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Cluj-Napoca, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania; csocaciudac@gmail.com

* Correspondence: ioan.elec@umfcluj.ro; Tel.: +40-756285972
† These authors contributed equally to this work.

Abstract: Tacrolimus has a narrow therapeutic window; a whole-blood trough target concentra-
tion of between 5 and 8 ng/mL is considered a safe level for stable kidney transplant recipients.
Tacrolimus serum levels must be closely monitored to obtain a balance between maximizing effi-
cacy and minimizing dose-related toxic effects. Currently, there is no specific tacrolimus toxicity
biomarker except a graft biopsy. Our study aimed to identify specific serum metabolites correlated
with tacrolinemia levels using serum high-precision liquid chromatography–mass spectrometry and
standard laboratory evaluation. Three machine learning algorithms were used (Naïve Bayes, logistic
regression, and Random Forest) in 19 patients with high tacrolinemia (8 ng/mL) and 23 patients with
low tacrolinemia (5 ng/mL). Using a selected panel of five lipid metabolites (phosphatidylserine,
phosphatidylglycerol, phosphatidylethanolamine, arachidyl palmitoleate, and ceramide), Mg2+, and
uric acid, all three machine learning algorithms yielded excellent classification accuracies between
the two groups. The highest classification accuracy was obtained by Naïve Bayes, with an area under
the curve of 0.799 and a classification accuracy of 0.756. Our results show that using our identified
five lipid metabolites combined with Mg2+ and uric acid serum levels may provide a novel tool for
diagnosing tacrolimus toxicity in kidney transplant recipients. Further validation with targeted MS
and biopsy-proven TAC toxicity is needed.

Keywords: tacrolimus; kidney transplant; metabolomic biomarkers; nephrotoxicity; machine learn-
ing; kidney graft function; liquid chromatography–mass spectrometry
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1. Introduction

Kidney transplantation (KTx) is considered the gold-standard treatment for end-stage
renal disease, providing a better quality of life and a higher survival rate than chronic
dialysis [1,2].

The clinical management of patients who undergo renal transplants is challenging.
Although surgical techniques have undergone significant advances in the past decade,
the complexity of the immunological mechanisms involved, the poor quality of graft
allocation strategies, and many knowledge gaps with respect to the personalization of
immunosuppression therapies are responsible for significant differences in terms of graft
survival [3,4]. To fill these gaps, tacrolimus (TAC), a calcineurin inhibitor (CNI), was
introduced as a first-line chronic immunosuppression treatment alongside mycophenolate
and steroid drugs. Even though TAC is 10–100 times more efficient than cyclosporine
(a member of the CNI family) [5,6], the first two major clinical trials after the introduction of
TAC in KTx show high rates of acute rejection (AR) in the first year after KTx (14–31%) [7,8],
alongside a high percentage of toxicity events (39% nephrotoxicity, 6% neuropathy, 10%
paresthesia, 13% diabetes mellitus, and 36% hyperglycemia) [7].

For each transplanted patient, it is well known that maintaining the perfect TAC blood
concentration is a challenge due to pharmacodynamic and pharmacokinetic variations.
Therefore, this translates into a narrow therapeutic window for TAC, which may put
patients at risk for toxicity or graft rejection [9].

The current strategy for differentiating TAC nephrotoxicity and AR is based on TAC
levels and serum creatinine evaluation. Unfortunately, these two parameters are subopti-
mal since patients with normal TAC levels may face increased creatine levels because of
nephrotoxicity or AR. In this case, the current protocols call for the use of a graft biopsy,
an invasive procedure, with TAC nephrotoxicity being an exclusion diagnostic [10]. For
this reason, the search for novel biomarkers associated with TAC nephrotoxicity is in-
tense, with most studies focusing on the identification of protein biomarkers in urine and
serum, such as urinary NGAL, cystatin C, glutathione transferase, serum β-2 microglobu-
lin, and α-1 microglobulin [11]. Unfortunately, none of them have managed to translate
into practice [10].

Metabolomics, via high-performance liquid chromatography coupled with mass spec-
trometry (UHPLC–MS), offers new opportunities for the high-throughput measurement of
large numbers of small molecules (<1500 Da), profiling the metabolites and identifying the
most relevant ones by multivariate statistics, with possible clinical relevance.

Aside from the polar metabolites mentioned above, increasing consideration has
recently been paid to the impact of tacrolimus on the lipid metabolism. For these reasons,
in this study, we aimed to evaluate serum metabolomic and biochemical profiles of kidney
graft recipients with outranged TAC levels (<5 ng/mL vs. >8 ng/mL), using untargeted
lipidomic investigation by UHPLC–MS and machine learning algorithms; this strategy
could be used for differential diagnostics of TAC toxicity (due to high TAC levels) and AR
(due to insufficient TAC levels).

2. Materials and Methods

For this prospective transversal study, we enrolled 135 stable (defined as a creatinine
level variation below 25% of the mean creatinine value), consecutive outpatients who un-
derwent a KTx in our institution and for whom we performed standard follow-up between
May 2020 and July 2020 at the Clinical Institute of Urology and Renal Transplantation
Cluj-Napoca. The inclusion criteria were patients diagnosed with end-stage renal disease
who underwent kidney transplantation with a TAC-based immunosuppressive therapy
protocol (Advagraf 0.075–0.3 mg/kg/day), at least six months after the surgery. Patients
with autoimmune diseases and those who developed lymphoproliferative disorders after
kidney transplantation were excluded.
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Clinical examinations, standard hematology, biochemistry panels, and tacrolinemia
analyses were performed on all patients. Patients with outranged tacrolinemia (<5 or
>8 ng/mL) were selected for metabolic profiling, as depicted in the workflow (Figure 1).
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Figure 1. Workflow of the study. Abbreviations: ASAT—aspartate aminotransferase; ALAT—alanine
aminotransferase; GGT—gamma-glutamyl transferase; TB—total bilirubin; TP—total proteins; K+—
potassium; Na+—sodium; Cl−—chloride; Ca2+—ionized calcium; Mg2+—magnesium; UA—uric acid;
L-TAC—low tacrolinemia group; H-TAC—high tacrolinemia group; UHPLC–MS—high-precision
liquid chromatography–mass spectrometry analysis.

We defined the patients with outranged TAC levels over 8 ng/mL as the TAC high-
level group (H-TAC) and the patients who had low-level TAC under 5 ng/mL as the TAC
low-level group (L-TAC).

2.1. Sample Processing

Blood samples were collected from patients at 24 h post-dosing of Advagraf, just prior
to the next dose. Patients had fasted for a minimum of 8 h.

The serum samples were collected by vein puncture into vacutainer tubes without
anticoagulants. The blood serum was separated by centrifugation at 2000× g for 10 min,
and aliquots of 1 mL were stored at −80 ◦C until analysis was performed. An 0.8 mL
mixture of methanol and acetonitrile (1:1) was added to 0.2 mL of serum to precipitate the
protein content; the mixture was then vortexed for 1 min, maintained at 4 ◦C for 6 h, and
then vortexed again for 1 min. After mixing, the vials were centrifuged at 12,500× g for
5 min, and the supernatant was collected and filtered through 0.2 µm nylon filters.

2.2. Laboratory Tests

Tacrolinemia was measured using semi-automated electrochemiluminescence im-
munoassays using the ArchitectPlus CI4100 automatic analyzer. Prior to the initiation of
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the automated Architect sequence, a manual pretreatment step was performed in which
the whole blood sample was extracted with a precipitation reagent and centrifuged. The
supernatant was decanted into a Transplant Pretreatment Tube, which was placed onto the
Architect iSystem [12,13].

The standard laboratory evaluation using the ArchitectPlus CI4100 automatic analyzer
included serum cholesterol, triglycerides, glycemia, aspartate aminotransferase (ASAT),
alanine aminotransferase (ALAT), gamma-glutamyl transferase (GGT), amylases, total
proteins (TP), potassium (K+), sodium (Na2+), chloride (Cl−), ionized calcium (Ca2+),
magnesium (Mg2+), and uric acid (UA). Renal function was determined via the estimated
glomerular filtration rate (eGFR), using the creatinine-based CKD-EPI equation [14,15].

The metabolomic serum profile was analyzed using high-precision liquid chromatog-
raphy (UHPLC)–mass spectrometry (MS) analysis.

The UHPLC–MS analysis was performed on a Bruker Daltonics MaXis Impact (Bruker
GmbH, Bremen, Germany) device that comprised a Thermo Scientific UHPLC UltiMate
3000 system with a Dionex Ultimate quaternary pump delivery and ESI+-QTOF-MS de-
tection device on a C18 reverse-phase column (Acuity, UPLC C18 BEH, Dionex) (5 µm,
2.1 × 75 mm) at 25 ◦C and with a flow rate of 0.3 mL/min. The injection volume was 5.0 µL.
The mobile phase was represented by a gradient of eluent A (water containing 0.1% formic
acid) and eluent B (methanol: acetonitrile 1:1, containing 0.1% formic acid). The gradient
system consisted of 99% A (min 0), 70% A (min 1), 40% A (min 2), 20% A (min 6), and
100%B (min 9–10), followed by 5 min with 99% A. The total running time was 15 min. The
MS parameters were set for a mass range between 50 and 1000 Da. The nebulizing gas
pressure was set at 2.8 bar, the drying gas flow at 12 L/min, and the drying gas tempera-
ture at 300 ◦C. Before each chromatographic run, a calibration with sodium formate was
performed. Instrument control and data processing were performed using the TofControl
3.2, Hystar 3.2, and Data Analysis 4.2 software packages provided by Bruker Daltonics.

2.3. Statistical Methods

The metabolites identified by UHPLC–MS and from blood tests were ranked based
on their ability to discriminate between the high- and low-tacrolinemia groups using the
t-test feature selection method. The Student’s t-test was applied for each metabolite, and
the significance level was set to 0.05. The 5 statistically significant metabolites, along
with the statistically significant blood parameters, were selected for further analysis. The
classification accuracy for high and low tacrolinemia based on each significant metabolite
was evaluated using a receiver operating characteristic curve for which the area under the
curve (AUC) was calculated.

To quantitatively evaluate the multivariate classification power yielded by the biochem-
ical blood parameters and the 5 significant metabolites, 3 independent machine learning
algorithms (naive Bayes, logistic regression, and Random Forest) were trained to discrim-
inate between the H-TAC and L-TAC groups. For logistic regression, the regularization
type was set to Lasso and the C parameter to 140. For the Random Forest analysis, 10 trees
were implemented. All the models were cross-validated using the leave-one-out method.

The inputs for the machine learning algorithms were either the biochemical blood
parameters alone, the selected five metabolites alone, or all combined. For the classification
based on the combined biochemical blood parameters and the five metabolites, data
were normalized to unity prior to classification. The performance of the classification was
assessed in terms of the AUC derived using receiver operating characteristic (ROC) analysis,
classification accuracy, F1 score, precision, and recall. The quality performance metrics
were represented as the average of the values from each repetition of the cross-validation.

Next, a principal component analysis (PCA) was performed to explore the dataset; the
5 metabolites along with the biochemical blood levels were used as inputs. For a better
representation of the capacity to differentiate the TAC level of the experimental model,
PCA was used to reduce the data dimensionality. The relationship between the number of
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PCs and the explained variability in the original dataset is presented in Supplementary Fig-
ure S1.

For the correlation analysis, we used the Pearson correlation coefficient.
All statistical analyses were performed using the Quasar-Orange software (Bioinfor-

matics Laboratory of the University of Ljubljana) [16,17].
The study was approved by the Ethics Committee of the Clinical Institute of Urology

and Kidney Transplantation, Cluj-Napoca, No. 2/2020, and by the Ethics Committee of
the Iuliu Hatieganu University of Medicine and Pharmacy in Cluj-Napoca, No. 285/2020.
Written informed consent was obtained from all patients following the rules and principles
of the Helsinki Declaration.

3. Results

Our dataset comprised 42 patients with outranged tacrolinemia levels; 19 and 23 patients
had high (over 8 ng/mL) and low (under 5 ng/mL) levels of tacrolinemia, respectively, after
KTx. The demographic data of the two groups are presented in Supplementary Table S1.

From the biochemistry panel, only Mg2+ and UA levels were changed to a statistically
significant extent between the H-TAC and L-TAC groups, as depicted in Table 1.

Table 1. Student’s t-test and area under the curve for standard follow-up biochemical blood tests
were used to discriminate between patients with low and high tacrolinemia.

Blood Tests H-TAC
Mean ± SD

L-TAC
Mean ± SD t-Test (p) AUC

Cholesterol (mg/dL) 228 ± 82 208 ± 39 0.237 0.56
Triglycerides (mg/dL) 172 ± 97 147 ± 70 0.349 0.56
Potassium (mmol/L) 4.4 ± 0.4 4.4 ± 0.6 0.725 0.51

Amylases (U/L) 93 ± 24 85 ± 30 0.312 0.58
Creatinine (mg/dL) 1.6 ± 0.5 1.6 ± 0.9 0.318 0.59

ASAT (U/L) 20 ± 7.2 19 ± 8.2 0.470 0.56
ALAT (U/L) 27 ± 15 20 ± 15 0.051 0.67
GGT (U/L) 34 ± 22 30 ± 20 0.294 0.59
TB (mg/dL) 0.72 ± 0.37 0.73 ± 0.29 0.740 0.53

Glycemia (mg/dL) 101 ± 16 117 ± 73 0.638 0.54
Total proteins (mg/dL) 7 ± 0.4 6.8 ± 0.4 0.341 0.58

Ca2+ (mmol/L) 4.6 ± 0.52 4.4 ± 0.4 0.116 0.64
Cl− (mmol/L) 107 ± 2.7 106 ± 3.9 0.814 0.52
Na+ (mmol/L) 142 ± 2.5 141 ± 1.9 0.111 0.66

Mg2+ (mmol/L) 158 ± 15.52 178.4 ± 23.65 0.001 0.7243
UA (mg/dL) 72.42 ± 14.95 63.09 ± 10.57 0.025 0.6636

Using UHPLC–MS, 336 metabolites were identified (Supplementary Table S3 (Ex-
cel File S1) and Supplementary Table S2), from which only five were significantly related to
over-ranged blood tacrolimus levels: phosphatidylserine 44:8 (PS), phosphatidylglycerol
36:6 (PG), phosphatidylethanolamine 36:4 (PE), arachidyl palmitoleate C36:1 (AP), and
ceramide t18:0/22:0(2OH) (CER).

The Student’s t-test and ROC analysis were used for the selection of the five statistically
relevant metabolites (Table 2).

Table 2. Student’s t-test and area under the curve for the significantly different metabolites used to
discriminate between patients with low and high tacrolinemia. The mean levels of the metabolites
represent peak UHPLC–MS intensities.

Metabolite High Group
Mean ± SD

Low Group
Mean ± SD p-Value AUC

PS (counts) 245,714 ± 145,458 111,783 ± 52,986 0.01 0.818

AP (counts) 32,839 ± 11,132 42,818 ± 10,796 0.01 0.730

PG (counts) 273,380 ± 165,513 162,278 ± 115,156 0.02 0.724

PE (counts) 445,195 ± 419,624 197,051 ± 268,564 0.03 0.711

CER (counts) 464,002 ± 395,761 233,792 ± 263,222 0.03 0.807

Abbreviations: phosphatidylserine 44:8 (PS), phosphatidylglycerol 36:6 (PG), phosphatidylethanolamine 36:4 (PE),
arachidyl palmitoleate C36:1 (AP), and ceramide t18:0/22:0(2OH) (CER).
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The violin plots of the UHPLC–MS counts for the five selected metabolites and the
serum concentrations of Mg2+ and UA are presented in Figure 2.
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Figure 2. Violin plots of UA-uric acid (a), Mg2+-magnesium (b), phosphatidyl serine (44:8) (c),
arachidyl palmitoleate (C36:1) (d), phosphatidyl glycerol (36:6) (e), phosphatidyl ethanolamine (36:4)
(f), and ceramide (t18:0/22:0(2OH)) (g), for the high-tacrolinemia (H-TAC) and low-tacrolinemia
(L-TAC) groups.

Next, three machine learning algorithms (naïve Bayes, logistic regression, and Random
Forest) were applied to evaluate the discrimination of the H-TAC and L-TAC groups using
Mg2+, UA, and the five metabolites. (Tables 3–5, Figure 3c).

Table 3. Head-to-head comparison of the area under the curve results for the classification accuracy
yielded by magnesium and uric acid using three supervised classification algorithms.

Statistic
Model AUC CA F1 Precision Recall

Naïve Bayes 0.621 0.578 0.579 0.585 0.577

Logistic
regression 0.752 0.711 0.712 0.713 0.711

Random
Forest 0.620 0.644 0.644 0.644 0.644

Abbreviations: AUC—area under the curve; CA—classification accuracy; F1 score; Precision-positive predictive
value; Recall-sensitivity.

Table 4. Head-to-head comparison of the area under the curve results for the classification accuracy
yielded by the five metabolites using three supervised classification algorithms.

Statistic
Model AUC CA F1 Precision Recall

Naïve Bayes 0.750 0.667 0.667 0.683 0.667

Logistic
regression 0.744 0.756 0.755 0.755 0.756

Random
Forest 0.636 0.556 0.552 0.551 0.551

The five metabolites are phosphatidylserine 44:8, phosphatidylglycerol 36:6, phosphatidylethanolamine 36:4, arachidyl
palmitoleate C36:1, and ceramide t18:0/22:0(2OH). Abbreviations: AUC—area under the curve; CA—classification
accuracy; F1 score; Precision-positive predictive value; Recall-sensitivity.
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Table 5. Head-to-head comparison of the area under the curve results for the classification accuracy
yielded by magnesium, uric acid, and the five metabolites using three supervised classification algorithms.

Statistic
Model AUC CA F1 Precision Recall

Naïve Bayes 0.799 0.756 0.756 0.764 0.756

Logistic
regression 0.788 0.733 0.734 0.738 0.733

Random
Forest 0.683 0.600 0.597 0.597 0.600

The five metabolites are phosphatidylserine 44:8, phosphatidylglycerol 36:6, phosphatidylethanolamine 36:4,
arachidyl palmitoleate C36:1, and ceramide t18:0/22:0(2OH). Abbreviations: AUC—area under the curve; CA—
classification accuracy; F1 score; Precision-positive predictive value; Recall-sensitivity.
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Figure 3. (a) The distribution of principal component (PC) score values (PC1 and PC2) of patients
with metabolic profiles associated with low and high tacrolinemia. (b) Loading plots of the first two
PCs yielded by PC analysis. (c) Head-to-head comparison of the receiver operating characteristic
curves (ROC) for the classification accuracy yielded by magnesium, uric acid, the five metabolites
(phosphatidylserine 44:8, phosphatidylglycerol 36:6, phosphatidylethanolamine 36:4, arachidyl palmi-
toleate C36:1, and ceramide t18:0/22:0(2OH)), and their combination using naïve Bayes analysis for
supervised classification.

The distribution of score values following PCA of the H-TAC and L-TAC groups’
metabolic profiles (PC1 and PC2) are represented in Figure 3a and show the clustering
tendency of the H-TAC and L-TAC groups. Figure 3b presents the loading plot for PC1 and
PC2, showing that CER, PE, PG, and PS are the variables that contribute the most to PC1,
and UA and Mg2+ to PC2. Moreover, a negative correlation between Mg2+ and AP on the
one hand and CER, PE, PG, and PS on the other hand is determined by the loading plot of
PC1. By examining the score plot and loading plots pf PC1 and PC2, it is observed that the
H-TAC group with positive values for PC1 has high values of CER, PE, PG, and PS, while
the L-TAC group shows high values for Mg2+, and AP.
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Next, to evaluate the relation between the selected metabolites, we performed a
correlation analysis between each metabolite, Mg2+, and UA, using the Pearson correlation
coefficient (Figure 4). We identified a statistically significant (p < 0.05) positive and moderate
correlation between AP and Mg2+ and between CER and PE, and a high correlation between
PE and PS. Between AP and PS, PE, and AP, we found statistically significant, moderate,
and negative correlations, respectively.
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Figure 4. Correlation matrix and histogram between the metabolites, UA, and Mg2+. Abbreviations
and legend: UA–uric acid; Mg2+–magnesium; phosphatidylserine 44:8 (PS), phosphatidylglycerol
36:6 (PG), phosphatidylethanolamine 36:4 (PE), arachidyl palmitoleate C36:1 (AP), and ceramide
t18:0/22:0(2OH) (CER); Corr–Pearson correlation coefficient; ** p < 0.01; *** p < 0.001.

4. Discussion

In this current study, we use untargeted UHPLC–MS serum profiling and routine
biological evaluation of the serum for the diagnosis of TAC toxicity. From 135 stable
consecutive KTx recipient patients for whom TAC serum level was evaluated, we selected 19
patients with low tacrolinemia (<5 ng/mL) (L-TAC) and 23 patients with high tacrolinemia
(>8 ng/mL) (H-TAC) (Figure 1).

The currently recommended standard immunosuppression therapy for patients un-
dergoing KTx comprises CNI (preferably TAC because of its higher efficacy) combined
with mycophenolate and steroids [6,18]. Because of the narrow therapeutic window of TAC
therapeutic protocols, the transplanted patients are potentially at risk of underexposure
and allograft rejection, or on the contrary, overexposure, and toxicity [19]. Consequently,
the determination of serum TAC and creatinine is insufficient to assess the optimal sys-
temic exposure.

From a pharmacokinetic point of view, tacrolimus is metabolized in the liver but
also in the gut and kidney; this process is mediated by the phase I oxidase system via
CYP3A4/5 [20,21] and the phase II metabolism by demethylation, glucuronidation, sulfa-
tion, acetylation, and conjugation. The metabolites are present in low concentrations in the
blood and have minor pharmacological activity when compared to tacrolimus itself and
are of minor clinical relevance [22].

Regarding the liver metabolization of TAC, its active metabolite, 6-mercaptopurine
(6-MP), is metabolized via three different metabolic pathways. It can be inactivated by thiop-
urine methyltransferase to 6-metylmercaptopurine or by xanthine oxidase to 6-thiouric, or
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it can be activated to 6-thioguanine nucleotide, which explains its therapeutic availability.
TAC is primarily metabolized by the CYP3A enzyme system, which includes CYP3A5,
CYP3A4, CYP3A7, and CYP3A43, and it is expressed in the small intestine, liver, and
kidney [9,23,24].

In order to optimize the TAC therapeutic response, i.e., to minimize subtherapeutic
and supratherapeutic TAC exposure in the immediate post-transplant phase, recent research
studies aim to identify novel biomarkers correlated with TAC exposure; such biomarkers might
provide an accurate algorithm to predict an individual’s TAC starting dose and the therapeutic
dosage required to improve clinical outcome in kidney transplant patients [25–27].

Experimental animal models show that there is a change in the metabolomic profile of
urine after the administration of cyclosporine (decreased levels of succinate, citrate, and
alpha-ketoglutarate, and increased levels of taurine) [28]. In contrast, time-related studies
showed that, at 28 days after the administration of cyclosporine, there is a reduction in
Krebs cycle intermediates and trimethylamine-N-oxide concentrations, whereas acetate,
lactate, trimethylamine, and glucose concentrations increase [29]. These results were
recently validated in humans [30]. Regarding TAC, to our knowledge, there is only one
published study by Klepacki et al., who validated a panel of ten urine metabolites used in
cyclosporine studies (glucose, hippurate, lactate, oxoglutarate, sorbitol, succinate, TMAO,
UA, citrate, and creatinine) using targeted MS [31]. Interestingly, the result showed that,
after three months, the level of the selected metabolites returned to normal, except for
oxoglutarate, lactate, and uric acid [31]. It is unknown whether the level of the selected
metabolite would change in case of TAC toxicity.

In our study, all the metabolites that differed between the H-TAC and L-TAC groups
were components of the lipid metabolism. Kim et al. showed that the level of lipids
increases after transplantation, especially in patients treated with cyclosporine A. Using
proton nuclear magnetic resonance, they identified LDL, VLDL CH3, lipid CH2CH2CO,
lipid CH2C=C, lipid CH2CO, and lipid CH as being upregulated [32]. Immunosuppressive
therapy in KTx patients leads to the accumulation of triglyceride-enriched VLDL and LDL,
increasing the atherosclerotic and cardiovascular risk for these patients [33–35].

Mechanisms of hyperlipidemia associated with CNI were more extensively studied
with cyclosporine, which interferes with the binding of LDL cholesterol to the LDL receptor,
bile acid synthesis, and 26 hydroxylase enzymes. In addition, cyclosporine is highly
lipophilic and transported within the core of LDL cholesterol particles. In the process, it
may change the molecular configuration of LDL. TAC generally provides a safer lipidic
profile than cyclosporin, as cyclosporin new-onset hyperlipidemia remissions were reported
after switching to TAC-based immunosuppression. However, the in-depth interactions of
TAC with the lipid metabolome have not been extensively studied or applied in clinical
practice [34,36,37].

Phosphatidyl glycerol, phosphatidylserine, phosphatidylethanolamine, and phos-
phatidylinositol (PI)-precursor of phosphatidylinositol 3-phosphate (PI3P) are cell mem-
brane glycerophospholipids derived from the same glycerol backbone, namely diacyl-
glycerol (DAG), as presented in Figure 5, and have different roles in biological mem-
branes [38,39]. The pathway between CNI and induced changes in glycerophospholipid
synthesis is still being studied, but CNI seems to inhibit the expression of phosphoinositide-
3-kinase (PI3K) and other protein kinases as a mechanism of inducing nephrotoxicity [40].
In a recently published article, Karolin et al. showed that the CNI-induced nephrotoxic
effect is obtained by an independent pathway from the known nuclear-activated T-cell
(N-FAT) mechanism [40]. Thus, CNI seems to inhibit the expression of many protein ki-
nases, including PI3K. The authors showed that blocking protein kinases in the tubular
epithelial cells of the nephron leads to the increased expression of fibroblast growth factor–
inducible 14 (Fn14), the receptor of TWEAK (TNF-related weak inducer of apoptosis), a
key molecule involved in fibrosis and apoptosis in the kidney and renal graft [41]. Because
CNI inhibits PI3K expression, there seems to be an accumulation of its substrate, PI3P and
DAG, which are, in turn, metabolized in Phosphatidyl glycerol, phosphatidylserine, and
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phosphatidylethanolamine (Figure 5), in line with our result that shows increased levels
of PG, PS, and PE in the H-TAC group compared to the L-TAC group (Table 2). Further
investigation of these hypotheses is needed.
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Palmitic acid derivates were identified by our study as occurring in lower amounts in
the H-TAC group, consistent with upregulation of the glycerophospholipid pathway to the
detriment of the fatty acid/triglyceride pathway [42].

Ceramides are central molecules of the sphingolipid metabolism, with essential bioac-
tive implications in cell processes such as apoptosis, necrosis, and autophagy-dependent
cell death [43]. Increased levels of ceramides are strongly connected with the deterioration
of pancreatic beta-cell function, insulin sensitivity, vascular reactivity, and mitochondrial
metabolism; therefore, there are studies showing their presence in heart disease, atheroscle-
rosis, hepatic disease, insulin resistance, and diabetes [44]. Concerning renal disease, ce-
ramides and their metabolites are recognized as being part of the pathological mechanism
in acute kidney injury, kidney cancer, polycystic kidney disease, and diabetic nephropa-
thy [45]. In a recent study conducted on 760 patients, it was shown that increased levels
of ceramides were on the direct axis of focal segmentary glomerulosclerosis [46]. These
findings are in line with our results describing higher levels of ceramide t18:0/22:0(2OH)
in the H-TAC group compared to the L-TAC group and also support a possible pathway
for drug-induced nephrotoxicity.

After transplantation, Mg2+ serum levels decrease in part because the immunosup-
pressive therapy, especially CNI, increases Mg2+ urinary excretion. One study found
that hypomagnesemia was observed in 6.6% of patients undergoing TAC therapy. On
the other hand, hyperuricemia is a common complication in organ transplant recipients
and is frequently associated with chronic immunosuppressive therapy (including TAC
treatment), even though the role of UA levels in the survival of kidney grafts remains
controversial [47–51].

There are few studies exploring metabolomics in kidney transplant patients. Previous
studies that investigated allograft rejection and CNI-related side effects found that the
metabolites were mainly represented by sugars, inositol, and hippuric acid [52]. These
studies differed from ours in terms of the design and treatment explored (TAC).

Furthermore, metabolites such as tryptophan and arginine were previously identified
as potential biomarkers for acute kidney injury with a high AUC when compared to
creatinine; however, that study failed to associate direct toxicity with TAC [53].

There are several limitations to our study. The most important is the use of only untar-
geted MS because, for the mass implementation of the panel, cut-off values are mandatory.
Additionally, there is no validation group with graft-biopsy-proven TAC toxicity. Another
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limitation is the lack of analysis regarding the time from transplantation since previously
published studies have shown that concentration changes in the metabolites related to
oxidative stress are time-related [31].

For future research, we will use targeted MS to help establish a cut-off value for these
metabolites, followed by their validation on a larger group of KTx patients with biopsy-
proven TAC toxicity. Hopefully, this will help improve clinical outcomes, graft survival
rate, dose adjustment and quality of life but also will represent essential tools in guiding
therapeutic strategies.

5. Conclusions

Using UHPLC–MS serum profiling and machine learning algorithms we proved that
KTx patients with abnormal TAC levels exhibit a particular metabolomic signature that
might help diagnose TAC toxicity without graft biopsy based on a panel of five lipid
metabolites, serum Mg2+, and UA. Our results need to be further validated with targeted
MS on larger cohorts with biopsy-proven TAC toxicity.
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