
Research Article
A Parallel DNA Algorithm for Solving the Quota Traveling
Salesman Problem Based on Biocomputing Model

Zhaocai Wang,1 Xian Wu,1 and Tunhua Wu 2

1College of Information, Shanghai Ocean University, Shanghai 201306, China
2School of Information Engineering, Wenzhou Business College, Wenzhou 325035, China

Correspondence should be addressed to Tunhua Wu; fruitful@xmu.edu.cn

Received 22 April 2022; Revised 21 July 2022; Accepted 22 July 2022; Published 31 August 2022

Academic Editor: Mario Versaci

Copyright © 2022 ZhaocaiWang et al.(is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

(e quota traveling salesman problem (QTSP) is a variant of the traveling salesman problem (TSP), which is a classical op-
timization problem. In the QTSP, the salesman visits some of the n cities to meet a given sales quota Q while having minimized
travel costs. In this paper, we develop a DNA algorithm based on Adleman-Lipton model to solve the quota traveling salesman
problem. Its time complexity is O(n2 + Q), which is a significant improvement over previous algorithms with exponential
complexity. A coding scheme of element information is pointed out, and a reasonable biological algorithm is raised by using
limited conditions, whose feasibility is verified by simulation experiments.(e innovation of this study is to propose a polynomial
time complexity algorithm to solve the QTSP.(is advantage will become more obvious as the problem scale increases compared
with the algorithm of exponential computational complexity. (e proposed DNA algorithm also has the significant advantages of
having a large storage capacity and consuming less energy during the operation. With the maturity of DNA manipulation
technology, DNA computing, as one of the parallel biological computing methods, has the potential to solve more complex NP-
hard problems.

1. Introduction

In the quota traveling salesman problem (QTSP), a traveling
salesman can sell a certain number of items in each city,
whose request is to visit enough cities to meet a certain sales
quota and let him return to the original city. (e goal of
QTSP is to find the shortest path that could satisfy the
requirement of he salesman.(at is, the optimal solution for
the QTSP is to visit a loop of a certain number of cities,
where the weighted sum of the cities visited satisfies a de-
terministic value and the path weight sum of the loop is
minimal. (e QTSP was first introduced by Awerbuch et al.
in 1995 [1]. And the QTSP has many applications in reality,
for example, the route selection of emergency vehicles. With
the frequent occurrence of natural disasters, the rescue of
emergency vehicles for different areas has attracted people’s
attention. Due to the different degrees of disasters suffered
form different regions, emergency supplies should be rea-
sonably distributed and delivered to the demand point.

Emergency vehicles need to carry certain emergency sup-
plies to service the needs of the cities, and return to the
starting city. (e emergency vehicle receives a weighted map
of multiple cities, each of which has an additional re-
quirement to designate the emergency supplies that can be
distributed in that city. In this case, the target problem that
consumes the least total time can be described by the QTSP.

(e QTSP can be considered a special case of the prize
collection traveling salesman problem (PCTSP), which was
initially presented by Balas [2]. In the PCTSP, a traveling
salesman must visit a number of cities, each of which has
rewards and penalties associated with it. Whenever a city is
visited, he receives the relevant reward, while whenever that
city is not visited, there is a corresponding penalty. In ad-
dition, there are costs associated with traveling between two
cities. (e goal is to minimise the sum of the travel costs and
the penalties paid, while ensuring that the minimum prize is
received. If the penalties of the cities are regarded as zero,
PCTSP evolves into QTSP. In 2008, Ausiello et al. [3]

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 1450756, 16 pages
https://doi.org/10.1155/2022/1450756

mailto:fruitful@xmu.edu.cn
https://orcid.org/0000-0003-1567-2611
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1450756


analyzed the online version of the PCTSP and presented the
corresponding algorithm. (ey give a 7/3 competitive al-
gorithm, compared to a lower bound of 2 on the competitive
ratio of any deterministic algorithm, and combined the
method with an approximation algorithm to obtain an
O(1)-competitive algorithm that run in polynomial time. In
2013, Pedro et al. [4] proposed a simple but effective tabu
search method to solve PCTSP, which improved several
upper bounds for the instances considered. If the assigned
quota is zero, the QTSP degenerates into a traditional online
traveling salesman problem (OLTSP), in which traveling
salesman does not know in advance information about
demand, but will be aware of them while traveling. For
example, fast food delivery, item pickup and so on. Ausiello
[5] proposed OLTSP algorithm, studied their competitive
ratio, and compared it with the optimal solution to the
corresponding offline problem. (ey discuss OLTSP in two
separate categories. (e first is where the server is not re-
quired to return to the origin node after all submitted re-
quests have been delivered. For this problem, the paper gave
a 2.5 competing algorithm for a class of metric spaces and a
7/3 competing algorithm for the real line. For an alternative
version of the problem that requires a return to the origin
node, they gave the optimal 2-competition algorithm for the
above general class of metric spaces.

In the QTSP, if each city has a weight of one, the sit-
uation becomes a problem of finding the minimum tour to
visit k cities in a given graph, which is related to the
k-Minimum Spanning Tree (k-MST) problem. Given an
undirected graph with non-negative edge weights on n nodes
and an integer k≤ n, the goal is to find the tree with the
smallest weight that spans k vertices. Garg [6] showed that a
3-approximation algorithm for the k-MST problem can be
implemented using a variant form. He also showed that the
completeness gap of the natural integer programming for-
mulation of the k-MSTproblem is also three, suggesting that
a different approach may be needed to further improve the
performance ratio of the k-MST problem. In 1998, Awe-
rbuch et al. [7] solved the k-MST problem by providing a
log2(k) approximation to improve on the previous best
bound of O(

�
k

√
). In 1999, Blum [8] proposed a bicriteria

approximation algorithm to improves efficiency by a factor
of 17 for the k-MST with n nodes, whose time complexity
was O((n2)log2(n)). (e main subroutine of the algorithm
was an approximate algorithm by Goemans andWilliamson
for solving the prize-collecting Steiner tree problem.

Due to the wide applicability of QTSP, the problem has
gradually received the attention of research scholars [9]. A
further development of the QTSP study is to combine release
time with vertices, where the city v can only be visited at or
after the release time and the salesman can travel at most at
unit speed, with the goal of finding a city subset V′ that reach
the quota Q and travel on V′ to minimise the completion
time, i.e. the time for the salesman to visit all cities in V′ and
return to the origin node. QTSP is generally divided into two
categories: online QTSP and offline QTSP [10]. A QTSP with
release times is called an offline QTSP if the release times,
weights and positions of the cities are already known before
the salesman departs. However, in many cases, all

information is assumed and holds completely a priori, from
which an online QTSP is derived. In an online QTSP, each
city v appears at its release time rv, but the release times,
weights and even the existence of the cities are only known
after its appearance is known. In 2004, Ausiello et al. [11]
presented the lower bounds of the online QTSP under the
general metric space and the corresponding competitive
algorithm, and analyzed the situation where the metric space
was half line. In 2014, Yu et al. [12] analyzed the QTSP of
four variants based on the symmetry of the measurement.
(en they proposed the optimal deterministic algorithm for
each variant defined on a general space, a half line, or a real
line. In 2020, Silva et al. [13] proposed a mathematical
formula and heuristic algorithm based on ant colony op-
timization for the variant of the QTSP: Quota Traveling
Salesman Problem with Passengers, Incomplete Ride and
Collection Time (QTSP-PIC). In the QTSP-PIC, the sales-
man is the driver of the vehicle. Since the trip is pre-
arranged, passengers can request a ride and reduce the cost
of the trip by splitting the fare with the driver. However, up
to now, no algorithm has been proposed for the offline QTSP
problem. On the other hand, QTSP has proven to be an NP-
hard problem and its pursuit of efficient algorithms has been
a hot topic of interest for many scholars [7, 13]. In this paper,
we attempt to solve the problem in polynomial time using a
new intelligent algorithm (DNA algorithm) to significantly
reduce the computational complexity of this NP-hard
problem.

(e remaining of the paper is organized as follows:
Section 2 introduces the relevant background in detail,
including the Adleman-Lipton model and QTSP. Section 3
comes up with the DNA algorithm to figure out the QTSP
and analyzes the feasibility and performance of the algo-
rithm. In Section 4, experimental results of simulated DNA
calculation are presented. Finally, we come to the conclusion
and prospects the future researched work.

2. Background Knowledge

(is section is divided into three sub-sections, introducing
the biological knowledge and the development of DNA
computing, explaining the Adelman-Lipton model and
describing the QTSP.

2.1. Development of DNA Computing Technology.
Biological computing is a new type of molecular bio-
computing method based on DNA molecules and related
enzymes, which uses biochemical reactions to calculate
DNA strands. Biological computing pioneers a new way of
algorithms [14, 15]. Due to the natural characteristics of
DNA molecules, such as specificity, high parallelism and
microfineness, molecules can be stored in high capacity and
manipulated in parallel. It makes DNA computing has
significant advantages, such as very fast computing speed,
tremendous storage capacity, and less energy consumption
during computing, which also has strong applicability and is
widely used to solve NP-hard problems, such as the 0–1

2 Computational Intelligence and Neuroscience



integer programming problem, the satisfiable (SAT) prob-
lem, and so on.

In 1994, Adleman [16] successfully solved the Hamil-
tonian path problem (HPP) in test tubes by dealing with
DNA strands. Lipton [17] proved that Adleman technology
can be used to solve the SAT problem. Since then, many
researchers have used the DNA computing to solve various
problems. Ouyang et al. [18] studied a method using mo-
lecular biology technology to solve the maximal clique
problem, mapping the set to the binary numbers, and then
removing and classifying them. (e success of the experi-
ment provided stronger evidence for solving complex
problem using DNA computing later. Narayanan and Spi-
ridon [19] extended Adelman and Lipton’s basic DNA al-
gorithm technique by proposing a method for representing
simple arc information, that is, distances between cities in a
simple map. (is method, while dealing with distances,
could also be used with appropriate modifications and ex-
tensions to deal with arc labels in general. In 1998, Smith
et al. [20] solved the SAT problem based on surface-based
DNA model, which allowed a much wider scope for DNA
computing to be played out. Chang and Guo [21] proved
that basic biological operations can solve the set cover
problem, and further presented the cover problem by 3-sets.
Guo et al. [22] solved the dominating-set problem by using
stickers to build a solution space for DNA molecules. Chang
et al. [23, 24] solved the independent set problem and the
vertex cover problem, using the super computer model
based on DNA and the quantum algorithm combined with
DNA computing, respectively. Wang et al. [25] used the
proposed DNA algorithm to realize the task scheduling
problem with O(n2) time complexity. Lee et al. [26] pre-
sented a biased molecular algorithm based on the ther-
modynamic properties of DNA and a numerical
representation of the encoding by designing the variation of
the melting temperature of the DNA strands. (e method
has been successfully applied to traveling salesman problems
on weighted graphs. Unlike other DNA computational
methods that focus on solving logical problems, this work
extends the capabilities of DNA computation to solving
numerical optimization problems and clearly represents a
significant advance. In contrast, Wang et al. [27] also used
DNA biological manipulation to complete the determina-
tion and search for the optimal solution to the traveling
salesman problem. (e difference is that in characterising
the length of the path between cities, weight information is
added to the initial strand to simplify later operations. In
2016, Sanches and Soma [28] solved two NP-hard problems
for DNA computing given biological operations, two of
which are minimization of open stacks and matrix band-
widthminimization. In 2018, Inrahim et al. [29] proposed an
improved evolutionary DNA technology based on con-
ventional DNA technology to solve job scheduling problem.
In 2019, Wang et al. [30] designed a bio-inspired computing
model to solve the capacitated vehicle routing problem. In
2020, Tian et al. [31] showed a DNA algorithm with O(n2)

time complexity for the job shop scheduling problem. For
the generalised traveling salesman problem (GTSP), Ren
et al. [32] used DNA biological chains to represent different

vertices, point groups and weights, and found the optimal
solution of the problem using a series of different DNA
sequence biochemical reactions. (e feasibility of the al-
gorithm is demonstrated while reducing the time complexity
to O(n2). Zhong et al. [33] proposed DNA computing in-
spired networks design (DNAND) for high-performance
deep network automatic learning. DNA computing has been
combined with various control technologies, forming DNA
computing models based on chains displacement, DNA
computation based on ribozyme, DNA computation based
on surface, DNA computation based on nanoparticles, and
so on [34–36].

2.2. )e Adleman-Lipton Model. DNA, whose basic unit is
deoxyribonucleic acid, is a polymer compound. Each mol-
ecule of deoxyribonucleic acid is composed of one molecule
of phosphoric acid, one molecule of deoxyribose, and one
molecule of nucleobase. (e bases of different nucleotides
interact to form hydrogen bonds, in which adenine (A) pairs
with thymine (T), and guanine (G) pairs with cytosine (C).
Hence, DNA can form a rotating double helix structure from
a long single strand (Figure 1). Since base pairs can arrange
repeatedly, DNA molecules have diversity.

(e process of DNA computing is to map the problems
into DNA molecular chains, and use the principle of
complementarity to generate various data pools under the
action of biological enzymes. (en, the constraints of the
problems are mapped to the controlled biochemical reaction
process of the DNA chains in a highly parallel way. Finally,
the detection methods, such as polymer chain reaction
(PCR), probes, electrophoresis and so on, are used to obtain
the calculation results we need. (e above processes are also
the logical courses of DNA computing and Adleman-Lipton
model [37]. (e core problem is to take the encoded DNA
strands as input, and complete biological calculations
through test tubes methods, surface methods, etc., to obtain
all the solution spaces. In DNA computing, the length of a
single strand of DNA is is determined by the number of
nucleotides that make up that single strand.(us, if a single-
stranded DNA contains 10 nucleotides, the length of the
strand is considered to be 10 and is called 10 mer.

Suppose that a set of DNA strands (single strands) in a
test tube, it is a collection of finite strings composed of the
alphabets A, G, C, T. Some biological experiments can be
performed on the test tube. (e specific operations can be
described as follows:

(1) Merge (T1, T2): Given two test tubes T1 and T2, the
operation is to mix the two test tubes in tube T1, and
the tube T2 is empty;

(2) Denaturation (T): Given a test tube T, the operation
is to separate all double strands of DNA in test tube
T into two corresponding single strands;

(3) Annealing (T): Given a test tube T, the operation is
to generate all possible double strands from the
single-stranded DNA in the test tube T according to
the Watson-Crick base pairing principle [38], and
still store them in T after annealing;

Computational Intelligence and Neuroscience 3



(4) Separation (T1, x, T2): Given two test tubes T1, T2
and a single DNA strand x, the operation is to
remove all DNA single strands containing x from
the tube T1, and put all DNA single strands con-
taining x into the test tube T2;

(5) Discard (T): Given a test tube T, the operation is to
remove all strands in the test tube T;

(6) Append-head (T, s): Given a test tube T and DNA
strands with specific code s, the operation is to
attach DNA strands s to the head of each strand in
the tube T;

(7) Append-tail (T, s): Given a test tube T and DNA
strands with specific code s, the operation is to
attach DNA strands s to the end of each strand in
the tube T;

(8) Selection (T1, L, T2): Given two test tubes T1, T2
and an integer L, the operation is to move all DNA
strands of L-length from tube T1 to test tube T2, and
the rest of the DNA strands are still in the test tube
T1;

(9) Cutting (T,ω1ω2): Given a test tube T and strings
with specific codeω1ω2, the operation is to cut every
strand containing [ω1ω2] in tube T into different
strands from the middle, that is
[· · ·ω1ω2 · · ·]⟶ [· · ·ω1], [ω2 · · ·].

(10) Sort: Given test tubes (HTML translation failed), T2
andT3, the operation is tomove the shortest and the
longest DNA strands to test tube T2 and T3, re-
spectively, while the rest of the DNA strands are still
in the test tube;

(11) Read (T): Given a test tube T, the operation is to
identify the composition of biological strands in the
tube T.

All of the above operations can be achieved in certain
biological steps. In previous studies, many researchers
reasonably assumed that the complexity of each operation
was O(1) to analyze different problems [34, 35, 39–41]. (e
research in this paper also uses these operations to imple-
ment the algorithm of QTSP.

2.3. Quota Traveling Salesman Problem. (e QTSP is de-
fined on a graph G � (V, A), where V is the set of n nodes
and A is the set of m edges. Each node i(i ∈ V) has a
corresponding weight wi and each edge (i, j)((i, j) ∈ A) has
a corresponding distance value dij.(eminimum amount of
quota to be collected is given by Q. (e QTSP is to find the
shortest cycle satisfying quota Q in G , where the path starts

from and returns to the origin. (is paper mainly studies
symmetric offline QTSP. (e formulation defines the binary
variable xij ∈ 0, 1{ }, if the edge is passed in the route, then xij

is equal to one; otherwise it is 0. In addition, it also requires
yi ∈ 0, 1{ }, if vertex i is visited, yi � 1, otherwise yi � 0.
Moreover, continuous variables fij ≥ 0 is used to prevent
sub-routing. (e mixed-integer programming formulation
of the QTSP can be given as follows [42]:

min Z � 􏽘
(i,j)∈A

dijxij, (1)

s.t. : 􏽘
(i,j)∈A

xij � yi ∀i ∈ V,
(2)

􏽘
(i,j)∈A

xij � yj ∀j ∈ V,
(3)

􏽘
i∈V

wiyi ≥Q, (4)

􏽘
(j,i)∈A

fji − 􏽘
(i,j)∈A

fij � yi ∀i ∈ V,
(5)

fij ≤ (n − 1)xij, ∀(i, j) ∈ A, (6)

xij ∈ 0, 1{ }, ∀(i, j) ∈ A, (7)

yi ∈ 0, 1{ }, ∀i ∈ V, (8)

fij ≥ 0, ∀(i, j) ∈ A. (9)

(e objective function (1) minimises the travel cost.
Constraints (2) and (3) guarantee that the salesmen visit and
leave node i accurately. Constraint (4) ensures that the
salesman gets at least the minimum quota through different
vertices. Constraints (5), (6) and (9) void the existence of
sub-tours. Constraints (7) and (8) are used to indicate
whether edges and vertices in the graph are visited by the
salesmen.

Given a complete graph with six cities, Figure 2 illus-
trates an instance of QTSP. Starting from v1, the salesman
can go to any city. (e edge weights in the graph correspond
to the distance between cities, while the vertex weights in the
graph correspond to the quota of cities. (e salesman needs
to only visit other cities once for starting from v1, and the
tour is the shortest one that meet the minimum quota Q. In
this case, the salesman quota requirement is 7. He starts at
point v1, and goes through the cities, such that the sum of the
city weights is equal to 7 or greater than 7.

After logical calculations, the shortest cycle that meets
the requirements is:

v1⟶ v2⟶ v5⟶ v3⟶ v1. (10)

We can conclude that the sum of the weights in the
shortest cycle is 9. In the small-scale data problem, we can
easily get the optimal solution of the problem. However, as
the scale of the problem continues to expand, it will become

G

G

G G

G
G

G

GT

T
T T

T

T

T
C

C

C
C

C

C

C

C
A

A
A

A
A A

A

A

Figure 1: DNA double helix structure.

4 Computational Intelligence and Neuroscience



more and more difficult. (erefore, it is eager to have a new
algorithm to solve it efficiently.

3. A DNA Algorithm for the Quota Traveling
Salesman Problem

(is section starts with the preliminary thought and then
gives the coding scheme of the proposed algorithm. (e
detailed algorithm is finally presented.

3.1. Preliminary )ought. As described earlier, DNA com-
puting solves the optimal path problem in three stages:
mapping information to DNA strands, selecting all possible
path strands and reading the optimal solution strand [43].
Among them, the DNA encoding of the information is very
essential, because the quality of the encoding determines the
complexity of the subsequent operations and affects the
accuracy of the experiment [44, 45]. When selecting all
possible path strands, the original DNA strands are screened
according to the constraints of the specific problem. After
eliminating the DNA strands that do not satisfy all con-
straints, the last remaining ones are the DNA strands cor-
responding to feasible solutions to the problem. (is aspect
is the core of DNA computing and plays a key role in the
accurate solution of the problem [46, 47]. Taking QTSP as an
example, since the feasible solution of the problem is a loop
tour that starts from the origin node and returns it after
passing through a series of vertices at most once, and the
sum of the weights of the loop tour vertices is required to be
no less than Q. (erefore, the path strands that pass through
a vertex many times or do not satisfy the weight constraint
are eliminated. Meanwhile, to eliminate the influence of the
loop tour passing through different numbers of vertices on
the strands length, an auxiliary chain of the same length is
added to the vertices not passed in the loop tour for the
optimal solution selection. Finally, after adding the path
weight chains on the loop tour, the shortest length DNA
strands mean the minimum sum of path weights. (e op-
timal solution of the QTSP is obtained by reading its
encoding information.

Specifically, the steps of the DNA algorithm for the
QTSP are as follows:

Step 1. Generate the initial solution of all paths, starting
from the origin node v1 and ending at the node v1;

Step 2. According to different constraints, perform opera-
tions to obtain feasible solutions;

Step 3. Attach the weight value of each route passing node to
filter out the routes that meet the quota;

Step 4. Add the tail to the end of the feasible strands, which
represents the weights of the passing edge;

Step 5. Sort the feasible solutions and read the optimal
results of the quota traveling salesman problem.

Figure 3 shows the algorithm flow chart. According to
the flow chart, the steps of the algorithm can be clearly
understood.

3.2. Notations and Symbols. In order to standardise and
facilitate the expression and understanding of the algorithm,
the definition and description of the notations and symbols
used in the paper are given in Table 1.

3.3. Encoding. Effective coding is the key to mapping
practical problems to computational models of DNA mol-
ecules. (e symbols Ai, Bi (i ∈ 1, 2, . . . , n{ }) used to repre-
sent a part of the vertex strands, and then the connected
symbol AiBi used to represent the DNA strands of vertex vi,
assuming that the length of each symbol is t mer.(e symbol
# indicates the ends of the DNA strands. Simultaneously, the
DNA strands need to be connected to form double strands
with the help of complementary strands BiAj ((i, j) ∈ E).
Obviously, the length of the DNA strands is largely affected
by the size of the involved problem. Furthermore, to dis-
tinguish different routes strands, chains Y is designed whose
length is t mer. At the same time, in order to calculate the

V1 V1

V2 V2 2 3

2 2

1
3 4

5
1

2

2
3

7

10

10

7

8 9

9

V3 V3

V4 V4

V5V6 V5V6

2

Figure 2: (e distance between vertices and the quota of vertices, respectively.

Computational Intelligence and Neuroscience 5



weights of the nodes and edges, the corresponding biological
chains ψ and X of length t-mer are designed.

3.4. Detailed DNA Algorithm. For a QTSP with n nodes, we
generate DNA strands to represent different traveling
salesman routes. (e initial test tubes are:

T1 � #A1B1, A2B2, . . . , AnBn, A1B1#􏼈 􏼉,

T2 � BiAj|(i, j) ∈ E, i≠ j􏽮 􏽯.
(11)

Taking the problem in Figure 2 as an example, the test
tubes:

T1 � #A1B1, A2B2, A3B3, A4B4, A5B5, A6B6, A1B1#􏼈 􏼉,

T2 � B1A2, B1A3, B1A4, B1A5, B1A6, B2A1, B2A3, B2A4,􏼈

B2A5, B2A6, B3A1, B3A2, B3A4, B3A5, B3A6, B4A1, B4A2,

B4A3, B4A5, B4A6,B5A1, B5A2, B5A3, B5A4, B5A6, B6A1, B6A2, B6A3, B6A4, B6A5􏼉.

(12)

Each execution of steps (1), (2) and (3) forms a legal or
illegal travel route for elements representing different ver-
tices in T1 and T2. Next, step (4) and step (6), respectively,
filter out sets that start the route with v1 and those that end
the route at v1 from the set. Now, the set stored in T4
represents the traveler’s path that starts and ends at a fixed
vertex v1. After the execution of the above Algorithm 1, all
the DNA strands of the path starting from v1 to are obtained
in the tube T4. In the example of Figure 2, the strands
#A1B1A4B4A5B5A1B1# representing the route
v1⟶ v4⟶ v5⟶ v1 is generated in T4.

In this way, it can be obtained all possible path chains of
the QTSP in the test tube. Namely, the test tube is the data
pool. Since each of the above operations perform in time
O(1) [34, 35, 39–41], Algorithm 1 can be completed in time
O(1).

Each execution of step (1) stores the travel route through
the city representing “vj” into T5. Each time step (2) is
performed, and then YY is appended to the end of the route
that does not pass through the -city. Next, execution of step
(3) merges the two tubes T4 and T5. After repeating steps (1)
through (4), all n elements are inspected. (en, step (5) will
filter out the DNA strands in the tube T4 in the length of

Strat

End

Vertex information is
mapped to DNA strand

representation

Generate DNA strands
of all possible path

combinations

Pick out the path DNA
strands that start and
end at the specified

vertex

Exclude path strands
that pass through a

vertex more than once

Exclude path chains
where the sum of vertex

weights is less than Q

Add weight information
chains of edges in the

path strands

DNA strands are sorted
by length

Select the shortest path
strands

�e optimal solution of
QTSP problem is

obtained by reading
DNA information

Figure 3: Flowchart for computing the QTSP.

Table 1: Notations and symbols.

Symbol Description
V Vertex set
E Edge set
wi Quota of the i-th vertex
di,j (e distance between i-th vertex and j-th vertex
Ai, Bi DNA string of the i-th vertex
X DNA string representing weight
n Number of vertices
m Number of edges
vi (e i-th vertex
Q Minimum quota for problems
# Start and end flags of DNA strands
Y DNA string representing vertex

6 Computational Intelligence and Neuroscience



(1) Merge(T1, T2);
(2) Annealing(T)1;
(3) Denaturation(T1)

(4) Separation(T1, #A1B1􏼈 􏼉, T3);
(5) Discard(T1);
(6) Separation(T3, A1B1#􏼈 􏼉, T4).;
(7) Discard(T3).

ALGORITHM 1: Generate various routings strands.

For j � 2 to j � n

(1) Separation(T4, AjBj, T5);
(2) Append − tail(T4, YY);
(3) ;
(4) Discard(T5).

EndFor
(5) Selection(T4, (2n + 4)t, T6).

ALGORITHM 2: Remove the chains representing routes that go through multiple vertices.

For j � 2 to j � n

(1) Separation(T6, AjBj, T7);
(2) Append − head(T7, ψψ · · ·ψ

􏽼√√√􏽻􏽺√√√􏽽
Number: wj

);
(3) Merge(T6, T7);
(4) Discard(T7);

EndFor
For q � 1 to q � Q − 1

(5) Selection(T6, (2n + 4 + q)t, T8);
(6) Discard(T8);

EndFor
(7) ;
(8) Separation(T6, #, T9).

ALGORITHM 3: Add vertex weights to different paths.

For i � 1 to i � n

For j � 1 to j � n

(1) Separation(T9, BiAj, T10);
If(T10 ≠∅)

(2) Append − tail(T10, XX · · · X􏽼√√√􏽻􏽺√√√􏽽
Number: dij

);
(3) Merge(T9, T10);
(4) Discard(T10);

Else
(5) Continue;

EndFor
EndFor

ALGORITHM 4: Append edges weight chains.

Computational Intelligence and Neuroscience 7



(1) Sort(T9, T11, T12);
(2) Read(T11).

ALGORITHM 5: Get the optimal solution strands.

Table 2: An example of the QTSP instance naming.

(e PCTSP intance σ Suffix (e QTSP instance

problem_20_100_100_1000.pctsp
0.2 2 problem_20_100_100_1000_2.qtsp
0.5 5 problem_20_100_100_1000_5.qtsp
0.8 8 problem_20_100_100_1000_8.qtsp

Table 3: Results of the QTSP instances.

Id Name n Q Qr Dr Time (s)

1 problem_20_100_100_1000_2.qtsp 20 154 181 294 0.1018
2 problem_20_100_100_10000_2.qtsp 20 187 215 2400 0.5031
3 problem_20_100_1000_1000_2.qtsp 20 179 215 330 0.101
4 problem_20_100_1000_10000_2.qtsp 20 168 199 4387 0.344
5 problem_20_100_10000_1000_2.qtsp 20 181 315 288 0.1029
6 problem_20_100_10000_10000_2.qtsp 20 138 140 3973 0.6124
7 problem_40_100_100_1000_2.qtsp 40 338 395 196 1.130
8 problem_40_100_100_10000_2.qtsp 40 328 420 1835 0.5252
9 problem_40_100_1000_1000_2.qtsp 40 312 341 222 1.413
10 problem_40_100_1000_10000_2.qtsp 40 376 391 1861 1.209
11 problem_40_100_10000_1000_2.qtsp 40 356 359 222 1.509
12 problem_40_100_10000_10000_2.qtsp 40 407 413 1751 0.7927
13 problem_60_100_100_1000_2.qtsp 60 540 583 161 1.996
14 problem_60_100_100_10000_2.qtsp 60 516 519 1689 7.119
15 problem_60_100_1000_1000_2.qtsp 60 576 612 115 1.279
16 problem_60_100_1000_10000_2.qtsp 60 523 596 2212 18.01
17 problem_60_100_10000_1000_2.qtsp 60 478 495 183 7.687
18 problem_60_100_10000_10000_2.qtsp 60 556 650 1722 5.864
19 problem_80_100_100_1000_2.qtsp 80 697 730 185 265.2
20 problem_80_100_100_10000_2.qtsp 80 779 787 1763 109.7
21 problem_80_100_1000_1000_2.qtsp 80 739 766 132 8.856
22 problem_80_100_1000_10000_2.qtsp 80 775 789 1046 1.573
23 problem_80_100_10000_1000_2.qtsp 80 688 688 204 204.5
24 problem_80_100_10000_10000_2.qtsp 80 776 788 1802 28.49
25 problem_100_100_1000_1000_2.qtsp 100 1021 1047 91 3.367
26 problem_100_100_1000_10000_2.qtsp 100 960 1057 944 7.195
27 problem_100_100_10000_1000_2.qtsp 100 961 1031 113 169.2
28 problem_100_100_10000_10000_2.qtsp 100 837 837 1261 21.30
29 problem_20_100_100_1000_5.qtsp 20 386 405 651 0.7524
30 problem_20_100_100_10000_5.qtsp 20 469 482 3867 0.176
31 problem_20_100_1000_1000_5.qtsp 20 449 477 571 0.361
32 problem_20_100_1000_10000_5.qtsp 20 422 445 8319 0.7272
33 problem_20_100_10000_1000_5.qtsp 20 452 464 419 0.1934
34 problem_20_100_10000_10000_5.qtsp 20 347 351 6374 0.2405
35 problem_40_100_100_1000_5.qtsp 40 846 855 358 1.897
36 problem_40_100_100_10000_5.qtsp 40 821 898 3447 5.922
37 problem_40_100_1000_1000_5.qtsp 40 780 832 444 5.036
38 problem_40_100_1000_10000_5.qtsp 40 940 940 3384 2.254
39 problem_40_100_10000_1000_5.qtsp 40 892 897 426 14.48
40 problem_40_100_10000_10000_5.qtsp 40 1019 1059 3475 1.677
41 problem_60_100_100_1000_5.qtsp 60 1351 1368 419 14.16
42 problem_60_100_100_10000_5.qtsp 60 1291 1300 4407 25.11
43 problem_60_100_1000_1000_5.qtsp 60 1440 1461 385 2.656

8 Computational Intelligence and Neuroscience



(2n + 4)t. A feasible path that does not go through a vertex
supplements its length by appending DNA strands of the
same length. In the QTSP, each vertex is required to be
delivered only once by the salesman. In order to eliminate
the distress of decision making caused by the different
number of cities visited in the tour, determine in turn
whether the city vj has been visited in the tour, if so, the
chains AjBj are included in the strands, otherwise, it should
add the auxiliary chain YY and ‖AjBj‖ � ‖YY‖ to eliminate
the influence of the number of cities on the strands length.
After adding the tail chains YY, if the DNA strands exceed a
certain length, it indicates that the route passes through a
vertex many times, so the infeasible strands are discarded.
For example, after the Algorithm 2, the route
v1⟶ v4⟶ v5⟶ v1 in Figure 2 is represented by DNA
strands #A1B1A4B4A5B5A1B1#YYYYYY.

(e operation uses a “For” clause, so the Algorithm 2 can
be done in time O(n), as each of the above operations was
done in time O(1).

Each execution of steps (1) and (2) appends the vertex
weights (‖ψ · · ·ψ‖ � wj) at the head of the strands, if this
route passes the j-city. (e number of ψ is related to vertex
weightswj. After repeated steps (1) through (4), the length of
the DNA strands in the tube T6 is related to the weights that
passes through the vertices. Steps (5) and (6) discard illegal
DNA strands whose travel path quota is less than Q. Step (7)
cuts and discards the additional ψ · · ·ψ in the legal DNA
strands.

For example, after the step (4), the route
v1⟶ v3⟶ v4⟶ v5⟶ v1 in Figure 2 is represented by
DNA strands

L1 � ψψψ
􏽼√􏽻􏽺√􏽽
W3�3

ψψ
􏽼√􏽻􏽺√􏽽
W4�2

ψψ
􏽼√􏽻􏽺√􏽽
W5�2

#A1B1A3B3A4B4A5B5A1B1#YYYY
􏽼√√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√√􏽽

2×6+4

.

(13)

Since the sum of vertex weights of the strands L1 is not
less than Q(3 + 2 + 2≤ 7), they are still retained in tube
(HTML translation failed) after step (7). Corresponding to
this, DNA strands L2 � ψψ

􏽼√􏽻􏽺√􏽽
W4�2

ψψ
􏽼√􏽻􏽺√􏽽
W5�2

#A1B1A4B4A5B5A1B1#YYYYYY
􏽼√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√􏽽

2×6+4

representing the route

v1⟶ v4⟶ v5⟶ v1 should be eliminated because it
does not meet the quota constraint (2 + 2< 7).

Next, in order to eliminate the influence of vertex weight
value on the shortest route selection, after selecting the feasible
route strands, we divide and remove the weight chains of
vertices from the feasible ones. For example, strands L1 is cut to
ψψψψψψψ and #A1B1A3B3A4B4A5B5A1B1#YYYY by step
(7). (en, is selected to be stored in the tube T9 by step (8).

(is operation uses the “For” clause twice in sequence, so
the Algorithm 3 can be completed in time O(n2).

Algorithm 4 is a nested loop, where the loop index
variables i and j range from 1 to n. Each execution of step (1)
stores the DNA strands passing through the edge (i, j) from
the tube T9 to the T10. If the tube T10 is not empty, step (2)
appends DNA chains XX · · · X to the end of the DNA
strands representing the routes passing through the edge
(i, j), where the number ofX equals to the weight of the edge
(i, j). (e step (3) merges the treated T9 and T10 tubes. (e
execution of step (4) indicates that T10 is empty and the next
loop continues. After repeated execution (1) to (5), the
length of the DNA strands stored in the T9 is related to the
edge weights of the travel routes. Taking the route
(v1⟶ v2⟶ v3⟶ v5⟶ v1) in Figure 2 as an example,
the corresponding DNA strands is:

#A1B1A2B2A3B3A5B5A1B1#YYYY X􏽼􏽻􏽺􏽽
d12

X􏽼􏽻􏽺􏽽
d23

XX􏽼√􏽻􏽺√􏽽
d35

XXXXXXXX􏽼√√√√√√􏽻􏽺√√√√√√􏽽
d51

(14)

Table 3: Continued.

Id Name n Q Qr Dr Time (s)

44 problem_60_100_1000_10000_5.qtsp 60 1308 1323 4536 2.678
45 problem_60_100_10000_1000_5.qtsp 60 1196 1200 385 2.407
46 problem_60_100_10000_10000_5.qtsp 60 1390 1392 3623 12.80
47 problem_20_100_100_1000_8.qtsp 20 617 619 1097 0.3255
48 problem_20_100_100_10000_8.qtsp 20 750 762 7565 0.2571
49 problem_20_100_1000_1000_8.qtsp 20 719 743 1045 0.311
50 problem_20_100_1000_10000_8.qtsp 20 675 691 14319 0.3447
51 problem_20_100_10000_1000_8.qtsp 20 724 728 774 0.2847
52 problem_20_100_10000_10000_8.qtsp 20 555 559 10480 0.516
53 problem_40_100_100_1000_8.qtsp 40 1354 1355 752 0.4747
54 problem_40_100_100_10000_8.qtsp 40 1314 1319 8439 12.23
55 problem_40_100_1000_1000_8.qtsp 40 1248 1251 782 8.271
56 problem_40_100_1000_10000_8.qtsp 40 1504 1507 6658 2.253
57 problem_40_100_10000_1000_8.qtsp 40 1427 1449 700 5.133
58 problem_40_100_10000_10000_8.qtsp 40 1630 1630 7850 2.513
59 problem_60_100_100_1000_8.qtsp 60 2161 2169 825 13.56
60 problem_60_100_100_10000_8.qtsp 60 2066 2074 8316 19.71
61 problem_60_100_1000_1000_8.qtsp 60 2304 2311 805 3.216
62 problem_60_100_1000_10000_8.qtsp 60 2093 2094 10206 72.78
63 problem_60_100_10000_1000_8.qtsp 60 1913 1927 810 3.029
64 problem_60_100_10000_10000_8.qtsp 60 2224 2228 8580 17.29

Computational Intelligence and Neuroscience 9



Table 4: Routes of the QTSP instances.

Id Route
1 [0, 11, 8, 6, 15, 0]
2 [0, 13, 3, 16, 6, 12, 15, 0]
3 [0, 11, 2, 7, 8, 0]
4 [0, 14, 5, 15, 0]
5 [0, 8, 10, 19, 16, 0]
6 [0, 13, 15, 8, 16, 0]
7 [0, 12, 18, 5, 27, 20, 13, 17, 37, 0]
8 [0, 5, 12, 13, 39, 18, 32, 22, 0]
9 [0, 39, 36, 6, 25, 30, 27, 5, 0]
10 [0, 16, 36, 27, 19, 37, 3, 38, 31, 0]
11 [0, 6, 7, 37, 10, 30, 21, 0]
12 [0, 20, 13, 32, 21, 28, 25, 23, 17, 0]
13 [0, 45, 49, 59, 36, 51, 44, 54, 23, 18, 3, 0]
14 [0, 34, 3, 16, 8, 33, 55, 28, 39, 50, 0]
15 [0, 56, 50, 6, 19, 13, 7, 14, 10, 46, 43, 39, 36, 34, 41, 12, 55, 0]
16 [0, 30, 33, 39, 59, 43, 46, 15, 20, 42, 0]
17 [0, 14, 38, 25, 7, 57, 26, 31, 20, 21, 24, 46, 0]
18 [0, 32, 19, 4, 18, 57, 22, 34, 9, 59, 33, 0]
19 [0, 42, 70, 32, 13, 72, 19, 63, 78, 66, 58, 55, 41, 68, 0]
20 [0, 27, 56, 73, 55, 46, 77, 17, 67, 32, 9, 72, 11, 15, 60, 33, 0]
21 [0, 67, 72, 5, 55, 8, 17, 57, 70, 64, 63, 33, 52, 42, 38, 7, 51, 0]
22 [0, 44, 25, 28, 66, 29, 11, 52, 16, 75, 62, 46, 13, 51, 0]
23 [0, 59, 48, 34, 23, 40, 20, 41, 7, 50, 6, 5, 14, 78, 28, 47, 0]
24 [0, 10, 35, 15, 20, 79, 67, 26, 56, 60, 77, 70, 63, 30, 41, 0]
25 [0, 69, 70, 4, 32, 84, 93, 28, 41, 43, 31, 78, 91, 88, 2, 89, 17, 0]
26 [0, 17, 81, 55, 95, 99, 29, 71, 68, 94, 66, 22, 51, 16, 46, 2, 58, 79, 52, 30, 76, 75, 0]
27 [0, 69, 8, 11, 56, 49, 37, 25, 66, 89, 29, 44, 47, 53, 34, 59, 33, 96, 0]
28 [0, 42, 39, 21, 70, 33, 90, 78, 49, 51, 45, 97, 67, 17, 14, 91, 36, 60, 18, 3, 0]
29 [0, 15, 10, 9, 3, 14, 4, 11, 0]
30 [0, 15, 12, 6, 16, 3, 13, 17, 11, 18, 0]
31 [0, 11, 6, 14, 18, 7, 8, 17, 2, 12, 13, 0]
32 [0, 4, 7, 16, 19, 11, 14, 5, 15, 0]
33 [0, 4, 11, 1, 6, 3, 8, 10, 19, 16, 0]
34 [0, 13, 15, 11, 6, 18, 9, 4, 8, 16, 0]
35 [0, 12, 18, 5, 27, 20, 4, 10, 33, 1, 13, 35, 26, 22, 36, 31, 11, 29, 24, 37, 0]
36 [0, 22, 32, 6, 27, 38, 23, 16, 35, 1, 34, 3, 18, 37, 28, 10, 11, 12, 5, 0]
37 [0, 39, 36, 6, 25, 30, 17, 26, 37, 20, 38, 14, 13, 8, 23, 0]
38 [0, 16, 36, 21, 35, 38, 14, 34, 3, 37, 19, 7, 11, 24, 26, 15, 17, 31, 0]
39 [0, 21, 1, 17, 9, 8, 26, 7, 37, 10, 30, 3, 2, 31, 6, 0]
40 [0, 20, 13, 32, 39, 33, 14, 29, 4, 11, 38, 26, 3, 28, 25, 23, 17, 0]
41 [0, 45, 49, 59, 36, 56, 22, 18, 23, 54, 44, 51, 25, 14, 19, 34, 6, 42, 27, 50, 33, 37, 3, 0]
42 [0, 34, 1, 18, 5, 53, 58, 23, 10, 57, 14, 22, 48, 44, 52, 40, 30, 8, 33, 55, 28, 39, 50, 0]
43 [0, 55, 12, 30, 31, 48, 35, 20, 25, 42, 47, 43, 39, 36, 34, 41, 22, 23, 53, 57, 14, 7, 13, 19, 1, 17, 27, 50, 56, 0]
44 [0, 42, 20, 15, 3, 38, 37, 45, 52, 7, 22, 44, 17, 14, 55, 23, 40, 46, 43, 59, 39, 33, 30, 0]
45 [0, 46, 24, 21, 30, 48, 23, 54, 1, 39, 49, 7, 25, 47, 55, 11, 10, 33, 3, 53, 37, 35, 8, 20, 31, 26, 18, 0]
46 [0, 33, 59, 9, 34, 22, 57, 3, 11, 7, 20, 14, 24, 1, 41, 21, 50, 54, 56, 46, 53, 18, 4, 19, 32, 0]
47 [0, 11, 8, 9, 3, 14, 5, 17, 19, 7, 12, 16, 10, 15, 0]
48 [0, 13, 3, 16, 6, 1, 7, 9, 17, 11, 2, 18, 14, 15, 0]
49 [0, 13, 12, 2, 17, 8, 7, 18, 15, 9, 6, 16, 5, 4, 3, 11, 0]
50 [0, 4, 7, 12, 14, 11, 19, 16, 1, 3, 10, 13, 9, 2, 5, 15, 0]
51 [0, 8, 10, 19, 16, 12, 2, 11, 1, 6, 7, 15, 18, 4, 0]
52 [0, 16, 8, 4, 9, 18, 6, 11, 15, 13, 14, 5, 7, 12, 0]
53 [0, 37, 24, 29, 32, 6, 33, 10, 4, 20, 27, 9, 23, 11, 31, 34, 5, 38, 17, 13, 35, 26, 22, 36, 2, 30, 15, 18, 12, 0]
54 [0, 5, 2, 14, 4, 36, 25, 29, 32, 6, 27, 38, 23, 16, 35, 1, 34, 3, 18, 39, 37, 28, 10, 11, 12, 31, 9, 7, 33, 22, 0]
55 [0, 23, 25, 27, 30, 17, 26, 37, 24, 9, 1, 29, 4, 16, 22, 20, 38, 14, 13, 8, 2, 19, 33, 35, 21, 6, 36, 39, 0]
56 [0, 31, 18, 7, 19, 37, 3, 34, 30, 4, 29, 20, 1, 39, 26, 24, 11, 15, 17, 9, 22, 35, 21, 36, 16, 0]
57 [0, 18, 26, 7, 37, 10, 32, 20, 6, 31, 2, 3, 30, 39, 16, 33, 12, 1, 14, 38, 17, 9, 8, 27, 25, 29, 34, 21, 0]
58 [0, 20, 13, 27, 34, 19, 36, 6, 18, 10, 31, 37, 22, 2, 3, 26, 38, 11, 4, 29, 14, 33, 39, 32, 21, 28, 25, 23, 17, 0]

10 Computational Intelligence and Neuroscience



(e weight of the route above adds up to 11
(d12 + d23 + d35 + d51 � 11).

And the operation also uses two “For” nested clauses,
thus the Algorithm 4 can be done in time O(n2).

Among many different routes, the best solution of the
QTSP has the smallest weight value. We search for the
shortest DNA strand in the test tube T9, which represents the
optimal solution of the problem. Each execution of steps (1)
and (2) selects the longest and shortest DNA strands and
reads the shortest DNA strands, then the algorithm ter-
minates. Obviously, the Algorithm 5 works in time O(1).

3.5. )e Correctness and Complexity of the Proposed
Algorithm. (e following theorems are used to describe the
time complexity, the number of the tubes used and the
length limit of the library strands in solution space for the
DNA algorithm.

Theorem 1. )e DNA algorithm of the QTSP has O(n2 + Q)

time complexity and uses O(n2) tubes based on the Adleman-
Lipton model.

Proof. (e algorithm mainly includes four steps. Algorithm
1 is mainly used to determine the set of chains starting and
ending from a particular vertex, and remove any illegal

chains from all possible library chains. Algorithm 1 takes one
“Merge” operation, one “Annealing” operation, two “Sep-
aration” operations and two “Discard” operations. Next, at
most (n − 1) adjacent vertices are filtered. Algorithm 2 takes
(n − 1) “Separation” operations, (n − 1) “Append-tail” op-
erations, (n − 1) “Merge” operations and one “Selection”
operation. On the Algorithm 3 of step (1) through step (4) is
used to calculate the weight value of each vertex, and takes
(n − 1) “Separation” operations, (n − 1) “Merge” operations
and (n − 1) “Append-head” operations. Next, step (5) and
step (6) take (Q − 1) “Selection” operations and (Q − 1)

“Discard” operations. Starting from Algorithm 4, (n × n)

“Separation” operations are carried out, with no more than
n × n “Append-tail” operations, “Merge” operations and
“Discard” operations. Algorithm 5 takes at most one “Sort”
operation and one “Read” operation. (erefore, from the
above statement, we can immediately infer that in the
Adleman-Lipton model, the solutions of the QTSP has an
O(n2 + Q) biological operations. Meanwhile, we have no
more than the (n × n + 2 × n + Q + 5) tubes are used.
(erefore, it can be immediately inferred from the above
statement that QTSP with n vertices and Q quota require-
ments is solved using O(n2 + Q) biological manipulation
and O(n2) test tubes.

(e DNA algorithm time complexity T is as follows:

T(Algorithm 1) � O(7) � O(1);

T(Algorithm 2) � O(4(n − 1) + 1) � O(n);

T(Algorithm 3) � O(4(n − 1) + 2(Q − 1) + 2) � O(n + Q);

T(Algorithm 4) � O(4nn) � O n
2

􏼐 􏼑;

T(Algorithm 5) � O(2) � O(1);

T � T(Algorithm 1) + T(Algorithm 2) + T(Algorithm 3)

+ T(Algorithm 4) + T(Algorithm 5)

� O(1) + O(n) + O(n + Q) + O n
2

􏼐 􏼑 + O(1)

� O n
2

+ Q􏼐 􏼑.

(15)

□

Theorem 2. )e result chains of the QTSP can be searched
within a limited length range.

Proof. Set l � 􏽐 􏽐 (i, j) and the length of the different
strands is:

Table 4: Continued.

Id Route
59 [0, 41, 8, 5, 53, 58, 24, 35, 11, 48, 38, 1, 39, 28, 33, 20, 37, 26, 55, 43, 10, 56, 22, 18, 23, 54, 44, 3, 50, 27, 42, 6, 34, 19, 14, 25, 51, 36, 59, 49, 45, 0]
60 [0, 34, 3, 26, 23, 58, 53, 5, 18, 1, 9, 16, 8, 30, 40, 52, 44, 41, 46, 49, 21, 59, 32, 56, 43, 48, 22, 14, 57, 10, 12, 20, 25, 27, 36, 51, 33, 55, 28, 39, 50, 0]
61 [0, 56, 50, 27, 13, 19, 1, 17, 24, 7, 14, 10, 46, 11, 32, 33, 30, 12, 55, 28, 54, 16, 43, 47, 42, 25, 20, 35, 48, 31, 41, 22, 5, 39, 36, 34, 8, 4, 59, 57, 53, 23, 26, 29, 58, 0]
62 [0, 42, 20, 15, 6, 51, 53, 44, 22, 7, 52, 45, 37, 38, 3, 10, 27, 48, 11, 2, 47, 36, 35, 16, 13, 8, 26, 25, 18, 49, 23, 50, 12, 17, 14, 55, 31, 40, 46, 43, 59, 39, 33, 30, 0]
63 [0, 46, 24, 21, 30, 29, 39, 49, 55, 47, 25, 7, 57, 38, 17, 32, 2, 58, 45, 27, 37, 53, 8, 35, 23, 42, 10, 33, 3, 16, 9, 12, 20, 31, 26, 18, 0]
64 [0, 32, 57, 3, 11, 7, 26, 45, 22, 34, 9, 38, 48, 8, 30, 28, 49, 16, 54, 50, 21, 41, 52, 25, 27, 37, 12, 2, 46, 53, 18, 4, 19, 58, 20, 14, 24, 1, 0]

Table 5: Sequences chosen to represent Ai, Bi, #, ψ, X and
(i ∈ 1, 2, . . . , 6{ }) for the QTSP in Figure 2.

Bit 3′ − 5′ DNA sequence Bit 3′ − 5′ DNA sequence
A1 GTTT B1 GATG

A2 GTTA B2 AGTT

A3 TACG B3 ACTG

A4 GGAA B4 GCGG

A5 TATT B5 CTAG

A6 TCCC B6 GCCG

# GTAA ψ AGGC

X CGAG Y TATA

Table 6: Sequences chosen to represent the elements
AiBi(i ∈ 1, 2, . . . , 6{ }) for the QTSP in Figure 2.

Bit 3′ − 5′ DNA sequence Bit 3′ − 5′ DNA sequence
A1B1 GTTTGATG A2B2 GTTAAGTT

A3B3 TACGACTG A4B4 GGAAGCGG

A5B5 TATTCTAG A6B6 TCCCGCCG

Computational Intelligence and Neuroscience 11



Ak

����
���� � Bk

����
���� � ‖#‖ � ‖Y‖ � ‖X‖ � ‖ψ‖ � tmer k ∈ 1, 2, . . . , n{ }

(16)

(e length of DNA strands L corresponding to the
optimal scheduling in Algorithm 5 is:

#A1B1Ak1
Bk1

Ak2
Bk2

· · · Akr
Bkr

A1B1#YY · · · Y XX · · · X􏽼√√√􏽻􏽺√√√􏽽
p

(17)

When edge (i, j) chain is included in the routing strands,
we add XX · · · X with dij length. (e number p represents
the number of X. (erefore, we can reasonably infer that the
length of the DNA strand is:

‖L‖ � ‖#‖ + A1
����

���� + B1
����

���� + Ak1

�����

����� + Bk1

�����

����� + Ak2

�����

����� + Bk2

�����

����� + · · · + Akr

�����

�����

+ Bkr

�����

����� + A1
����

���� + B1
����

���� +‖#‖ +‖Y‖ + · · · +‖Y‖ +‖X‖ + · · · +‖X‖

� 2‖#‖ + 2 A1
����

���� + 2 B1
����

���� + Ak1

�����

����� + Bk1

�����

����� + · · · + Akr

�����

����� + Bkr

�����

�����
􏽼√√√√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√√√√􏽽

2r

+‖Y‖ + · · · +‖Y‖􏽼√√√√√√􏽻􏽺√√√√√√􏽽
2(n−r−1)

+‖X‖ + · · · +‖X‖􏽼√√√√√√􏽻􏽺√√√√√√􏽽
p

� (2n + 4)t + pt

∵0≤p≤ l

∴(2n + 4)t≤ ‖L‖≤ (2n + 4)t + lt.

(18)

Hence, we get the solution within a certain chain
length. □

4. Simulation Experiment of DNA Algorithm

DNA computing relies on the biochemical reactions of
DNA molecules, which can lead to incorrect or unwanted
calculations due to their technical difficulties. Since the

accuracy of DNA computing directly affects the results,
the information representation of each symbol in the
question plays a decisive role. Otherwise, it will lead to the
accumulation and diffusion of errors in the biochemical
reaction. (erefore, it is necessary to design DNA se-
quences suitable for simulation experiments. A Python
program was designed to perform the simulation exper-
iments, and the similar approach have been used in
previous studies [48]. (e computer used for the simu-
lations has an AMD Ryzen 7 PRO 4750U processor with a
clock speed of 1.70 GHz, Windows 10, 64 bit and 16G of
RAM. It is difficult to find the set of instances for the
offline QTSP so that we generated the instances of the
QTSP through the PCTSP instances. (e following con-
ditions are adopted to generate the instances based on the
characteristics of the PCTSP and the correlation between
them.

(a) Eliminate penalty mechanism in the PCTSP, that is,
the penalties ci � 0.

(b) Calculate the rated quota Q using the formula
σ 􏽐

n
i�1 pi with σ ∈ 0.2, 0.5, 0.8{ }.

(e PCTSP instance names are supplemented to name
the QTSP instances in order to distinguish and identify the
instances. (e decimal parts of the sigma values are inter-
cepted to indicate different cases, and they are spliced to the
end of the PCTSP instance name to distinguish between
instances. An example is presented in Table 2 to present the
naming convention more clearly [49].

Based on the above rules, the instance generator are
designed to create the data files. (en, some of the instances
are selected to be solved with the solver we designed and the
corresponding results are obtained. (e basic information
from 64 instances addressed by the solver are summarized in

Table 7: Routes and DNA strands satisfying quota through different vertices in Figure 2.

Routing DNA strands

v1⟶ v2⟶ v3⟶ v6⟶ v1
3′ − GTTTGATGGTTAAGTTTACGACTG

TCCCGCCGGTTTGATG − 5′

v1⟶ v2⟶ v4⟶ v5⟶ v6⟶ v1
3′ − GTTTGATGGTTAAGTTGGAAGCGG

GTTTGATGGTTAAGTTGGAAGCGG − 5′

v1⟶ v3⟶ v5⟶ v6⟶ v1
3′ − GTTTGATGTACGACTGTATTCTAG

TCCCGCCGGTTTGATG − 5′
v1⟶ v3⟶ v4⟶ v5⟶ v6⟶ v1 3′ − GTTTGATGTACGACTGGGAAGCGG

v1⟶ v3⟶ v6⟶ v2⟶ v1
3′ − GTTTGATGTACGACTGTCCCGCCG

GTTAAGTTGTTTGATG − 5′

v1⟶ v4⟶ v3⟶ v6⟶ v1
3′ − GTTTGATGGGAAGCGGTACGACTG

TCCCGCCGGTTTGATG − 5′
v1⟶ v5⟶ v4⟶ v3⟶ v1 3′ − GTTTGATGTATTCTAGGGAAGCGG

v1⟶ v6⟶ v5⟶ v4⟶ v3⟶ v1
3′ − GTTTGATGTCCCGCCGTATTCTAG

GGAAGCGGTACGACTGGTTTGATG − 5′

Table 8: DNA sequences chosen to represent the solutions to the QTSP in Figure 2.

Routing DNA strands

v1⟶ v2⟶ v5⟶ v3⟶ v1
3′ − GTTTGATGGTTAAGTTTATTCTAGTACGAC

TGGTTTGATG − 5′
v1⟶ v3⟶ v5⟶ v2⟶ v1 3′ - GTTTGATGTACGACTGTATTCTAGGTTAAGTTGTTTGATG − 5′

12 Computational Intelligence and Neuroscience



Table 3 and the routes are presented in Table 4. In Table 3, Id
represents the serial number of the instance, n represents the
total number of nodes in the instance, Q represents the
minimum amount, Qr and Dr denote the sum of quotas and
the sum of weights of the resultant router, respectively. Time
indicates the time cost (in seconds) consumed by the in-
stance to be solved by the solver.

Routes can be obtained by decoding the DNA strands,
and examples can be given to understand more clearly the
process of solving examples of DNA algorithms. Taking
Figure 1 as an example, the program generates a random
four-base sequence to form Ai, Bi, #, ψ, X and Y, as shown in
Table 5. Among them represents the ends of the DNA
chains, ψ represents the vertex weight of the DNA string, Y

and are used to represent the vertex and edge weight of the
DNA string, then Ai and Bi are used to represent the vertex
vi. So Table 6 shows the DNA node sequence composed by
Braich’s methods [41]. In the example mentioned in this
paper, the DNA sequences of the six vertices are all shown in
Table 6.

In the program, we generate random sequences to
represent the initial data pool. (e routes that meet the
quota through the different vertices are shown in Table 7
(due to there are too many feasible solutions, we only show
some of them). (e optimal solution is derived from the
composition structure of the last selected DNA sequences in
Table 8. We can also obtain the best solution of the example
from the running of the program. On the other hand, DNA
computing algorithm is mainly based on the biological
DNA molecular chemical reaction to achieve the output of
the algorithm function. Because the computer programs are
executed in sequence, it is impossible to realize the parallel
chemical reaction operation of molecules in DNA algo-
rithm. (erefore, the Python program designed by our
simulation analysis can only realize the biological experi-
ment results we designed. Compared with other algorithms
(Ant colony algorithm [50], Particle Swarm Optimization
algorithm [51], Genetic algorithm [52]), DNA algorithm is
not ideal because of the different computing mechanism.
However, as the technology for DNA experiments matures,

Table 9: Recent developments in DNA computing and their applications.

Scholars Issues studied Model name Characteristics Experimental results

Wu et al.
[48]

Family traveling
salesperson problem

Adleman-lipton
model

O(N2) (N is the number of vertices in the
problem without the origin)

Simulation of experimental
benchmark examples, such as
bruma14, ulysses16, ulysses22,

eil51 and Berlin52 to demonstrate
the feasibility of the algorithm

Roy et al.
[53]

A robust image
encryption framework

DNA computing
and chaos theory

DNA computing helps to effectively encode
the actual pixel values on which DNA

operations can be applied

(e proposed approach is tested
on different types of images and
the obtained results are very
promising. On average, the
proposed approach achieves

approximately 96.95% of NPCR
and 31.56% of UACI that is quite

satisfactory

Mondal
et al. [54]

Artificial neural
networks and the

implementation of DNA
logic gates

Short DNA
strands to develop
artificial neural

networks

Short sequences of DNA molecules can be
used to encode input and output signals and
to build the basic structure of a neuron. And
using the secondary structure of DNA

molecules to illustrate design strategies for
logic gates

Qian et al. [56] propose a DNA
gate architecture that uses a
seesaw gate motif to develop

linear threshold circuits. Cherry
and Qian [57] developed artificial
neural networks that can perform

computational tasks, e.g.
molecular pattern recognition,
based on design guidelines for
DNA circuits, i.e. predictable
hybridisation rules for DNA
strands and biochemical

reactions

Chang
et al. [55] Independent set problem

Bio-molecular
solutions on IBM

quantum
computers

(ey propose a bio-molecular algorithm
with O(n2 + m) biological operations,

O(2n) DNA strands,
(HTML translation failed) tubes and O(n)

the longest DNA strand, for solving the
independent set problem for any graph G

with m edges and n vertices

A maximum independent set
problem with three vertices and
two edges is solved using the

DNA computing algorithm and
quantum circuits and correct

results are obtained

Tian et al.
[31]

Job shop scheduling
problem

Adleman-lipton
model

(e DNA algorithm is proved to have an
O(n2) complexity and the length of the final
strand of the optimal schedule is within

appropriate range

Experiment with 58 benchmark
instances show that the proposed
DNA algorithm outperforms
other comparative heuristics

Computational Intelligence and Neuroscience 13



the parallel advantages of DNA computing will be fully
demonstrated.

5. Conclusions

(emain result of the work is that the QTSP in an arbitrarily
undirected graph can be solved using the Adleman-Lipton
model. (e process uses biological manipulation to produce
combination results and screen out solutions. (rough
computer simulation, the design of DNA coding and the
operations of the algorithm are completed. (e proposed
algorithm is based on DNA molecules, and has obvious
advantages in terms of computing speed, storage capacity
and energy consumption. So far, there are few methods to
solve the QTSP. Considering the online traveling salesman
problem, Ausiello et al. [11] presented the lower bounds of
online QTSP and the competitive strategies in positive semi-
axis and general network situations. Yu et al. [12] proposed
an optimal deterministic algorithm for each variant defined
in general space, solid line or half line. For QTSPwith known
city quota, our proposed algorithm will have a better ad-
vantage in computing efficiency with the increasing of
problem scale. Because the computational complexity, ex-
perimental test tubes and chains length of our algorithm are
all polynomial time complexity ((eorem 1 and 2). In the
Adleman-Lipton model, every DNA manipulation used can
be achieved through biochemical reactions in the laboratory.
We take the problem with six points as an example, and
obtain the optimal solution of QTSP through the Python
program simulation.We believe that through thematurity of
DNA experimental technology, the real results in the ex-
perimental environment will also be confirmed.

Currently, DNA computing algorithms for different
complex problems are being proposed, for example, Wu
et al. [48] and Tian et al. [31] used DNA computing to solve
the family traveling salesperson problem and job shop
scheduling problem respectively, achieving great efficiency
gains in terms of algorithmic computational complexity. In
addition, DNA computing has been increasingly applied to
different scenarios, such as image recognition [53], artificial
neural network design [54] and quantum computing [55]. It
is foreseen that pioneering research in the cross-fertilisation
of DNA computing with disciplinary needs will drive sig-
nificant developments in many aspects of science and
technology. (e latest advances in DNA computing are
shown in Table 9.

At present, DNA computing has unparalleled advan-
tages in dealing with NP-hard problems, because traditional
algorithms cannot effectively process large amounts of data.
Meanwhile, existing data often suffers from uncertainty and
inaccuracy. In such cases, parallel processing of data using
the latest generation of technology seems to be useful [58].
(e theoretical research and practical realization of DNA
computing for many related problems that have not yet been
solved are also the direction of our future research. How to
combine DNA computing with other computing methods to
solve the remaining NP problems still has further explo-
ration. It will lead to further research and more challenging
development in biotechnology. In addition, in the future we

will focus on combining DNA computing with the latest
deep learning models including attention mechanisms, as
well as quantum computing, nanotechnology, so that the
parallelism of the models can be fully exploited and DNA
computing can be extended to a wider range of applications
[59–62].

Data Availability

(e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

Acknowledgments

It was supported by the Open Research Fund of State Key
Laboratory of Simulation and Regulation of Water Cycle in
River Basin, China Institute of Water Resources and Hy-
dropower Research (grant No. IWHR-SKL-201905).

References

[1] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala, “Improved
approximation guarantees for minimum-weight k-trees and
prize-collecting salesmen,” Proceedings of the Twenty-Seventh
Annual ACM Symposium on )eory of Computing, p. 29,
ACM, Las Vegas, Nevada, USA, May-1 June 1995.

[2] E. Balas, “(e prize collecting traveling salesman problem,”
Networks, vol. 19, no. 6, pp. 621–636, 1989.

[3] G. Ausiello, V. Bonifaci, and L. Laura, “(e online prize-
collecting traveling salesman problem,” Information Pro-
cessing Letters, vol. 107, no. 6, pp. 199–204, 2008.

[4] O. Pedro, R. R. Saldanha, and R. S. de. Camargo, “A tabu
search approach for the prize collecting traveling salesman
problem,” Electronic Notes in Discrete Mathematics, vol. 41,
pp. 261–268, 2013.

[5] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and
M. Talamo, “Algorithms for the on-line travelling Salesman1,”
Algorithmica, vol. 29, no. 4, pp. 560–581, 2001.

[6] N. Garg, “A 3-approximation for the minimum tree spanning
k vertices,” Foundations of Computer Science Annual Sym-
posium on, pp. 302–309, 1996.

[7] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala, “New ap-
proximation guarantees for minimum-weight k-trees and
prize-collecting salesmen,” SIAM Journal on Computing,
vol. 28, no. 1, pp. 254–262, 1999.

[8] A. Blum, R. Ravi, and S. Vempala, “A constant-factor ap-
proximation algorithm for the k-MST problem,” Journal of
Computer and System Sciences, vol. 58, no. 1, pp. 129–149,
2002.

[9] X. Bao and Z. Liu, “An improved approximation algorithm for
the clustered traveling salesman problem,” Information
Processing Letters, vol. 112, no. 23, pp. 908–910, 2012.

[10] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala, “New ap-
proximation guarantees for minimum-weight k-trees and
prize-collecting salesmen,” SIAM Journal on Computing,
vol. 28, no. 1, pp. 254–262, 1998.

[11] G. Ausiello, M. Demange, L. Laura, and V. Paschos, “Algo-
rithms for the on-line quota traveling salesman problem,”
Information Processing Letters, vol. 92, no. 2, pp. 89–94, 2004.

14 Computational Intelligence and Neuroscience



[12] W. Yu, Z. Liu, and X. Bao, “Optimal deterministic algorithms
for some variants of online quota traveling salesman prob-
lem,” European Journal of Operational Research, vol. 238,
no. 3, pp. 735–740, 2014.

[13] B. C. H. Silva, I. F. C. Fernandes, M. C. Goldbarg, and
E. F. G. Goldbarg, “Quota travelling salesman problem with
passengers, incomplete ride and collection time optimization
by ant-based algorithms,” Computers & Operations Research,
vol. 120, Article ID 104950, 2020.

[14] Y. Benenson, “Biomolecular computing systems: principles,
progress and potential,” Nature Reviews Genetics, vol. 13,
no. 7, pp. 455–468, 2012.

[15] W. Chang and A. V. Vasilakos, Molecular Computing,
Springer International Publishing, USA, 2014.

[16] L. M. Adleman, “Molecular computation of solutions to
combinatorial problems,” Science, vol. 266, no. 5187,
pp. 1021–1024, 1994.

[17] R. J. Lipton, “DNA solution of hard computational problems,”
Science, vol. 268, no. 5210, pp. 542–545, 1995.

[18] Q. Ouyang, P. D. Kaplan, S. Liu, and A. Libchaber, “DNA
solution of the maximal clique problem,” Science, vol. 278,
no. 5337, pp. 446–449, 1997.

[19] A. Narayanan and S. Zorbalas, “DNA algorithms for com-
puting shortest paths,” Proceedings of genetic programming,
pp. 718–723, 1998.

[20] L. M. Smith, R. M. Corn, A. E. Condon et al., “A surface-based
approach to DNA computation,” Journal of Computational
Biology, vol. 5, no. 2, pp. 255–267, 1998.

[21] W. L. Chang and M. Guo, “Solving the set cover problem and
the problem of exact cover by 3-sets in the Adleman-Lipton
model,” Biosystems, vol. 72, no. 3, pp. 263–275, 2003.

[22] M. Guo, M. S. H. Ho, and W.-L. Chang, “Fast parallel mo-
lecular solution to the dominating-set problem on massively
parallel bio-computing,” Parallel Computing, vol. 30, no. 9-10,
pp. 1109–1125, 2004.

[23] W.-L. Chang, M. Guo, and J. Wu, “Solving the independent-
set problem in a DNA-based supercomputer model,” Parallel
Processing Letters, vol. 15, no. 04, pp. 469–479, 2005.

[24] W.-L. Weng-Long Chang, T.-T. Ting-Ting Ren, and M. Mang
Feng, “Quantum algorithms and mathematical formulations
of biomolecular solutions of the vertex cover problem in the
finite-dimensional hilbert space,” IEEE Transactions on
NanoBioscience, vol. 14, no. 1, pp. 121–128, 2015.

[25] Z. Wang, Z. Ji, X. Wang, T. Wu, and W. Huang, “A new
parallel DNA algorithm to solve the task scheduling problem
based on inspired computational model,” Biosystems, vol. 162,
pp. 59–65, 2017.

[26] J. Y. Lee, S. Y. Shin, T. H. Park, and B. T. Zhang, “Solving
traveling salesman problems with DNA molecules encoding
numerical values,” Biosystems, vol. 78, no. 1-3, pp. 39–47,
2004.

[27] Z. Wang, Y. Zhang, W. Zhou, and H. Liu, “Solving traveling
salesman problem in the Adleman-Lipton model,” Applied
Mathematics and Computation, vol. 219, no. 4, pp. 2267–2270,
2012.

[28] C. A. A. Sanches and N. Y. Soma, “A general resolution of
intractable problems in polynomial time through DNA
Computing,” Biosystems, vol. 150, pp. 119–131, 2016.

[29] G. J. Ibrahim, T. A. Rashid, and A. T. Sadiq, “Evolutionary
DNA computing algorithm for job scheduling problem,”
IETE Journal of Research, vol. 64, no. 4, pp. 514–527, 2018.

[30] Z. Wang, X. Ren, Z. Ji, W. Huang, and T. Wu, “A novel bio-
heuristic computing algorithm to solve the capacitated vehicle

routing problem based on Adleman-Lipton model,” Bio-
systems, vol. 184, Article ID 103997, 2019.

[31] X. Tian, X. Liu, H. Zhang, M. Sun, and Y. Zhao, “A DNA
algorithm for the job shop scheduling problem based on the
Adleman-Lipton model,” PLoS One, vol. 15, no. 12, Article ID
e0242083, 2020.

[32] X. Ren, X. Wang, Z. Wang, and T. Wu, “Parallel DNA al-
gorithms of generalized traveling salesman problem-based
bioinspired computing model,” International Journal of
Computational Intelligence Systems, vol. 14, no. 1, pp. 228–
237, 2020.

[33] G. Zhong, T. Li, W. Jiao, L.-N. Wang, J. Dong, and C.-L. Liu,
“DNA computing inspired deep networks design,” Neuro-
computing, vol. 382, pp. 140–147, 2020.

[34] Z. Wang, J. Tan, D. Huang, Y. Ren, and Z. Ji, “A biological
algorithm to solve the assignment problem based on DNA
molecules computation,” Applied Mathematics and Compu-
tation, vol. 244, pp. 183–190, 2014.

[35] J. Wu, Z. Wang, and L. Dong, “Prediction and analysis of
water resources demand in Taiyuan City based on principal
component analysis and BP neural network,” Journal ofWater
Supply: Research & Technology - Aqua, vol. 70, no. 8,
pp. 1272–1286, 2021.

[36] F. Li, J. Liu, and Z. Li, “DNA computation based on self-
assembled nanoparticle probes for 0-1 integer programming
problem,” Mathematics and Computers in Simulation,
vol. 151, pp. 140–146, 2018.

[37] Z.Wang, X. Bao, and T.Wu, “A parallel bioinspired algorithm
for Chinese postman problem based on molecular comput-
ing,” Computational Intelligence and Neuroscience, vol. 2021,
Article ID 8814947, 13 pages, 2021.

[38] Y. Shi, W. Jiang, Z. Zhang, and Z. Wang, “Cooperative vi-
brational properties of hydrogen bonds in Watson-Crick
DNA base pairs,” New Journal of Chemistry, vol. 41, no. 20,
pp. 12104–12109, 2017.

[39] Z. Wang, X. Wu, H. Wang, and T. Wu, “Prediction and
analysis of domestic water consumption based on optimized
grey and Markov model,” Water Supply, vol. 21, no. 7,
pp. 3887–3899, 2021.

[40] R. S. Braich, C. Johnson, P. W. K. Rothemund, D. Hwang,
N. Chelyapov, and L. M. Adleman, “Solution of a satisfiability
problem on a gel-based DNA computer,” DNA Computing,
vol. 2054, pp. 27–42, 2001.

[41] R. S. Braich, N. Chelyapov, C. Johnson, P. W. K. Rothemund,
and L. Adleman, “Solution of a 20-variable 3-SATproblem on
a DNA computer,” Science, vol. 296, no. 5567, pp. 499–502,
2002.

[42] G. Laporte, H. Mercure, and Y. Nobert, “Generalized trav-
elling salesman problem through n sets of nodes: the asym-
metrical case,” Discrete Applied Mathematics, vol. 18, no. 2,
pp. 185–197, 1987.

[43] X. Wu and Z. Wang, “Multi-objective optimal allocation of
regional water resources based on slime mould algorithm,”
)e Journal of Supercomputing, vol. 78, pp. 1–30, 2022.

[44] J. Wu and Z. Wang, “A hybrid model for water quality
prediction based on an artificial neural network, wavelet
transform, and long short-term memory,” Water, vol. 14,
no. 4, p. 610, 2022.

[45] K. E. Dunn, F. Dannenberg, T. E. Ouldridge, M. Kwiatkowska,
A. J. Turberfield, and J. Bath, “Guiding the folding pathway of
DNA origami,” Nature, vol. 525, no. 7567, pp. 82–86, 2015.

[46] N. Guo and Z. Wang, “A combined model based on sparrow
search optimized BP neural network and Markov chain for
precipitation prediction in Zhengzhou City, China,” Journal

Computational Intelligence and Neuroscience 15



of Water Supply: Research & Technology - Aqua, vol. 71, no. 6,
pp. 782–800, 2022.

[47] Z. Yin, J. Yang, Q. Zhang, Z. Tang, G. WangWang, and
Z. Zheng, “DNA computing model for satisfiability problem
based on hybridization chain reaction,” International Journal
of Pattern Recognition and Artificial Intelligence, vol. 35,
no. 03, Article ID 2159010, 2020.

[48] X. Wu, Z. Wang, T. Wu, and X. Bao, “Solving the family
traveling salesperson problem in the adleman-lipton model
based on DNA computing,” IEEE Transactions on Nano-
Bioscience, vol. 21, no. 1, pp. 75–85, 2022.

[49] A. A. Chaves and L. A. N. Lorena, “Hybrid metaheuristic for
the prize collecting travelling salesman problem,” Proceedings
of the European Conference on Evolutionary Computation in
Combinatorial Optimization, pp. 123–134, Springer, Berlin,
Heidelberg, 2008.

[50] W. Deng, J. Xu, and H. Zhao, “An improved ant colony
optimization algorithm based on hybrid strategies for
scheduling problem,” IEEE Access, vol. 7, pp. 20281–20292,
2019.

[51] W. Deng, R. Yao, H. Zhao, X. Yang, and G. Li, “A novel
intelligent diagnosis method using optimal LS-SVM with
improved PSO algorithm,” Soft Computing, vol. 23, no. 7,
pp. 2445–2462, 2019.

[52] R. Li, Y. Chang, and Z. Wang, “Study of optimal allocation of
water resources in Dujiangyan irrigation district of China
based on an improved genetic algorithm,” Water Supply,
vol. 21, no. 6, pp. 2989–2999, 2021.

[53] M. Roy, S. Chakraborty, K. Mali, D. Roy, and S. Chatterjee, “A
robust image encryption framework based on DNA com-
puting and chaotic environment,” Microsystem Technologies,
vol. 27, no. 10, pp. 3617–3627, 2021.

[54] M. Mondal and K. S. Ray, “Artificial neural networks in DNA
computing and implementation of DNA logic gates,”
Handbook of Intelligent Computing and Optimization for
Sustainable Development, vol. 1, pp. 13–48, 2022.

[55] W. L. Chang, J. C. Chen, W. Y. Chung, C. Y. Hsiao, R. Wong,
and A. V. Vasilakos, “Quantum speedup and mathematical
solutions of implementing bio-molecular solutions for the
independent set problem on IBM quantum computers,” IEEE
Transactions on NanoBioscience, vol. 20, no. 3, pp. 354–376,
2021.

[56] L. Qian, E. Winfree, and J. Bruck, “Neural network com-
putation with DNA strand displacement cascades,” Nature,
vol. 475, no. 7356, pp. 368–372, 2011.

[57] K. M. Cherry and L. Qian, “Scaling up molecular pattern
recognition with DNA-based winner-take-all neural net-
works,” Nature, vol. 559, no. 7714, pp. 370–376, 2018.

[58] M. Versaci, G. Angiulli, P. di Barba, and F. C. Morabito, “Joint
use of eddy current imaging and fuzzy similarities to assess the
integrity of steel plates,” Open Physics, vol. 18, no. 1,
pp. 230–240, 2020.

[59] S. Yang, J. Liu, and K. Zhao, “GETNext: trajectory flow map
enhanced transformer for next POI recommendation,” In
Proceedings of the 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval,
pp. 1144–1153.

[60] A. Naeem, A. R. Javed, M. Rizwan, S. Abbas, J. C. W. Lin, and
T. R. Gadekallu, “DARE-SEP: a hybrid approach of distance
aware residual energy-efficient SEP for WSN,” IEEE trans-
actions on green communications and networking, vol. 5, no. 2,
pp. 611–621, 2021.

[61] J. C. W. Lin, Y. Shao, Y. Djenouri, and U. Yun, “ASRNN: a
recurrent neural network with an attention model for

sequence labeling,”Knowledge-Based Systems, vol. 212, Article
ID 106548, 2021.

[62] U. Ahmed, S. K. Mukhiya, G. Srivastava, Y. Lamo, and
J. C. W. Lin, “Attention-based deep entropy active learning
using lexical algorithm for mental health treatment,” Frontiers
in Psychology, vol. 12, Article ID 642347, 2021.

16 Computational Intelligence and Neuroscience


