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Abstract 

The study of hematopoietic stem cell (HSCs) maintenance and differentiation to supply the hematopoietic 
system presents unique challenges, given the complex regulation of the process and the difficulty in observing 
cellular interactions in the stem cell niche. Quantitative methods and tools have emerged as valuable 
mechanisms to address this issue; however, the stochasticity of HSCs presents significant challenges for 
mathematical modeling, especially when bridging the gap between theoretical models and experimental 
validation. In this work, we have built a flexible and user-friendly stochastic dynamical and spatial model for 
long-term HSCs (LT-HSCs) and short-term HSCs (ST-HSCs) that captures experimentally observed cellular 
variability and heterogeneity. Our model implements the behavior of LT-HSCs and ST-HSCs and predicts their 
homeostatic dynamics. Furthermore, our model can be modified to explore various biological scenarios, such as 
stress-induced perturbations mediated by apoptosis, and successfully implement these conditions. Finally, the 
model incorporates spatial dynamics, simulating cell behavior in a 2D environment by combining Brownian 
motion with spatially graded parameters. 

*Summary Statement 

This study addresses the challenge of characterizing hematopoietic stem cell (HSC) dynamics by developing a 

flexible, user-friendly stochastic spatial model of long-term and short-term HSCs. The model captures observed 

cellular variability and heterogeneity, predicts homeostatic dynamics, can be adapted to simulate stress-induced 

perturbations like apoptosis, and incorporates a spatial component to analyze HSC movement within a bone 

marrow niche. 

Introduction 

Hematopoietic stem cells (HSCs) are highly dynamic yet rare cells residing within distinct hypoxic niches of the 

bone marrow microenvironment  (Kiel & Morrison, 2006; Orkin & Zon, 2008). To preserve genomic integrity, 

the majority of HSCs remain in a quiescent state in vivo, limiting their exposure to cell-cycle-associated DNA 

damage (Pinho & Frenette, 2019; Pinho & Zhao, 2023; Seita & Weissman, 2010; Wilson et al., 2008). At the top 

of the hematopoietic hierarchy are long-term hematopoietic stem cells (LT-HSCs), which possess the unique 

ability to sustain long-term hematopoietic reconstitution when needed but also maintain the highest levels of 

quiescence as a protective mechanism. Upon activation, LT-HSCs differentiate into short-term hematopoietic 

stem cells (ST-HSCs), which exhibit reduced quiescence, yet are still capable of hematopoietic reconstitution. 
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ST-HSCs subsequently give rise to the more heterogeneous pool of multipotent progenitor cells (MPPs), which 

contribute to the production of mature blood cells necessary for steady-state hematopoiesis and maintain very 

low levels of long-term reconstitution capabilities (Akashi et al., 2000; Benveniste et al., 2010; Kondo et al., 

1997; Morrison et al., 1997; Yamamoto et al., 2013; L. Yang et al., 2005). 

Regulation of HSCs is essential for maintaining hematopoietic homeostasis. HSCs have long been a central 

focus in stem cell biology due to their complex and dynamic processes, which are governed by both cell-

intrinsic factors, such as epigenetic regulators and transcription factors, and cell-extrinsic signals from the bone 

marrow niche (Orkin & Zon, 2008; Pinho & Frenette, 2019; Wilson et al., 2008). These regulatory mechanisms 

ensure HSCs can generate all mature blood lineages as well as play a critical role in restoring the hematopoietic 

system following injury, including transplantation into marrow-ablated recipients and inflammatory conditions 

(Anderson et al., 2020; Baldridge et al., 2010; Jacobson et al., 1951; Porada et al., 2015; Thompson et al., 2024; 

Till & McCulloch, 1961; Walter et al., 2015; Wilson et al., 2008). Yet, the molecular mechanisms and 

underlying dynamics of HSC function remain incompletely understood (Paul et al., 2015). Emerging evidence 

indicates that HSCs make continuous contributions to hematopoiesis; however, the precise quantitative nature 

of these contributions remains under investigation. Experimental limitations, such as perturbations introduced 

during experimental data acquisition, often challenge the accurate assessment of HSC dynamics due to the 

disruption of the system. 

Computational approaches such as mathematical modeling can represent critical components of biological 

systems without the need for experimental disruption (Bartocci & Lió, 2016; Fischer, 2008). By employing 

calculations and in-silico analyses, these models provide insights into how various factors influence system 

regulation, enabling predictions of complex biological behaviors. Such approaches not only guide future 

experimental research but also hold the potential to uncover novel therapeutic targets (Mackey & Maini, 2015). 

Mathematical modeling has been instrumental in elucidating the contributions of HSCs to hematopoiesis. Early 

models, such as those proposed by Mackey,1978, and later refined by Dale & Mackey, 2015, have provided 

valuable insights into the dynamic transitions of HSCs between quiescence and proliferation. More recent 

models, such as the one by Kawahigashi et al., 2024, have examined age-related changes in the HSC pool, 

shedding light on the interplay among stem cell-stem cell (S-S) division, stem cell-progenitor cell (S-P) 

division, and progenitor cell-progenitor cell (P-P) division. Similarly, Bernitz et al., 2016, explored specific 

biological mechanisms of HSCs, proposing the existence of divisional history memory in HSCs. Mathematical 

models have also been utilized to investigate stress-induced HSC dynamics under both theoretical and 

experimental conditions. For instance, Dingli & Michor, 2006, and Parajdi et al., 2020, studied the behavior of 

leukemic HSCs within the hematopoietic system, while Bonnet et al., 2021, analyzed stress hematopoiesis in 

immature compartments, including LT-HSCs and ST-HSCs, over time in a murine model of phenylhydrazine 
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(PHZ)-induced stress. These deterministic models provide valuable insights into the average HSC dynamics; 

however, they neglect the inherent stochasticity of HSC fates (Sussmann, 1978), a limitation our stochastic 

model directly addresses.  

HSCs decision-making is inherently complex and not yet fully defined; however, the outcomes are well 

characterized: proliferation, differentiation, mobilization, or death. This complexity makes HSCs an ideal 

subject for investigation through stochastic modeling, which accounts for probabilistic events and individual 

cellular variability. Stochastic analyses have significantly enhanced our understanding of hematopoiesis. For 

instance, Xu et al., 2018, explored the hematopoietic system using stochastic simulations integrated within a 

graphical interface-mathematical modeling framework. Their work demonstrated the flexibility of stochastic 

simulations in testing hypotheses and exploring system dynamics. However, their compartmentalized design, 

which includes only two biological compartments—immature and mature cells—may oversimplify the system 

and overlook the distinct fates and dynamic behaviors of HSCs. 

In addition to intrinsic factors, HSCs are closely regulated by their niche, which plays a pivotal role in their 

function, mobility, and overall maintenance. Recent mathematical models, such as the one proposed by 

Pedersen et al., 2023, have investigated the interactions between HSCs and their niche. Their model provides a 

valuable framework for analyzing how stem cell proliferation, differentiation, and attachment/detachment 

dynamics within the niche influence various clinical scenarios. While this model offers significant insights into 

the regulation of HSCs within the bone marrow microenvironment, it does not account for the stochastic 

movements and spatiotemporal dynamics of HSCs. Exploring these dynamics requires single-cell-level 

modeling that incorporates spatial data to describe HSC migration patterns. Such data enable the testing of 

hypotheses regarding the relative positions of different cell types, the mechanisms underlying HSC motility or 

immobility, and the factors driving these behaviors. Resolving HSC–niche dynamics comprehensively needs the 

integration of spatiotemporal data not only under homeostatic conditions but also under perturbations, both 

within individual niches and across the entire bone marrow environment.  

To investigate the inherently variable dynamics of LT-HSCs and ST-HSCs, we developed a spatially explicit 

(2D) computational model. This model accounts for cellular heterogeneity and the probabilistic nature of HSC 

behavior. By fitting the model to two distinct in vivo experimental datasets describing the dynamics of 

phenotypically distinct LT-HSCs and ST-HSCs, we established a comprehensive theoretical configuration of 

homeostatic LT-HSCs and ST-HSCs in mice. The model accurately reproduces the observed experimental data 

and generates testable predictions. Moreover, we demonstrated the model's flexibility by simulating apoptosis-

induced stress scenarios in LT-HSCs and ST-HSCs. Finally, using the model's spatial component, we explored 

the effects of varying gradients on quiescent and active LT-HSCs and ST-HSCs under homeostatic conditions, 

gaining insights into their spatial dynamics and localization. 
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Results 

We formulated a stochastic, agent-based model to simulate the behavior of long-term (LT-HSCs) and short-term 

(ST-HSCs) hematopoietic stem cells, incorporating key processes such as quiescence, apoptosis, distinct modes 

of cell division, and eventual inactivation after reaching a maximum number of divisions. Both LT-HSCs and 

ST-HSCs can enter a quiescent state with distinct probabilities. While quiescent, cells may either remain 

dormant or stochastically undergo apoptosis. Non-quiescent cells also face a probability of apoptosis. Surviving 

cells can divide via four distinct modes: symmetric self-renewal, asymmetric division, direct differentiation, or 

symmetric differentiation. The selection of each division mode is determined stochastically through a Markov 

process. This division process continues until LT-HSCs and ST-HSCs reach their respective maximum division 

limits, at which point they transition to an inactive state. Figure 1 provides a visual overview of the model; 

Supplementary Table 1 lists the parameters; and the Materials and Methods section provides further details, 

mathematical equations, and modeling assumptions. 

1. Formulation of a homeostatic configuration of LT-HSCs and ST-HSCs  

To obtain a model configuration that reflects homeostatic LT-HSCs and ST-HSCs, we fit our dynamical model 

to quantitative in vivo murine HSC data from two independent experimental studies: Busch et al., 2015, and 

Säwen et al., 2018. Both studies utilized distinct markers, Fgd5 and Tie2, to lineage trace the progression of 

phenotypically defined mice LT-HSC and ST-HSC populations over time. We assessed these two datasets 

independently to evaluate the efficacy and flexibility of our model and to account for the differences in the 

reported HSC populations. Busch et al. characterized LT-HSCs as a more quiescent and slowly differentiating 

population, whereas Säwen et al. described a more dynamic and actively dividing population that significantly 

contributes to downstream differentiation. By incorporating both datasets, we demonstrate the ability of our 

model to accommodate varying experimental observations and to capture the heterogeneity of LT-HSC and ST-

HSC dynamics. By fitting the model to the experimental data, we estimated parameter values, which are 

presented for both case studies in Table 1.  Figures 2A and 2B illustrate the homeostatic configurations 

predicted by the parameterized model over a 40-week period, with each figure corresponding to one of the two 

experimental references. Additionally, we extended our simulations to track the progression of each population 

(LT-HSCs and ST-HSCs) up to 80 weeks. To account for the inherent stochasticity of the system, 50 

independent simulations were used in both cases, with error bars representing the variability across simulations. 

Our model reveals that the primary differences in LT-HSC behavior between the two datasets lie in their 

differentiation dynamics and ability to sustain the stem cell population over time. In the homeostatic 

configuration fit to Busch et al. data, LT-HSCs predominantly exhibit symmetrical self-renewal division (52%), 
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with direct and symmetrical differentiation occurring at 30%. For ST-HSCs, the model shows a symmetrical 

division rate of 40%, and a direct and symmetrical differentiation rate of 45%, suggesting a more prominent 

differentiating ability role for this population (Table 1).  The apoptosis rate was estimated at 1% for LT-HSCs 

and 2.5% for ST-HSCs per time step. Mean cell cycle durations were 5 ± 1.5 weeks for LT-HSCs and 3.5 ± 1.5 

weeks for ST-HSCs, reflecting the inherent heterogeneity and stochasticity of division timing within each 

population. The maximum number of divisions was set at 2 for LT-HSCs and 3 for ST-HSCs before entering an 

inactive state. During the simulations, the proportion of actively participating LT-HSCs contributing to 

proliferation and differentiation was 36%, whereas 45% of ST-HSCs were actively engaged (Figure 2A). 

The homeostatic configuration of LT-HSCs and ST-HSCs fit to Säwen et al. data, also revealed a predominance 

of symmetrical self-renewal divisions in both populations, with rates of 48% for LT-HSCs and 40% for ST-

HSCs. Additionally, the direct and symmetrical differentiation rates were higher compared to Busch et al., at 

44% for LT-HSCs and 50% for ST-HSCs, suggesting that these populations are more actively engaged in 

differentiation during homeostasis. The proportion of actively participating LT-HSCs increased to 40% 

(compared to 36% in the Busch et al. configuration), while the percentage remained at 45% for ST-HSCs. This 

increased activation of LT-HSCs was accompanied by an elevated apoptosis rate of 2.5% for LT-HSCs, 

matching the rate observed for ST-HSCs. The mean cell cycle durations remained consistent with the Busch et 

al. configuration, at 5 weeks ± 1.5 weeks for LT-HSCs and 3.5 weeks ± 1.5 weeks for ST-HSCs (Table 1). 

Similarly, the maximum number of divisions before entering an inactive state remained unchanged, with LT-

HSCs limited to 2 divisions and ST-HSCs to 3 divisions (Figure 2B). 

Our model is able to simulate the homeostatic conditions with both experimental datasets, with Säwen et al 

showing the more accurate representation. This further highlights the importance of incorporating stochastic 

processes and individual cell fate variability in mathematical models to faithfully reflect the heterogeneity 

observed in LT-HSCs and ST-HSCs populations. 

2. Modeling mice LT-HSCs and ST-HSCs stress response 

To investigate the impact of perturbations within our model system, we examined how elevated inflammation—

and the associated apoptosis induced by excessive pro-inflammatory cytokines during CAR-T cell therapy—

affects the dynamics of LT-HSCs and ST-HSCs. This analysis was guided by the findings of Read et al, 2023 

CAR-T cell therapy has emerged as a groundbreaking treatment for relapsed hematological cancers. However, 

the clinical application can result in significant adverse effects, most notably cytokine release syndrome (CRS), 

which arises from a surge of pro-inflammatory cytokines following T-cell activation. Therefore, patients often 

experience complications such as cytopenia and delayed bone marrow recovery (Fried et al., 2019; Schuster et 

al., 2019; Sermer & Brentjens, 2019). Read et al., 2023 investigated the effects of CAR-T cell therapy in a 

murine tumor model treated with human CAR-T cells. Their findings revealed that the mice developed CRS, 
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characterized by elevated expression of pro-inflammatory cytokines. Notably, they observed that hematopoietic 

stem and progenitor cells (HSPCs) exhibited increased apoptosis following CAR-T cell therapy, leading to a 

reduction in actively dividing LT-HSCs, while the quiescent LT-HSCs and ST-HSC populations remained 

unaffected. Furthermore, they demonstrated that the injection of pro-inflammatory cytokines into mice resulted 

in an increased Ki67% in ST-HSCs, indicating that a greater proportion of these cells exited quiescence during 

apoptosis-inducing inflammation. 

To address the impact of apoptosis-related perturbations within our model system, we incorporated the 

following assumptions: i) Homeostatic conditions are based on the LT-HSC and ST-HSC configuration 

described by Säwen et al., 2018 ii) Quiescent LT-HSCs and ST-HSCs remain unaffected, consistent with their 

experimental findings. iii) Apoptosis rates for both LT-HSCs and ST-HSCs remain constant throughout the 

simulation. 

Then, to study the effects of apoptosis-related changes over time, we considered three distinct scenarios based 

on the experimental data reported by Read et al., 2023 a) Increased apoptotic levels of LT-HSCs. b) Increased 

apoptotic levels of both LT-HSCs and ST-HSCs, accompanied by an increase in actively dividing ST-HSCs. c) 

Modification of the ST-HSC configuration to restore homeostasis under inflammatory conditions. 

We mimicked these scenarios by increasing apoptosis rates for LT-HSCs and ST-HSCs and adjusting the 

homeostatic configuration of ST-HSCs to align with the Säwen et al., 2018 homeostatic values. The list of 

parameters for each scenario is provided in Table 2. To account for stochasticity, we ran 50 independent 

simulations for each scenario, with each modeled up to 100 weeks. 

a) For the first scenario, we increased the apoptotic rate of LT-HSCs to 5% and 10% per time step, as 

experimentally reported by Read et al., while keeping the ST-HSC homeostatic configuration 

unchanged. Our model demonstrates the detrimental effects of elevated apoptosis on the LT-HSC 

population. Additionally, the simulation reveals a corresponding decrease in the ST-HSC population, 

likely due to the direct feedback dependency of ST-HSCs on LT-HSCs. However, when the LT-HSC 

apoptosis rate was increased to 5% (indicated in red), the ST-HSCs were able to partially recapitulate the 

homeostatic configuration proposed by Säwen et al., suggesting a compensatory role of ST-HSCs in the 

presence of non-functional LT-HSCs (Figure 3A). 

b) For the second scenario, we increased the apoptosis rate of ST-HSCs to 10%, while maintaining the LT-

HSC apoptosis rate at 5%. No changes were made to the homeostatic configuration of the LT-HSCs. To 

reflect the experimentally observed increased Ki67% reported for ST-HSCs by Read et al., we elevated 

the percentage of actively participating ST-HSCs to 70%. Our model demonstrates the detrimental 

impact of elevated apoptosis on LT-HSCs, leading to a reduction in the number of active LT-HSCs over 

time without completely depleting the population within the 100-week simulation timeframe (Figure 3B) 
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Furthermore, the results indicate that increasing the proportion of actively participating ST-HSCs to 70% 

is insufficient to recapitulate the homeostatic dynamics reported by Säwen et al. (Figure 3B). 

c) For the third scenario, we modeled the theoretical biological requirements for ST-HSCs to achieve 

homeostasis under conditions of apoptosis-related inflammation affecting both LT-HSCs and ST-HSCs. 

The apoptotic rate was set to 5% for LT-HSCs and 10% for ST-HSCs, while the percentage of actively 

participating ST-HSCs was increased to 70%, as in the second scenario. Our model demonstrates that for 

ST-HSCs to recapitulate homeostasis proposed by Säwen et al., the rate of symmetrical self-renewal 

division must increase to 70%, while direct and symmetrical differentiation is maintained at 20%. Under 

these conditions, the ST-HSCs successfully restored homeostatic dynamics for up to 40 weeks. 

However, beyond this time point, the ST-HSC population exhibited a linear decline, ultimately failing to 

sustain homeostasis for the remainder of the simulation (Figure 3C). 

3. Parameter Sensitivity analysis  

We conducted a Latin Hypercube Sampling with Partial Rank Coefficient Analysis (LHS/PRCC) to evaluate the 

impact of various model parameters on the total number of active, quiescent, and inactive LT-HSCs and ST-

HSCs. This analysis is essential for identifying the parameters that exert the strongest influence on the model 

outputs, thereby assessing the robustness of the dynamical model predictions. 

For the active LT-HSCs, PRCC analysis shows P1A, P2A, and divA having a significant positive correlation 

with the output. On the other hand, P3A, meanCCA, PQA, and PAA exhibited negative correlations, with PAA 

displaying the highest significant negative relationship (Figure 4A). For the active ST-HSCs, PRCC identified 

positive correlations for P2A, P1B, P2B, and divB. Conversely, P3A, P3B, PQA, PQB, PAA, PAB, meanCCA, 

and meanCCB were negatively correlated, with PAA standing out as the most negatively statistically significant 

parameter, followed by PAB (Figure 5A). 

For inactive LT-HSCs, negative correlations were found for P3A, PQA, PAA, meanCCA, divB, and divA, with 

the former one emerging as the parameter with the most significant negative influence on the inactive LT-HSCs 

(Figure 4B). Among inactive ST-HSCs, P1B and P2B demonstrated significantly positive relationships with the 

population size. In contrast, parameters such as P3A, P3B, PQA, PAB, meanCCA, meanCCB, and divB had 

significant negative correlations, with divB showing the strongest negative influence (Figure 5B). 

For quiescent LT-HSCs, PRCC analysis revealed that PQA was the only significant parameter displaying a 

positive correlation, with a PRCC value of 1 (Figure 4C) Meanwhile, for quiescent ST-HSCs, positive 

correlations were observed for P2A and PQB. However, parameters like P1A, P3A, PQA, PAA, and meanCCA 

were negatively correlated with the output (Figure 5C). 
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4. Exploring the Influence of Spatial Gradients on LT-HSC and ST-HSC Dynamics 

Using the Euler-Maruyama method for stochastic integration, our model simulates the Brownian motion of 

active and quiescent LT-HSCs and ST-HSCs within a two-dimensional space representing a single bone 

marrow niche. The spatial model incorporates two sets of parameters: (1) spatial parameters, including niche 

size (x and y dimensions), diffusion coefficient, and spatial gradients for the probabilities of quiescence (pAQ 

and pBQ) and mean cell cycle duration (meanCCA and meanCCB) (Supplementary Table 1); and (2) parameters 

defining the homeostatic configuration, fitted to experimental data published by Säwen et al., 2018. All model 

parameters are summarized in Table 3. 

To explore the spatial dynamics of LT-HSCs and ST-HSCs, we systematically varied aQ (representing the 

gradient in the probability of a cell becoming quiescent, pAQ or pBQ) and aD (representing the gradient in the 

mean proliferation rate, meanCCA or meanCCB) to create three numerical combinations representing high, 

medium, and low spatial gradients (see Materials and Methods). Our numerical analysis demonstrates the 

formation of significant spatial gradients for both active and quiescent LT-HSCs and ST-HSCs as the 

parameters aD and aQ are varied. These gradients highlight the sensitivity of cell distribution and heterogeneity 

to spatial cues, providing insights into the dynamic behavior of stem cells within the niche. 

Figure 6A illustrates the spatial distribution of active LT-HSCs under different gradient conditions. Under high 

gradient conditions (aQ = 0.25, aD = 0.25), the initial uniform distribution of cells at time step 20 gives way to 

a gradual accumulation of cells in the top-left corner of the domain by time step 80. This clustering pattern is 

likely driven by the combined effects of the increasing probability of quiescence from left to right and the 

decreasing mean division time from bottom to top. With a medium gradient (aQ = 0.5, aD = 0.5), the clustering 

is less pronounced, resulting in a broader distribution of cells across the domain. Under low gradient conditions 

(aQ = 0.75, aD = 0.75), where the parameters vary minimally across the domain, cells remain relatively 

uniformly distributed throughout the simulation. 

Similar spatial distribution patterns are observed for active ST-HSCs, as shown in Figure 7A. Under high 

gradient conditions, ST-HSCs also accumulate in the top-left corner by time step 80. With medium gradients, 

the clustering is less pronounced, and under low gradients, the distribution remains relatively uniform. 

For quiescent LT-HSCs under high gradient change (aQ=0.25, aD=0.25), the cells were initially uniformly 

distributed across the domain at time step 20, with a slight concentration observed on the right side. As time 
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progressed (time steps 40, 60, and 80), the cells increasingly clustered on the right side, with some spreading 

towards the left side, where most of the active LT-HSCs are located. Under medium gradient (aQ=0.5, aD=0.5), 

the quiescent LT-HSCs displayed a random distribution across the entire spatial domain. This pattern remained 

largely unchanged over time, with only minor gradient adjustments observed by time step 80. In the low-

gradient scenario (aQ=0.75, aD=0.75), the quiescent LT-HSCs were even more distributed throughout the 

spatial domain. No clear clustering patterns emerged during any of the time steps (20, 40, 60, or 80), reflecting 

the limited or low variability of the parameters across the spatial domain (Figure 6B). 

Finally, for quiescent ST-HSCs, the behavior in terms of gradient and cell location was similar across all levels 

(high, medium, and low), with the primary distinction being the increased number of cells throughout the 

simulation. Across all time steps and gradient change levels, no clear clustering patterns were observed, as the 

cells appeared to remain uniformly distributed across the spatial domain (Figure 7B). 

Discussion  

The intricate dynamics between LT-HSCs and ST-HSCs, particularly their self-renewal and differentiation 

rates, play a critical role in maintaining hematopoietic homeostasis (Mann et al., 2022). Disruptions in this 

balance can lead to stress hematopoiesis. While previous studies have employed ODEs to quantitatively model 

HSC behavior, such approaches often pose interpretability challenges and fail to account for the stochasticity 

and intrinsic heterogeneity inherent in HSC populations.  

In this work, we present a flexible stochastic model of LT-HSC and ST-HSC behavior. The model incorporates 

a two-dimensional spatial motion component to simulate the dynamics of quiescent and active LT-HSCs over 

time, providing a robust framework for studying HSC behavior and interactions in both normal and perturbed 

conditions.  

Homeostatic Configuration of LT-HSCs and ST-HSCs  

To validate our model, we fit in vivo label-tracing data from two independent homeostatic studies, each 

describing distinct phenotypic behaviors of LT-HSCs and ST-HSCs. Our model successfully captured the 

stochastic dynamics of LT-HSCs and ST-HSCs under both scenarios and revealed key differences in LT-HSC 

and ST-HSC dynamics between the two datasets, particularly in differentiation and population maintenance. In 

the homeostatic configuration fitted to the Busch et al. data (Figure 2A), the proportions of actively 

participating LT-HSCs and ST-HSCs were 36% and 45%, respectively, aligning with their experimental 

observations that at least 30% of HSCs contribute to hematopoiesis during homeostasis, including symmetrical 

divisions and differentiation (Busch et al., 2015).  In addition, we showed that symmetrical division rates are 
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predominant over the simulation, with 52% for LT-HSCs and 48% for ST-HSCs, consistent with the findings by 

Kawahigashi et al., 2024, and Loeffler et al., 2019. Moreover, the combined differentiation rates were 30% for 

LT-HSCs and 44% for ST-HSCs, while LT-HSC apoptosis was 1% per time step, as previously reported by  

Foudi et al., 2009. Our simulation ultimately led to an exponential increase in LT-HSCs and a linear increase in 

ST-HSCs over 80 weeks. While the simulated exponential growth of LT-HSCs is not biologically relevant, 

during homeostatic conditions, it likely reflects the low apoptosis rate estimated from the data, consistent with 

the expected quiescence of LT-HSCs. Our best model fit using the Säwen et al. dataset (Figure 2B), shows LT-

HSC activity increased to 40%, with ST-HSC participation remaining at 45%. Symmetrical division rates were 

48% for LT-HSCs and 40% for ST-HSCs, while the total differentiation rates were 44% for LT-HSCs and 50% 

for ST-HSCs. Apoptosis rates for both cell types increased to 2.5%, as reported by Barile et al., 2020, resulting 

in linear growth of LT-HSC and ST-HSC populations, consistent with Kawahigashi et al., 2024 findings. Our 

simulations suggest a more dynamic HSC phenotypic profile with increased differentiation and activation 

compared to the Busch et al. dataset.   

A central assumption of our model is the division potential of HSCs. Based on Bernitz et al., 2016, we proposed 

that LT-HSCs and ST-HSCs enter an inactive state after 2 and 3 divisions, respectively. Our simulations 

showed that inactive cell numbers remained small compared to active cells, emphasizing that homeostasis is 

driven by the percentage of active cells rather than by the ability of individual HSCs to divide multiple times. 

These findings demonstrate the utility of our model in uncovering heterogeneity in HSC behavior and providing 

insights into their dynamics under homeostatic conditions.  

Modeling apoptotic-stress conditions on LT-HSCs and ST-HSCs   

To further validate our model, we examined the effects of apoptosis-related stress on the homeostatic 

configuration of LT-HSCs and ST-HSCs under three distinct scenarios, using experimental data from Read et 

al., 2023 to mimic apoptotic stress in our model. In the first scenario, we found that increased LT-HSC 

apoptosis rates of 5% and 10% (compared to the homeostatic rate of 2.5%) showed significant depletion of the 

active LT-HSC pool (Figure 3A), with mild and severe depletion respectively, aligning with findings by (Read 

et al., 2023; Reagan & Rosen, 2015). Quiescent LT-HSCs and ST-HSCs remained unaffected due to unchanged 

quiescent apoptosis parameters (PAQA, PAQB), consistent with Read et al., 2023. Therefore, no complete 

depletion of the total number of LT-HSCs was observed during the simulations. 5% LT-HSC apoptosis reduced 

ST-HSC numbers but allowed partial compensation, maintaining homeostasis for up to 30 weeks as ST-HSCs 

increased their contribution to differentiation, aligning with findings from Säwen et al., 2018 and other studies 

on ST-HSC adaptability under stress (Bhattacharya et al., 2006; Yamamoto et al., 2013).  
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In the second scenario, fixing apoptotic rates at 5% for LT-HSCs and 10% for ST-HSCs showed declines in 

both active LT-HSCs and ST-HSCs. The active LT-HSCs were almost depleted towards the end of the 

simulation (Figure 3B), while ST-HSC depletion also showed the direct elevated apoptosis and feedback from 

LT-HSCs. Increasing ST-HSC symmetrical proliferation (P1B) to 70% allowed a compensatory increase in 

proliferative ST-HSCs, consistent with Read et al., 2023 and Singh et al., 2020, but failed to fully recapitulate 

homeostasis, suggesting that changes in self-renewal and differentiation capacities are required for ST-HSCs to 

sustain homeostasis under stress conditions.  

In the third scenario, we mimicked experimental homeostasis data under inflammatory conditions (Säwen et al., 

2018) for ST-HSCs. Symmetrical self-renewal was increased to 70%, with symmetric differentiation at 20%, 

enabling ST-HSCs to maintain downstream compartments despite apoptosis-induced inflammation (Barile et 

al., 2020). While this adjustment maintained homeostasis for up to 40 weeks, ST-HSC numbers declined 

linearly beyond this period, suggesting that quiescent cells failing to exit G0 under stress may lead to delayed 

recovery and eventual depletion of these compartments.  

Our findings emphasize the intricate interplay between apoptotic stress and HSC dynamics, shedding light on 

the processes governing the balance between apoptosis, self-renewal, and differentiation required to sustain 

hematopoietic homeostasis under stress. By aligning with experimental observations, we demonstrate that our 

model offers a robust framework for exploring the stochastic dynamics of LT-HSCs and ST-HSCs. 

Furthermore, modifying the model parameters enables the simulation and investigation of diverse stress-

induced hematopoietic dysfunction scenarios over time, providing valuable insights into the underlying 

mechanisms driving these processes.  

Parameter Sensitivity analysis  

PRCC analysis showed the sensitivity of LT-HSC and ST-HSC populations to key parameters (Figs. 4A–5C). 

For active LT-HSCs, PQA and PAA were the most significant parameters. Increasing PQA would lead to 

increased quiescent cells, decreasing the number of active LT-HSCs, while increasing PAA would reduce the 

production of active LT-HSCs due to elevated apoptosis. Similarly, for the active ST-HSCs, PQA and PAA 

negatively impacted the population, due to the direct feedback LT-HSCs have on ST-HSCs. Among all the 

significant parameters (Figure 5A), PAA with PAB had the greatest PRCC values impacting negatively the 

growth of active ST-HSCs, because increasing these parameters would lead to increased apoptosis.  

For inactive LT-HSCs, the most influential and significant parameter was the divA (Figure 4B). Increasing divA 

would lead to a higher threshold the active LT-HSCs need to reach in order to enter into an inactive state. For 

the inactive ST-HSCs, various parameters were significant (Figure 5B), being the result of the direct feedback 
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from the LT-HSCs. In addition, the most influential parameter was divB (PRCC ≈ -0.6), which controls the 

number of divisions ST-HSCs need to perform to enter into an inactive state.   

For quiescent LT-HSCs, PQA was the sole positively influential and correlated parameter (PRCC = 1), aligning 

with model assumptions and behavior (Figure 5C). For quiescent ST-HSCs, P2A and PQB had positive effects, 

while PQA, PAA, and meanCCA negatively impacted their population. PAA, (PRCC ≈ -0.6), was the most 

significant, highlighting that increased LT-HSC apoptosis reduced differentiation into ST-HSCs, ultimately 

lowering quiescent ST-HSC numbers. Overall, the PRCC analysis demonstrates the expected effects and 

sensitivity of various parameters on LT-HSC and ST-HSC populations, suggesting robustness in the model.  

Numerical Exploratory analysis of the spatial component of the model  

The migration and spatial dynamics of HSCs remain poorly understood due to technical challenges in long-term 

in vivo visualization (Johansson et al., 2024; MacLean et al., 2017; Upadhaya et al., 2020). While HSC motility 

has been observed within the bone marrow and potentially toward the spleen under stress, direct evidence is 

limited. It is established, however, that HSCs exhibit great motility under homeostatic conditions and stress-

induced scenarios.  

In this work, our numerical exploratory analysis revealed gradients in cell distribution influenced by theoretical 

microenvironmental conditions, following a slow motion of cells, set to 600 µm/time-step, attributed to 

Brownian diffusion. While this motion is slow compared to other studies such as Upadhaya et al., 2020, where 

they showed mobility of 0.15 μm/min, implying a faster displacement per week than our simulated conditions, it 

is important to note that they observed HSC displacement over a period of only six hours. Therefore, no direct 

evidence supports the assumption that HSCs cover the same spatial distances within a seven-day timeframe.  

In our results, when aQ and aD were set to 0.25, both active LT-HSCs and ST-HSCs exhibited a gradient 

towards the left side of Ly, with no clear preference for localization at the bottom or top of the Ly axis, due to 

the absence of changes in the cell cycle dynamics of LT-HSCs and ST-HSCs during the homeostatic 

simulation.  Conversely, quiescent LT-HSCs tended to form a gradient toward the right side of Lx, near x=Lx, 

as time advanced, while quiescent ST-HSCs remained uniformly distributed in the spatial domain with an 

increase in numbers over time (time steps) consistent with the homeostatic configuration. The clear distinction 

in the location of both active and quiescent LT-HSCs and ST-HSCs reflects a theoretical heterogeneous spatial 

distribution and domain within the 2-D bone marrow niche, where quiescent cells tend to remain in G0 state in 

hypoxic regions typically localized perivascularly near sinusoidal vessels and arterioles (Acar et al., 2015; Chen 

et al., 2022; Kunisaki et al., 2013), while proliferating and differentiating HSCs exhibit more dynamic 

movement due to interactions with cytokines and chemokines (Baldridge et al., 2010; Essers et al., 2009; 
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Jahandideh et al., 2020). These findings provide theoretical insights into how the bone marrow niche shapes 

HSC dynamics.  

In addition, our exploratory analysis of when aQ and aD were set up to 0.5 and 0.75 independently, led to the 

assumption of the absence of a pronounced gradient of hypoxic regions within the 2-D spatial domain resulting 

in cell behavior consistent with a relatively homogeneous environment. Under these conditions, both quiescent 

and active LT-HSCs and ST-HSCs overlapped spatially, maintaining slow division rates. This underscores the 

critical role of localized hypoxia in shaping niche heterogeneity and HSC behavior.  

Overall, our spatial model provides a versatile framework for simulating HSC dynamics within a theoretical 2-

D bone marrow niche. By incorporating diffusion-based motility and spatial gradients, the model captures the 

interplay of microenvironmental factors regulating LT-HSC and ST-HSC behavior. These simulations offer 

valuable insights into the spatial regulation of HSC dynamics under homeostatic conditions, bridging gaps in 

experimental observations and advancing our understanding of the bone marrow niche.  

Materials and Methods 

Dynamical Stochastic Model Implementation 

A computational framework based on single-cell stochastic behavior was developed to study the dynamics of 

LT-HSCs and ST-HSCs using both experimental and theoretical information. 

The model incorporates the stepwise differentiation process, previously established by the Weisman group 

(Akashi et al., 2000; Kondo et al., 1997; Morrison et al., 1997), which outlines a hierarchical progression from 

LT-HSCs to ST-HSCs and then to MPPs. Our computational model employs latent stochastic processes, 

enabling the estimation of transition rates between cellular states and the changes in population composition 

over time. Additionally, it helps identify specific signatures associated with different states. These transitions are 

described by a non-homogeneous Markov process. 

The model assumes that LT-HSCs and ST-HSCs undergo transitions between distinct cellular states, ����, 

governed by specific transition probabilities.  Mathematical  ���� can be represented as: 

���� � ������, �����, �����, �����	 

where each element represents a specific aspect of a cell state or cell fate. 

• �����: This variable represents the differentiation stage of the cell. It takes on one of three values 

corresponding to different stages or cell fates: LT-HSC, ST-HSC, or MPP. 
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• �����: This variable captures the cell cycle state. It is a four-dimensional vector containing: mean cell 

division time, time since the last division, and the number of divisions, and whether the cell is active or 

inactive. 

• �����: This variable captures the cell's quiescent state. It is binary (0 or 1) indicating whether the cell is 

currently quiescent (not actively dividing) or dividing. 

• �����: This captures the cell apoptosis state. It is a binary value (0 or 1) indicating whether the cell is 

undergoing programmed cell death (apoptosis). 

Model Assumptions 

Stochasticity 

Deterministic models, particularly those relying on ordinary differential equations (ODEs), can effectively 

depict the average behavior of HSC populations. However, they cannot capture the inherent variability observed 

in HSC dynamics. To overcome this limitation and provide a more accurate representation, our computational 

model uses stochastic simulations. These simulations incorporate randomness in two distinct mechanisms. The 

first mechanism involves the probabilities assigned to different cell fate options, such as differentiation, self-

renewal, quiescence, or apoptosis. The second mechanism characterizes the variability in the duration of the cell 

cycle for each cell, modeled by Gaussian distribution functions. 

Quiescence 

HSCs reside in the bone marrow, where they predominantly remain in a relatively inactive, quiescent state 

known as the G0 phase (Calvi & Link, 2015; Göttgens, 2015; Nakamura-Ishizu et al., 2014). Despite their 

dormancy, HSCs possess a remarkable capacity for proliferation and differentiation. Previous studies under 

steady-state conditions have indicated that approximately 65% of HSCs are quiescent in specific regions of the 

bone marrow (Bradford et al., 1997; Cheshier et al., 1999). However, HSCs are highly dynamic and can exit the 

quiescent state, entering the G1 phase, to meet the system's needs, causing fluctuations in the percentage of 

quiescent cells at any given time. 

In our model, a predefined number of LT-HSCs will be evaluated for quiescence using the probability PQA to 

determine how many will undergo division. Those LT-HSCs that enter the cell cycle and divide will create ST-

HSCs if the conditions are met. These ST-HSCs will then undergo a process of quiescence based on the 

probability PQB. Both processes are independent of each other. 
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To simplify the model, it is assumed that the quiescent state is irreversible; thus, cells that leave the G0 state 

cannot return to it during the simulation. Although quiescent cells do not actively participate in stem cell 

proliferation or differentiation, they remain susceptible to cell death with probabilities PAQA and PAQB for LT-

HSCs and ST-HSCs respectively. 

Cell Cycle 

The divisional history of a cell is captured by its state variable, �����. This variable is a four-dimensional vector 

whose components are: 

• Time since the last division: This value is tracked through a separate counter within the code and 

reflects the elapsed time since the cell’s last division. 

• Mean cell division time: This value represents the average time it takes for a cell, in its current state, to 

complete a full cell cycle. It is assigned to each cell independently from other cells, drawn from a 

Gaussian distribution with probability density function (PDF) described by the following equation: 


�μ� �
1


√2� 
� ����

�μ � μ0��

2
�
� 

where µ represents the cell division time for a specific cell, �� is the population’s mean cell division 

time. In the code this has been denoted meanCCA and meanCCB for LT-HSCs and ST-HSCs, 

respectively. Finally, the standard deviation, 
  , captures the variability in these division times across 

the population. In the model, we have denoted the standard deviations as stdCCA and stdCCB.  

• Number of divisions: The model incorporates a maximum number of divisions for LT-HSCs and ST-

HSCs, representing the cumulative divisional history of these stem cells throughout their lifespan during 

active cell cycling. This variable reflects findings by Bernitz et al., 2016, who reported that slow-cycling 

HSCs can track their division history.  Each cell has a limited number of divisions before entering a state 

of dormancy (reduced activity) associated with age-related phenotypic changes. Leveraging the model's 

stochasticity for individual cells, this adjustable parameter allows us to explore how divisional history 

influences different outcomes in our simulations. 

• Active/inactive cell.  The model incorporates the concept of inactivity once the cells (LT-HSCs and ST-

HSCs) have reached a specific number of divisions, which is determined by the maximum number of 

divisions (divA and divB) threshold. In addition, active cells (LT-HSCs and ST-HSCs) are the cells that 

actively participate in the simulation. 

Apoptosis 
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Apoptosis, a natural form of programmed cell death, plays a critical role in maintaining a healthy balance within 

cell populations (Elmore, 2007; Norbury & Hickson, 2001). This process, represented in the model by PAA and 

PAB, eliminates HSCs at specific probabilities depending on their type; LT-HSCs and ST-HSCs are assigned 

different turnover probabilities through PAA and PAB, respectively. 

Previous studies have reported varying rates of HSC turnover. For instance, Kiel et al., 2007, found an 

approximate daily turnover rate of 6%, while  Foudi et al., 2009, observed a slower pace ranging from 0.8% to 

1.8% per day. This discrepancy could be due to the heterogeneity in the cell population and therefore it 

highlights the importance of using a flexible range for PAA and PAB in the model. By allowing these 

probabilities to vary, the simulations can explore a wider range of outcomes. 

HSCs fate decisions 

LT-HSCs that are not quiescent can either undergo self-renewal or differentiate during the simulation. Self-

renewal can occur through symmetrical proliferation (creating two LT-HSC daughter cells) with probability 

P1A or asymmetrical proliferation (producing one LT-HSC and one ST-HSC) with probability P2A. 

Alternatively, differentiation can occur via direct differentiation (yielding one ST-HSC) with probability P3A or 

symmetrical differentiation (resulting in two ST-HSCs) with probability P4A. These types of divisions have 

been documented in experimental and mathematical studies of HSCs (Bernitz et al., 2016; Kawahigashi et al., 

2024; Radtke et al., 2023). 

ST-HSCs, derived from LT-HSCs, follow similar decision-making processes during the simulation. Both 

proliferative and quiescent ST-HSCs are susceptible to death with a probability PAB. Unlike LT-HSCs, ST-

HSCs are known for more frequent cell division (H. W. Yang et al., 2020). Proliferative ST-HSCs contribute to 

their pool expansion through symmetrical proliferation (creating two ST-HSC daughter cells) with probability 

P1B and asymmetrical proliferation (producing one ST-HSC and one MPP) with probability P2B. Additionally, 

ST-HSCs can differentiate via asymmetrical differentiation (yielding one MPP) with probability P3B and 

symmetrical differentiation (yielding two MPPs) with probability P4B. A detailed description of the parameters 

can be found in Supplementary Table 1, while Figure 1 provides a visual representation of the overall process. 

Notably, for both LT-HSCs and ST-HSCs, the sum of all division probabilities equals 1, reflecting the 

framework of Markov processes. 

�1� � �2� � �3� � �4� � 1 

�1� � �2� � �3� � �4� � 1 

Spatial Stochastic Model Implementation 
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The spatial component of the model simulates the motion of LT-HSCs and ST-HSCs within a two-dimensional 

spatial domain bounded by Lx
 and Ly, extending from x = 0 to x = Lx, and from y = 0 to y = Ly. The model 

records the position of each one of the quiescent cells and active LT-HSCs and ST-HSCs during the simulation 

within the spatial domain. The change in quiescent in space is determined by aQ and the change division rate in 

space is determined by aD. The spatial motion of both quiescent and active cells is determined by the Euler-

Maruyama method (Kloeden & Platen, 1992), a first-order numerical method for approximating solutions to 

stochastic differential equations. The spatial model is governed by the following parameters: 

• dtBrow: This variable determines the time discretization used for simulating Brownian motion. 

• Df: This variable determines the diffusion coefficient of cells. 

• aQ: This variable determines the gradient change in space of Quiescent cells  

• aD: This variable determines the gradient change in space of mean division time. 

 

Spatial gradients 

Gradients of model parameters are implemented as linear functions of position. A parameter value (��) at a 

specific location is calculated as: 

�� � �1 � 	�
���� � 
 	
��. 
Here, �� represents the parameter's baseline value (i.e., its value if it were constant across the domain), 

� denotes the spatial coordinate (x or y), �� is the length of the domain along the �  axis, and 	  determines the 

extent of the parameter's decrease from one end of the domain to the other. 

We consider spatial variation of the probability of quiescence (pAQ or pBQ) along the x-axis and of the mean 

cell division time (meanCCA or meanCCB) along the y-axis, resulting in the following equations for these 

spatially varying parameters: 

 �� �
����	
��	�


�
� � ������  , 

   ��!"" �
�����
��������


�
# � �$� ��!""�,  

where ��� and ������� are the values given in Table 1. 

While our dynamical model does not explicitly simulate bone marrow niche interactions or external factors 

influencing HSC dynamics, we can indirectly infer their effects by analyzing the impact of model parameters 
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and their resulting outputs. For instance, a lower probability of symmetrical proliferation could reflect impaired 

self-renewal capacity due to high concentrations of IFN-γ in the bone marrow under specific conditions 

(Baldridge et al., 2010). Thus, interpreting the model’s output is crucial for understanding how intrinsic cellular 

dynamics are modulated by the complex niche environment. The model's spatial component allows us to 

explore the movement of quiescent and active LT-HSCs and ST-HSCs within a 2D bone marrow niche, based 

on the assumption that HSCs can migrate under both homeostatic and stress conditions (Johansson et al., 2024; 

Miao & Pereira, 2020). Although our model uses Brownian motion as a baseline for HSC movement, in vivo 

studies demonstrate more complex migration patterns during infection, including increased heterogeneity and 

sustained migration (MacLean et al., 2017). Our model explores how spatial gradients may contribute to these 

deviations from Brownian motion. We acknowledge that other migration mechanisms, such as directed or 

persistent random walks, may also play a significant role and will be the subject of future work. 

Model Limitations 

Developing a comprehensive mathematical model for a complex biological system, such as hematopoietic stem 

cell (HSC) dynamics, presents inherent challenges. While our current model offers a powerful framework to 

study HSC dynamics from a stochastic and spatial perspective, it can be further refined to incorporate additional 

biological complexities. One potential area for improvement lies in integrating a multi-scale approach. This 

could involve explicitly modeling the cell cycle phases (G1, S, G2/M) that HSCs undergo before division. 

Currently, our model treats proliferation as a single event but incorporating these phases could provide a better 

understanding of cell cycle regulation and its impact on HSC behavior. Furthermore, our model assumes an 

irreversible transition from the active cycling pool to a quiescent state. However, it is known that quiescence is 

an irreversible process, where cells can re-enter the G0 state in response to stimuli. Some studies suggest that 

under specific conditions, HSCs might reactivate from quiescence. Accounting for this potential reversibility 

within the model framework could enhance its biological realism and allow for the exploration of scenarios 

involving HSC exhaustion or rejuvenation therapies. On the other hand, we proposed a model that describes the 

stochastic motion of both quiescent and active LT-HSCs and ST-HSCs within a two-dimensional space niche. 

While we aim to shed light on the movement and positioning of active LT-HSCs and ST-HSCs alongside their 

quiescent counterparts, it's essential to recognize the complexity of their biology; it extends beyond just these 

two dimensions. Future developments will involve enhancing the model to incorporate additional biological 

factors, such as the cell cycle, and advancing toward a three-dimensional representation of the bone marrow 

niche environment. 

Parameter Sensitivity analysis 
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To examine robustness and the relationship between model parameters and outputs, we employed the Latin 

Hypercube Sampling (LHS) technique in combination with Partial Rank Correlation Coefficient (PRCC) 

analysis. We assumed that each uncertain parameter follows a uniform distribution within a specified range. The 

LHS method was implemented by segmenting the value ranges of each parameter into equally probable 

intervals (inputs), ensuring a comprehensive exploration of parameter space (Gomero, 2012). 

LHS has a minimum required sample size (n) which is given by � � � 
 1   or � � �4/3�� where �  is the 

number of parameters included in the LHS (Blower & Dowlatabadi, 1994). We generated 10,337 parameter 

combinations from the chosen parameter distributions, with model outputs evaluated at time step 300 to capture 

the full range of model behavior. The area under the curve (AUC) was quantified using the trapezoidal 

integration method.   

PRCC then was calculated for each of the following parameters: P1A, P2A, P3A, P1B, P2B, P3B, PQA, PQB, 

PAA, PAB, meanCCA, stdCCA, meanCCB, stdCCB, divA, and divB (see Supplementary Table 1), and the 

outcome variable (the total number of active, quiescent and inactive LT-HSCs and ST-HSCs). The sign of the 

PRCC indicates whether changes in a parameter have a positive or negative effect on the corresponding output 

variable. Additionally, statistical z-scores and their corresponding p-values were calculated for each parameter 

and correlation coefficient to assess statistical significance during the LHS/PRCC analysis. 

The z score for the Spearman rank correlation coefficient ρ was computed as:  

� � � 21 � �� 
where n is the number of samples. The p-values were computed as: 

� � ��� �
 � 2!1 �Φ�|$|�% 
where Φ(∣z∣) is the cumulative distribution function of the standard normal distribution evaluated at the absolute 

value of the z score, |z|.  

PRCC analyses are displayed as bar plots from -1 to 1 for each parameter and their respective output. The 

parameters that show an * on top are the ones with a statistically significant correlation (p<0.05). 

Numerical Exploratory analysis of the spatial component of the model 

In this section, we conducted a numerical exploratory analysis to investigate the theoretical spatial dynamics of 

LT-HSCs and ST-HSCs in a two-dimensional niche mimicking the bone marrow niche. Using the homeostatic 

configuration fit to experimental data from Säwen et al., we explored cell dynamics of quiescent and active LT-

HSCs and ST-HSCs at time steps 20, 40, 60, and 80 by modifying the aQ (PQA/PQB: gradient of becoming 
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quiescent ) and aD (meanCCA/meanCCB: gradient of mean proliferation rate), as well as fixing the Brownian 

diffusion coefficient to 600 µm/time-step. The parameters aQ and aD introduce spatial heterogeneity by 

modulating cell properties based on their positions within the domain. For instance, cells located near one end 

of the domain (x=0) may exhibit a lower probability of becoming quiescence, while those near the opposite end 

(x=Lx) may display a higher probability of becoming quiescence. Similarly, cells at the bottom of the domain 

(y=0) might exhibit a higher division rate, whereas those at the top (y=Ly) might divide more slowly. 

The aQ and aD gradients were uniformly modified as follows below, and those cases were studied 

independently: 

• aQ =0.25, aD =0.25 

• aQ =0.5, aD =0.5 

• aQ =0.75, aD =0.75 
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Figure Legends 

Figure 1.  Schematic representation of the dynamical stochastic model of HSC dynamics. The model 

illustrates the dynamics of LT-HSCs, ST-HSCs, and MPPs. LT-HSC and ST-HSCs can be quiescent or divided 

based on PAA and PAB probabilities respectively. Both proliferating and dividing cells are susceptible to die 

based on PAA and PAB, and PAQA and PAQB respectively. Both LT-HSCs and ST-HSCs have 4 modes of 

division: symmetrical proliferation, asymmetrical proliferation, direct differentiation, and symmetrical 

differentiation. All four modes of division can contribute to the growth or decline of their respective population 

based on different probabilities. The arrows pointing down to numbers 1 and 2 indicate the direction of the 

model. LT-HSCs are depicted in green, ST-HSCs in blue, and MPPs are red. 

 

Figure 2. Homeostatic model simulations and predictions of LT-HSCs and ST-HSCs dynamics, based on 

Busch et and Säwen et al., up to 80 weeks.  Figures A and B displayed the best fit of parameters for the 

dynamics of LT-HSCs and ST-HSCs, for a total of 80 weeks. The model is able to capture the dynamics 

proposed by A) Bush et al. and B) Säwen et al. and it is capable of predicting their future dynamics for another 

40 weeks. Total cells (black), Active cells (blue), and Quiescent cells (green) are displayed on the right y-axis 

for both LT-HSCs and ST-HSCs, while the Inactive cells (orange) are displayed on the left y-axis. Experimental 

data from both independent datasets are shown as red dots.  Solid lines represent the mean for each type of 

population, and the error bars are the SEM. seeds = 50. In addition, the division parameters used to fit the respective 

datasets are shown as stacked bar plots. 

 

Figure 3. Theoretical apoptotic-inflammatory stress scenarios of LT-HSCs and ST-HSCs dynamics. 

Figure A displays the behavior of LT-HSCs under apoptotic stress conditions suggested by Read et al., after 

exposition to pro-inflammatory cytokine, up to 100 weeks. Three apoptotic rates are displayed: PAA=2.5% 

(black), PAA= 5% (red), and PAA=10% (blue). Then the effect of the three different LT-HSCs apoptosis rates on 

ST-HSCs dynamics is displayed while the homeostatic configuration of ST-HSCs was not modified. The 

experimental data from Säwen et al., is shown as black dots up to 40 weeks.  Solid lines represent the mean for 
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each type of population, and the shaded area is SEM. seeds = 50.  Figure B shows LT-HSCs dynamics when 

PAA is modified to 5%. Behavior and ST-HSCs dynamics when PAB is modified to 10% and PQB is 0.3. The x-

axis displays the time frame of the simulation, and the y-axis represents the population: Total cells (black), 

Active cells (blue), Quiescent cells (green), and Inactive cells (orange). The experimental data from Säwén 

et al., is shown as black dots up to 40 weeks.  Solid lines represent the mean for each type of population, and the 

shaded area is SEM. seeds = 50. Figure C displays apoptotic-stress LT-HSCs dynamics when PAA is modified 

to 5%. In addition, ST-HSCs dynamic is displayed when PAB is modified to 10%, PQB=0.3, P1B=0.7, P2B=0, 

P3B=0.1, P4B=0.2. The x-axis displays the time frame of the simulation, and the y-axis represents the 

population: Total cells (black), Active cells (blue), Quiescent cells (green), and Inactive cells (orange). The 

experimental data from Säwén et al., is shown as black dots up to 40 weeks.  Solid lines represent the mean for 

each type of population, and the shaded area is SEM. seeds = 50 

 

Figure 4. Partial Rank Coefficients (PRCC) of the total number of active, inactive, and quiescent LT-

HSCs. For each parameter, the absolute value of its PRCC represents the sensitivity of the parameter-the larger 

the value is, the more sensitive the total number of A) active LT-HSCs, B) inactive LT-HSCs and C) Quiescent 

LT-HSCs, are to the corresponding parameter. The number of combinations = 10337. *Represents the value of 

PRCC, with a significance value <0.05.   

 

Figure 5. Partial Rank Coefficient (PRCC) of the total number of active, inactive and quiescent ST-HSCs 

with respect to the dynamical parameters. For each parameter, the absolute value of its PRCC represents the 

sensitivity of the parameter-the larger the value is, the more sensitive the total number of A) active ST-HSCs, 

B) inactive ST-HSCs and C) Quiescent ST-HSCs, are to the corresponding parameter. The number of 

combinations = 10337. * Represents the value of PRCC, which is not zero significantly, with a significance 

value <0.05.   

 

Figure 6. Theoretical numerical simulations of active and quiescent LT-HSCs under different aQ and aD 

gradient parameters. The figure displays the spatial distribution of active and quiescent LT-HSCs within the 2-

D dimensional space, mimicking the bone marrow niche, under a range of uniform aQ and aD combinations = 

0.25 ,0.5 and 0.75 at time steps: 20, 40, 60 and 80. We used the homeostatic configuration used to fit Säwén et 

al., dataset. Spatial distribution is shown as a 2-D color histogram where 1 means the highest density and 0 is 

the lowest density. The x-axis corresponds to the Lx and the y-axis is the Ly spatial boundaries. A) Active LT-
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HSCs when aQ and aD = 0.25, aQ and aD = 0.5, and aQ and aD = 0.75, and B) Quiescent LT-HSCs when aQ 

and aD = 0.25, aQ and aD = 0.5, and aQ and aD = 0.75. 

 

Figure 7. Theoretical numerical simulations of active and quiescent ST-HSCs under different aQ and aD 

gradient parameters. The figure displays the spatial distribution of active and quiescent ST-HSCs within the 2-

D dimensional space, mimicking the bone marrow niche, under a range of uniform aQ and aD combinations = 

0.25, 0.5 and 0.75 at time steps: 20, 40, 60 and 80. We used the homeostatic configuration used to fit Säwén et 

al., dataset. Spatial distribution is shown as a 2-D color histogram where 1 means the highest density and 0 is 

the lowest density. The x-axis corresponds to the Lx and the y-axis is the Ly spatial boundaries. A) Active ST-

HSCs when aQ and aD = 0.25, aQ and aD = 0.5, and aQ and aD = 0.75, and B) Quiescent ST-HSCs when aQ 

and aD = 0.25, aQ and aD = 0.5, and aQ and aD = 0.75. 

Table 1. Parameters used to describe independent homeostatic LT-HSCs and ST-HSCs dynamics 

according to Busch et al. and Säwen et al. Both simulations were performed for up to 80 weeks. Both 

simulations did not take into consideration spatial changes to fit our model to mouse homeostatic conditions 

according to the references. The 20 dynamical parameters are listed with their corresponding value for each 

independent dataset. 

Table 2. Parameters used to describe all the apoptotic-inflammatory stress conditions on LT-HSCs and 

ST-HSCs dynamics Both simulations were performed up to 80 weeks. Table displays the parameter 

combination used to fit and mimic apoptosis-related scenarios on LT-HSCs and ST-HSCs dynamics.  All these 

simulations did not take into consideration spatial changes to fit our model to mouse homeostatic conditions 

according to Read et al. The 20 dynamical parameters are listed with their corresponding value for each 

independent scenario. 

Table 3. Parameters used to model theoretical numerical scenarios of the spatial distribution of LT-HSCs 

and ST-HSCs. Table displays the parameter combination used to model spatial gradients and distribution of 

LT-HSCs and ST-HSCs using different aQ and aD combinations, at time steps 20, 40, 60, and 80. Homeostatic 

configuration fit to Säwen et al. is used to investigate spatial motion. The 26 dynamical and spatial parameters 

are listed with their corresponding value. 
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LT-HSCs

QuiescentNot quiescent

Apoptosis Division

LT-HSCs LT-HSCs ST-HSCs

QuiescentNot quiescent

PQA
1-PQA

PAA
1-PAA

P1A
P2A P3A

PQ,B1-PQ,B

P1B
P2B

Apoptosis Division

LT-HSCs ST-HSCs ST-HSCsST-HSCs

1 - P1A - P2A – P3A 

ST-HSCs ST-HSCs ST-HSCs MPPs MPPs MPPs

P3B
1 - P1B - P2B – P3B 

MPPs

Apoptosis

PAQA

1-PAQA

1-PAQB

Apoptosis

PAQB

𝑃1𝐴 + 𝑃2𝐴 + 𝑃3𝐴 + 𝑃4𝐴 = 1

𝑃1𝐵 + 𝑃2𝐵 + 𝑃3𝐵 + 𝑃4𝐵 = 1

Figure 1
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