT (F=18.6, 

p=0.0002), which interacted with subspace (F=5.75, p=0.02; Fig. 4C). Specifically, the switching cost was 

observed for building-to-courtyard transitions (relative to courtyard-to-courtyard transitions; paired t-test 
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p=0.00006), but it was not observed for courtyard-to-building transitions (relative to building-to-building 

transitions; paired t-test p=0.53). Thus, we observed an asymmetry between the subspaces – switching 

from the building to the courtyard incurs a penalty, but switching from the courtyard to the building does 

not. The main effect of subspace was not significant (F=0.59, p=0.45). These results support the idea that 

the courtyard and the building are representationally distinct, insofar as a switching cost is observed. 

Moreover, the asymmetric nature of the switching cost is generally consonant with the fact that subspaces 

 

Figure 4: Behavioral switching cost effects between the two subspaces. A) Example schematics of switch and 
no-switch JRD trial pairs; the red dot indicates the starting object, the full arrow indicates the facing direction, 
and the dashed arrow indicates the target object’s direction. B) Switching costs in accuracy – no significant 
effects. Switching – switching costs – same-subspace minus different-subspace; Subspace – subspace effect – 
courtyard minus building accuracy. Interaction – interaction between effects – (courtyard-no-switch minus 
courtyard-switch) minus (building-no-switch minus building-switch). C) Switching costs in response time – data 
shows a switching cost suggestive of asymmetrical representation, such that consecutive trials in a different 
starting subspaces take more time than in the same subspace, and an interaction shows that this effect is more 
pronounced in building-to-courtyard transitions than in courtyard-to-building transitions. Elements similar to 
panel B, but effect size calculations reversed (different minus same subspace, and building minus courtyard). 
Other plot elements similar to Figure 3.  
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are hierarchically related to each other, making transitions upwards (building to courtyard) different from 

transitions downwards (courtyard to building). 

 

Neural evidence for an integration mechanism 

The behavioral data described in the preceding sections suggests that participants represented the 

environment as two separate subspaces that they integrated when required using an active process. To 

identify the neural locus of this process, we examined fMRI activity during the JRD task. As in our 

behavioral analyses, we divided trials into 4 conditions, based on the 2x2 crossed factors of integration 

(integration vs. non-integration) and subspace of the starting object (building vs. courtyard). We then 

examined univariate responses across these 4 trial types. We focused our analyses on five brain regions 

that have been identified in previous work as being involved in spatial memory and/or the perception of 

environmental scenes. These ROIs were the retrosplenial complex (RSC), parahippocampal place area 

(PPA), occipital place area (OPA), entorhinal cortex (ERC) and hippocampus (HPC). 

Our primary hypothesis was that brain areas involved in integration would exhibit different levels of 

response for integration vs. non-integration trials. Analysis of variance found such differences (i.e., main 

effect of integration) in RSC, PPA, OPA, and ERC (Fs=12.5, 8.4, 17.7, 6.9; ps=0.001, 0.007, 0.0002, 0.01) 

with a marginal effect in HPC (F=4.1, p=0.052). Notably, the integration effect did not manifest in the same 

way in all these regions (Figs. 5A, S3). In RSC and PPA, activity was higher for integration trials than for 

non-integration trials. In OPA, the opposite pattern was observed: activity was lower for integration trials 

than for non-integration trials. Finally, the two medial temporal lobe regions – ERC and HPC – displayed a 

third pattern: like OPA, activity was lower for integration trials than for non-integration trials; however, 
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responses to both conditions were below the resting baseline, so this pattern might be interpreted as 

greater deactivation for integration trials than for non-integration trials.  

 

A whole-brain analysis of the integration vs. non-integration main effect found no significant voxels after 

correction for multiple comparisons across the entire brain. However, when the threshold was lowered 

(to uncorrected p=0.01), we observed patterns that were broadly consistent with the ROI findings (Fig. 

5B)—stronger activity in integration trials in RSC, PPA and an additional region immediately anterior to 

right OPA, and stronger activity in non-integration trials in several lateral occipito-temporal cortex regions, 

 

Figure 5: Integration and subspace effects in univariate fMRI response. A) Neural activity related to integration 
(within-subspace trials (W) that do not require across-subspace integration, vs. between-subspace trials (B) that 
require integration). The RSC and PPA show increased activity during trials that require between-subspace 
integration; OPA shows reduced activity during between-subspace integration trials; and ERC and HPC show 
deactivation during both trial types, and this deactivation is stronger in between-subspace integration trials. B) 
Whole-brain analysis (uncorrected) shows that the increased activity during between-subspace integration trials 
is localized to RSC, PPA and a region anterior to OPA, while integration-induced deactivations occur across 
multiple parts of the lateral occipito-temporal cortex. C) Activity in ROIs during trials in which the imagined 
location is in the building (B) and trials when it is in the courtyard (C). The RSC and PPA show increased activity 
during building trials compared to courtyard trials. D) Whole-brain analysis (uncorrected) shows that the 
increased activation during building trials is localized to RSC, PPA, a region anterior to OPA, and additional brain 
regions mainly in the insula and prefrontal cortex. Plot elements similar to Figure 2. 
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including OPA. Overall, these results show that all spatial system ROIs exhibit integration effects and that 

these effects are mostly specific to these spatial system regions.  

The 2x2 ANOVAs also revealed main effects of subspace (courtyard vs. building) in RSC and PPA (Figs. 5C, 

S3). Both regions were more active during building trials than during courtyard trials (p=0.00007,0.002, 

respectively). No other ROI exhibited a significant subspace effect (ps>0.05). In a whole-brain analysis, no 

voxels exhibited significant subspace effects after correction for multiple comparison, but uncorrected 

results showed higher activity for building trials than for courtyard trials in RSC and PPA, consistent with 

the ROI results, and also in a region anterior to OPA, with additional clusters in the medial superior parietal 

lobe, medial and lateral prefrontal cortex, and anterior insula (Fig. 5D). There was no interaction between 

the integration and subspace effect in any ROI (all ps>0.35) and no significant voxels for the interaction in 

a whole-brain FDR-corrected analysis. 

Thus, we find that when a trial requires integration of the two subspaces, activity increases in RSC and 

PPA and decreases in the other ROIs. Can any of these neural effects be linked to the behavioral effects 

of integration? To examine this, we looked at whether individual differences in the neural integration 

effects correlate with individual differences in the behavioral integration effects observed in accuracy and 

RT. We found no correlations with the accuracy integration effect, although there were marginal negative 

trends in OPA (r=-0.41, p=0.07) and ERC (r=-0.39, p=0.07). For the RT integration effect, on the other hand 

(Fig. 6), we observed a significant positive relationship in RSC (r=0.5, p=0.008) and significant negative 

relationships in OPA (r=-0.47, p=0.01) and HPC (r=-0.64, p=0.003), with marginal trends in PPA (r=0.31, 

p=0.08) and ERC (r=-0.34, p=0.07). Thus, participants with larger behavioral integration effects in RT 

exhibited greater positive neural integration effects (integration>non-integration) in RSC and greater 

negative integration effects (non-integration>integration) in OPA and HPC.  
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In sum, our results show neural integration effects in three different groups of brain regions. The RSC, PPA 

(and potentially a region anterior to OPA) are more active for trials requiring integration across the two 

subspaces. These regions are also more active during building trials than during courtyard trials. A second 

group of regions, hippocampus and entorhinal cortex, are deactivated during the task, and this 

deactivation is stronger when integration across subspaces is required. Finally, OPA is more active during 

non-integration trials than during integration trials. The neural integration effects in RSC, OPA, and HPC 

were most closely related to the behavioral integration effects, which suggests that these regions are the 

most likely candidates for the neural locus of the spatial integration mechanism. We consider possible 

explanations for these effects in the Discussion. 

 

 

Figure 6: Correlation between neural and behavioral effects. Dots represent individual subject values, dashed 
lines indicate regression line fit. 
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Multivoxel pattern analyses reveal representations of subspace segmentation and subspace scale  

We next turned to the question of how the spatial structure of the virtual environment was represented 

in the brains of our participants. To this end, we performed representational similarity analyses on the 

multivoxel activation patterns evoked during the JRD task. In previous studies, we found evidence that 

similarities and differences between these activation pattern could be explained by spatial quantities that 

vary across the trials, such as the imagined facing direction (heading) and imagined location (Marchette 

et al., 2014; Peer & Epstein, 2021; Vass & Epstein, 2013). We applied the same methodology here. First, 

we constructed neural similarity matrices for each ROI by calculating the pairwise similarities between the 

multivoxel patterns evoked by the 16 possible starting objects, which correspond to 16 different imagined 

locations (with corresponding headings) within the virtual environment. Then we compared these to 

representational similarity matrices corresponding to similarities in imagined headings and imagined 

location. 

Surprisingly, given our findings in previous studies (Marchette et al. 2014), we found no evidence for 

coding of imagined heading (See Supp. Materials). In contrast, we did find strong evidence for coding of 

imagined location. First, we tested a global location model that included Euclidean (straight-line) distances 

between all 16 objects (Fig. 7A-B). There was significant correlation to this model in RSC (p=0.0002), PPA 

(p=0.002) and HPC (p=0.006) and marginal correlation in OPA and ERC (both ps=0.053). Next, we tested 

subspace-specific location models, which only included distances between the 8 objects in each subspace. 

Here we observed only marginal coding in OPA of the distances between the building objects (p=0.06)—

all other within-building distance codes were not significant (all ps>0.28) and no area encoded within-

courtyard distances (all ps>0.71). 

What causes this fit to the global location code model, in the absence of within-subspace distance coding? 

To explore this issue further, we regressed the neural similarity matrix for each brain region against a  
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model containing five factors (Fig 7C): 1) distances between objects in the building, 2) distances between 

objects in the courtyard, 3) distances between objects in different subspaces, 4) categorical segmentation 

into two subspaces, and 5) difference in scale between the two subspaces. We found no significant loading 

on the first three regressors (all ps>0.3, across ROIs). However, the segmentation effect was significant in 

RSC, PPA, OPA and HPC and marginal in ERC (p=0.0004, 0.008, 0.006, 0.01, 0.07, respectively), indicating 

that there was a categorical difference between the building and courtyard patterns. In addition, the scale 

effect was significant in RSC, PPA, ERC and HPC (p=0.0009,0.003,0.02,0.008, respectively; Fig. 7C), 

demonstrating that building patterns were more closely clustered (had less neural distance between 

them) than courtyard patterns.  

We then tested whether the segmentation and scale effects could explain the fit of the global location 

model. Using partial correlation, we found that the global location model remained significant when 

accounting for the segmentation effect in RSC, PPA and HPC (all ps<0.01) and remained marginal in ERC 

(p=0.07), but was no longer significant in these ROIs when accounting for the scale effect (all ps>0.16). In 

the OPA, the global location model was significant when accounting for the scale effect (p=0.048), but was 

no longer significant when accounting for the segmentation effect (p=0.15). Thus, the neural similarity 

patterns that we observe can be explained by segmentation between the subspaces in OPA and scale 

differences between the subspaces in RSC, PPA, ERC and HPC. 

Finally, we performed multidimensional scaling on the pattern similarity matrices to visually examine the 

segmentation and scale effects (Fig. 7D). Across the five ROIs, a separation between the building and 

courtyard objects could be observed, as well as a more condensed clustering of the building objects 

compared to the courtyard objects. These results visually demonstrate the existence of the segmentation 

and scale effects. Overall, our results demonstrate a categorical effect of representational segmentation 

between the courtyard and the building and a representational scale difference between them. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 5, 2025. ; https://doi.org/10.1101/2025.02.05.636580doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.05.636580
http://creativecommons.org/licenses/by-nc-nd/4.0/


36 
  

 

Figure 7: Multivariate patterns show segmentation and scale differences between the subspaces. A) Multivariate 
pattern dissimilarity between neural patterns corresponding to the 16 objects in each ROI. B) Left – a scheme of the 
environment with all objects’ distances; middle – the expected pattern dissimilarity if neural pattern distance 
corresponds to inter-object pattern distance; Right – correlation of the veridical distances model to the neural 
dissimilarity matrices across ROIs. All ROIs showed marginal or significant fit to the neural model. C) A regression of 
different factors that could together create the fit to the veridical distance model: distance variability between 
building objects, distance variability between courtyard objects, distance variability between building and courtyard 
objects, segmentation between the building and courtyard, and scale difference between the building and 
courtyard. The segmentation and scale effects are significant in most ROIs, but the inter-object distances within and 
between subspaces are not. Plot elements same as Figure 2. D) Multidimensional scaling of the pattern correlations 
in each ROIs (red – patterns corresponding to building object trials, green – patterns corresponding to courtyard 
object trials). In most ROIs, patterns for building objects are visibly separate than those of courtyard objects, and 
there is a difference in scale (building patterns are more clustered / similar to each other).  
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Multivoxel pattern analyses reveal that spatial representations are affected by spatial integration 

The previous analyses examined spatial coding of the imagined location (defined by the starting object) 

without consideration of how these codes might be affected by the integration condition (defined by the 

relationship between the starting object and the target object). To address this issue, we reanalyzed the 

data, this time separately defining integration and non-integration activation patterns for each starting 

object (32 patterns total; Fig 8A). We then repeated the regression analysis of the previous section, but 

with a sixth regressor added to account for the categorical separation between integration and non-

integration trials (Fig. 8B).  

This analysis revealed a significant fit to the integration regressor in RSC, PPA, OPA and HPC 

(ps=0.001,0.001,0.001,0.02; Fig. 8B), indicating that activation patterns on integration trials differed from 

activation patterns on non-integration trials. Further analyses revealed that this difference between 

integration and non-integration patterns was observed when the starting object was in the building 

(ps=0.002,0.001,0.005,0.03) and also when the starting object was the courtyard 

(ps=0.0005,0.006,0.006,0.04). The integration factor was not significant in ERC (overall, p=0.25; building 

trials p=0.11; courtyard trials p=0.73; Fig. 8B).  

These results show that the spatial codes in RSC, PPA, OPA, and HPC are modified when participants are 

required to integrate. But how are they changed? To investigate this, we first examined whether the scale 

of the representation (the average representational dissimilarity between patterns) differed between 

integration and non-integration trials. Fig. 8C shows the average pattern dissimilarity between the 

building objects and the courtyard objects under both integration conditions in RSC and PPA. In both 

regions, integration trials were less dissimilar to each other (i.e., more clustered) than non-integration 

trials (RSC p=0.002, PPA p=0.0006). In OPA, ERC and HPC this effect was not observed (ps=0.37,0.34,0.18). 
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Greater clustering of integration trials compared to non-integration trials could also be observed by visual 

inspection after multidimensional scaling (Fig. 8D).  

 

Relation between the multivariate and univariate effects 

The results above indicate an interesting parallel between the univariate and multivariate effects. In 

several of our ROIs, building trials evoke greater activation than courtyard trials, and they also have 

 

 
Figure 8: Multivariate patterns show separation and scale differences between integration and non-
integration trials. A) Multivariate pattern dissimilarity between neural patterns corresponding to the 32 
regressors (16 objects, separated to between-subspace – integration – and within-subspace – non-integration – 
trials) in RSC. B) Regression results for the separation between integration and non-integration trials in each ROI. 
Left – model matrix, right – fit to the model matrix in each ROI. Plot elements same as Figure 2. C) Neural pattern 
dissimilarities across conditions in RSC and PPA. Multivoxel activity is dissimilar between subspaces and between 
integration and non-integration trials. D) Multidimensional scaling of the pattern correlations in RSC. Patterns 
for between-subspace (integration) trials are separate and more clustered than within-subspace (non-
integration) trials. In addition, within each condition (integration and non-integration), patterns for building 
objects are separate and more clustered than those of courtyard objects.  
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greater pattern similarity. Similarly, integration trials evoke greater activation and have greater pattern 

similarity than non-integration trials. We therefore explored whether the higher multivariate pattern 

similarity within these trial types could be explained by the higher univariate activation.  

We specifically considered a scenario in which there was a single underlying response pattern in each ROI 

across all trial types. If this were the case, then we hypothesized this pattern would be less affected by 

noise on trial types with higher activation, and hence the multivariate activity patterns for these trial types 

would be more similar. We performed a simulation to test this idea. For each ROI, we constructed 32 

simulated activity patterns corresponding to the 32 conditions in our data (8 objects in the building and 

courtyard trials, with separate patterns for integration vs. non-integration trials), by starting with the 

same fixed baseline pattern (chosen at random, with positive values) for all 32 conditions. We then scaled 

activity across conditions in the same ratio as the univariate differences observed in this ROI in our 

experimental data, and then added random “measurement noise” to each pattern. Thus, the average 

“voxelwise” values of the patterns differed across conditions, but the scale of the measurement noise was 

the same. We then explored the multivariate pattern correlations within and across trials. 

 We found that the simulation resulted in multivariate effects that mirrored the patterns observed in the 

real data (Fig. 9). First, all simulated ROIs demonstrated a separation between the subspaces, with the 

ERC demonstrating the weakest effect (p=0.005, 0.002, 0.002, 0.01, 0.002, for RSC, PPA, OPA, ERC and 

HPC respectively). Second, the simulated RSC and PPA demonstrated a scale difference between the 

building and the courtyard, and the HPC demonstrated a marginal effect, but no such effect was observed 

in OPA or ERC (p=0.001, 0.004, 0.06, 0.80, 0.64). Third, all simulated ROIS showed a separation between 

non-integration and integration trials (p=0.02,0.006,0.007,0.007,0.002; although in the actual fMRI data 

this effect was not significant in ERC).   
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These simulation results suggest that the observed multivariate effects could, in theory, arise from 

univariate differences between the conditions, even in the absence of true neural differences between 

the multivariate voxelwise activation patterns. We consider the implications of this finding below in the 

Discussion. 

 

DISCUSSION 

Many of the environments we encounter in our everyday lives are hierarchically organized – they are 

composed of smaller spaces nested within larger spaces. The goal of this study was to understand how 

our mind/brains form cognitive maps of such nested spaces. To this end, we trained participants on a 

virtual environment consisting of a building inside a courtyard, and we scanned them with fMRI while they 

 

Figure 9. Simulated multivariate pattern analysis results. A) Simulated results, based on univariate activity 
differences between conditions (see main text). B) The real experimental results. Both the simulated and real 
results show similar effects (subspace separation, subspace scale difference, integration vs. non-integration trial 
separation), suggesting that the observed multivariate results could potentially be explained by the univariate 
differences between experimental conditions. Plot elements similar to Fig. 2. 
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performed a JRD task that required them to think about spatial relationships within and across the 

subspaces. We found that trials requiring integration across the subspaces had decreased accuracy and 

longer reaction times compared to trials that did not require integration. These behavioral differences 

were accompanied by univariate fMRI response differences in scene-responsive and medial temporal lobe 

brain regions, which were correlated with the behavioral effects in RSC, OPA, and HPC. Multivoxel pattern 

analyses revealed spatial representations that reflected the hierarchical organization of the environment, 

with evidence for segmentation into subspaces (RSC, PPA, OPA, and HPC), preservation of the relative 

spatial scales of the subspaces (RSC, PPA, ERC, and HPC), and modulation of the spatial representations 

by spatial integration (RSC and PPA). However, our simulations indicated that these multivariate effects 

could potentially be attributed to the univariate activity differences between task conditions. Overall, 

these results indicate that people form cognitive maps of nested environments that reflect their 

hierarchical structure and then use an active cognitive process when required to integrate across the 

levels of the hierarchy. 

Our findings build on previous work suggesting that segmentation into subspaces is a common feature of 

cognitive map organization. Adjacent spaces with boundaries between them tend to be represented as 

separate, as indicated by both behavioral results (Han & Becker, 2014; Marchette et al., 2017; McNamara, 

1986; Newcombe & Liben, 1982; Wiener & Mallot, 2003) and neural findings (Jeffery, 2024; Kim & 

Maguire, 2018; Marchette et al., 2014; Peer & Epstein, 2021). We observed evidence for segmentation in 

several aspects of our data. In the environmental learning and map localization tasks, participants made 

within-subspace errors than across-subspace errors. During free recall of the objects in the environment, 

the order of recall reflected the subspace organization—indeed, the majority of our participants recalled 

all the objects in one subspace before transitioning to the other. In the JRD task, integration and switching 

costs were observed between the subspaces, replicating previous findings (Bilge & Taylor, 2010; 
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Brockmole & Wang, 2002; Wang & Brockmole, 2003b, 2003a). Together these results indicate that 

participants represented the environment by mentally segmenting it into two separate subspaces.  

Why might hierarchical environments be represented as segmented, instead of as a global map that 

extends across subspaces and thus is intrinsically integrated? One advantage of segmentation is that it 

reduces the computational cost of navigational planning. There are fewer objects to maintain in working 

memory when navigating within each subspace, making it beneficial to chunk the items by subspace in 

memory (Brockmole & Wang, 2005). This can be especially true when people spend prolonged periods of 

time within each subspace and only occasionally move between them, and when there are few connection 

points between the subspaces (in our case, a single door). Therefore, segmentation of space into separate 

hierarchical levels / spatial scales may be part of a general mechanism of organizing space to reduce the 

cognitive burden of navigation. 

The disadvantage of segmented representations for hierarchical environments is that it can be challenging 

to make between-level spatial judgments and navigational decisions (e.g. planning how to get from a 

location in a building to another location in the city). Our behavioral results suggest that people meet this 

challenge by applying an integration mechanism that has an additional computational cost, as evidenced 

by a response time increases and accuracy decreases. One interesting aspect of this integration 

mechanism is that this process appears to be asymmetrical – participants were more accurate making 

top-down inferences (courtyard to building) than bottom-up inferences (building to courtyard). According 

to participants’ reports, this was due to their use of knowledge of the hierarchical structure to make top-

down inferences by judging directions to the building containing the object instead of to the object itself. 

This illuminates one of the main advantages of having an hierarchical representation – it can simplify 

between-subspace judgments and top-down hierarchical planning (Brockmole & Wang, 2005; Wiener & 

Mallot, 2003). 
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Our fMRI results provide insight as to how this integration mechanism is implemented in the brain. We 

found that several brain regions exhibited univariate response differences on the JRD task between trials 

that required participants to think about the spatial relationship between the hierarchical levels and trials 

that did not require integration across subspaces. Specifically, RSC and PPA exhibited increased activity 

on integration trials, whereas OPA, ERC, and HPC exhibited decreased activity. The RSC finding is 

consistent with previous work that showing that this region is involved in understanding the spatial 

relationships between locations that are separated from each other (Epstein et al., 2007; Peer et al., 2019). 

The PPA finding is more surprising, insofar this region is often assumed to be primarily involved in the 

representation of the immediately surrounding space (Epstein et al., 2007). However, we note the anterior 

parts of the PPA have been shown to be involved in analyzing environments that are larger than a single 

scene (Peer et al., 2019), and anterior PPA, RSC, and a region anterior to OPA have been shown to be 

functionally connected (Baldassano et al., 2016; Silson et al., 2016) into an anterior scene network that 

has been implicated in scene memory (Steel et al., 2021). Notably, our whole-brain analyses revealed a 

region immediately anterior to the OPA that was more activated in integration trials than in non-

integration trials, suggesting that this entire anterior network may be involved in spatial integration. The 

reduced response in OPA during integration trials is consistent with its putative role in scene perception 

(Bonner & Epstein, 2017; Kamps et al., 2016) and processing of local (within-subspace) spatial 

relationships (Peer & Epstein, 2021). The reduced response in ERC and HPC took the form of deactivation 

during all trials, but greater deactivation during integration. This might be either interpreted as relating 

to their involvement in the default-mode system which deactivates during tasks that require 

concentration (Raichle, 2015), or alternatively this might be an actual activation increase at the neuronal 

lever that presents as BOLD signal deactivation (Ekstrom, 2021; Hill et al., 2021). Crucially, these fMRI 

integration effects were correlated with behavioral integration effects, with the strongest correlations in 
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RSC, OPA, and HPC.  Together, these results indicate that these brain regions support an active mechanism 

that allows people to integrate between levels of a hierarchical space when such integration is required. 

One unexpected finding in our study was that the two subspaces differed in terms of their behavioral and 

neural responses: participants had slower and less accurate responses for spatial judgments when their 

imagined location (as indicated by the starting object) was in the building compared to the courtyard, and 

fMRI responses in RSC and PPA were greater for building trials than for courtyard trials. The RT and fMRI 

effects did not show an interaction with the integration effects (i.e., they were not affected by the location 

of the target object), indicating that they had an independent genesis. These subspace effects may relate 

to differences during learning. In the courtyard, the objects were more spatially separated than in the 

building. Consequently, participants spent more time during learning in the courtyard and the courtyard 

objects were more temporally separated. Participants also started each learning stage in the courtyard, 

even stages where the objects to be found were in the building. All these factors may have led them to 

form a better representation of the courtyard than the building. Indeed, participants made fewer errors 

in the courtyard during learning, and they self-reported that their knowledge of locations in the courtyard 

was better than their knowledge of locations in the building. Thus, the longer RT and greater activation 

for building trial in the JRD task may reflect a greater memory retrieval load on these trials. Alternatively, 

these effects may be more directly related to the size of the spaces. Independent of how well the spaces 

were learned, participants may have found it more effortful to form spatial images of smaller spaces 

during the JRD task, and RSC and PPA responses might be greater when imagining spaces that are more 

closely bounded (mirroring a similar effect in scene perception; (Henderson et al., 2011)). Overall, it is 

unclear what caused the differences between the building and the courtyard, and further studies are 

needed to understand what is driving these effects. 
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Our multivoxel pattern analyses revealed several effects that were related to the hierarchical organization 

of the environment. First, we observed a segmentation effect: locations in the two subspaces were 

representationally distinct from each other. Second, we observed a scale effect: locations in the courtyard 

were more representationally distinct than locations in the building. Third, we observed effects related to 

integration: integration trials were representationally distinct from non-integration trials, and integration 

trials were more representationally clustered than non-integration trials. These effects were localized to 

the same regions that showed univariate activity differences. The consilience of these findings with the 

behavioral results is notable. However, we are reluctant to draw strong conclusions from them because 

our computational simulation suggested that—if certain assumptions hold, the multivariate effects could 

be a byproduct of univariate differences. Skepticism about the multivariate effects may be further 

warranted by the fact we were not able to identify any within-subspace distance or heading codes, in 

contrast to our previous studies of similar environments (Marchette et al., 2014; Peer & Epstein, 2021). 

Finally, our findings may have implications for understanding the role of hierarchy in memory organization 

beyond space. Hierarchical organization exists in many domains; for example, language (words, 

sentences, paragraphs), semantic memory (nested categories), and working memory (chunking). Two 

potential benefits exist to hierarchical organization. First, by organizing items hierarchically, the number 

of items in each level is reduced, enabling their maintenance and manipulation in working memory. This 

may enable visualizing all items together and understanding the relations between each pair of items, a 

process which becomes exponentially harder as the number of items increases (Brockmole & Wang, 2005; 

Dirlam, 1972; Johnson, 1970; Mandler, 1967, 2013). In our study, hierarchical organization may have 

served to facilitate memory of locations and spatial relations within each subspace, thus simplifying 

within-subspace spatial judgments. Second, organizing memory hierarchically enables the use of the 

hierarchical structure to make inferences about item relations, as evidenced in hierarchical planning 

where planning is performed separately for different scales/hierarchy levels (Tomov et al., 2020; Wiener 
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& Mallot, 2003). In our study, participants appear to have used hierarchical inference to make correct 

spatial judgments by pointing toward the building instead of toward the specific items within the 

buildings. We speculate that our findings regarding the brain systems involved in the coding of hierarchical 

spatial environments may be relevant to memory organization in other domains, especially given the 

evidence that these systems play a role in representing both spatial and non-spatial cognitive maps 

(Behrens et al., 2018; Bellmund et al., 2018; Epstein et al., 2017; Peer et al., 2015). Although our results 

highlight the role of medial temporal lobe and scene regions in making simple hierarchical judgments in 

the spatial domain, other brain regions, such as frontal lobe regions, may become involved when 

hierarchical planning demands become more abstract or more complex (Balaguer et al., 2016). 

In conclusion, our findings show that people represent each level of hierarchically organized environments 

separately, and use an active mental process mediated by scene-responsive and medial temporal lobe 

brain regions to integrate across the levels. This study adds to the increasing literature demonstrating that 

cognitive maps—at least, in some circumstances—are not unitary spatial fields, but instead are structured 

entities that involve the representation of distinct spatial subspaces and the spatial relationships among 

those subspaces. These findings can be relevant to understanding how memory in general is organized by 

segmentation and integration processes. 
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