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Abstract

Gastrointestinal effects associated with Coronavirus Disease 2019 (COVID-19) are highly

variable for reasons that are not understood. In this study, we used intestinal organoid–

derived cultures differentiated from primary human specimens as a model to examine inter-

individual variability. Infection of intestinal organoids derived from different donors with

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) resulted in orders of

magnitude differences in virus replication in small intestinal and colonic organoid–derived

monolayers. Susceptibility to infection correlated with angiotensin I converting enzyme 2

(ACE2) expression level and was independent of donor demographic or clinical features.

ACE2 transcript levels in cell culture matched the amount of ACE2 in primary tissue, indicat-

ing that this feature of the intestinal epithelium is retained in the organoids. Longitudinal tran-

scriptomics of organoid-derived monolayers identified a delayed yet robust interferon

signature, the magnitude of which corresponded to the degree of SARS-CoV-2 infection.

Interestingly, virus with the Omicron variant spike (S) protein infected the organoids with the

highest infectivity, suggesting increased tropism of the virus for intestinal tissue. These

results suggest that heterogeneity in SARS-CoV-2 replication in intestinal tissues results

from differences in ACE2 levels, which may underlie variable patient outcomes.

Introduction

Intestinal organoid cultures have transformed our ability to investigate properties of the

human intestinal epithelium. Consisting of organized epithelial cell clusters differentiated

from somatic stem cells, intestinal organoids generated from endoscopic pinch biopsies are

capable of self-renewal and recreate many of the structural, functional, and molecular charac-

teristics of the tissue of origin [1]. Investigators have exploited these versatile properties of

intestinal organoids to study infectious agents that are otherwise difficult to examine,
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including viruses such as noroviruses [2–4]. Intestinal organoids can also inform our under-

standing of interindividual differences in disease susceptibility, such as elucidating the mecha-

nisms by which mutations accumulate in patients with colorectal cancer [5,6]. Additionally,

we and others have documented substantial heterogeneity in the growth, morphology, viabil-

ity, and susceptibility to cytokine toxicity of human intestinal organoid lines [1,6–8]. However,

how this heterogeneity relates to resistance of the intestinal epithelium to infectious agents

remains unclear.

Although Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is

primarily associated with dysfunction of the respiratory system, the gastrointestinal tract is

also an established target organ in patients with Coronavirus Disease 2019 (COVID-19). As

many as 60% of patients present with diarrhea, vomiting, abdominal pain, anorexia, and/or

nausea [9–16]. Also, SARS-CoV-2 antigen in intestinal biopsies and viral RNA in the stool are

readily detected, even after the virus is undetectable in respiratory samples [17–27]. To a lim-

ited extent, virions and infectious particles have been detected in patient intestinal and stool

specimens [17,25,28,29]. Although the pathophysiological significance of these observations

has not been resolved, the prolonged presence of viral antigens in the gut is likely to impact

antibody evolution [17]. Consistent with a potential intestinal tropism, intestinal epithelial

cells display robust expression of the SARS-CoV-2 receptor angiotensin I converting enzyme 2

(ACE2) and transmembrane proteases TMPRSS2 and TMPRSS4 that facilitate viral entry [30–

32]. Further, human intestinal organoids derived from either somatic stem cells or inducible

pluripotent stem cells support SARS-CoV-2 reproduction [32–35]. These studies have shown

that ACE2 expression levels can differ based on the differentiation state and anatomical region

from which the organoids are derived, but whether this affects the degree of SARS-CoV-2

infection is debated. A broader comparison of gene expression patterns and SARS-CoV-2

infection across organoids from different donors and culture conditions may help interpret

the studies that have highlighted the extreme range of ACE2 expression in intestinal tissues

associated with demographic and clinical features of individuals, which could have conse-

quences for susceptibility to both viral infections and inflammatory conditions [36–41].

Only small numbers of independent small intestinal and colonic organoid lines were com-

pared to one another in previous studies examining SARS-CoV-2 infection of intestinal epi-

thelial cells. Thus, the importance of the anatomical origin of organoids and other variables

remains unclear. We established and differentiated 3D organoid lines from small intestinal

and colonic biopsies procured from 12 and 13 donors, respectively, from healthy donors and

patients with inflammatory bowel disease (IBD) of both sexes (S1 Table). The expression of

ACE2, TMPRSS2, the enterocyte marker of differentiation APOA1, and representative inter-

feron-stimulated genes (ISGs) ISG15, OASL, and MX2 were significantly higher in small intes-

tinal and colonic organoid lines cultured in 3D differentiation media (3DD) compared with

those cultured in expansion media (3DE) that maintains organoids in an undifferentiated state

(S1A, S1B, and S1D–S1G Fig). TMPRSS4 expression was similar in both conditions (S1C Fig).

Donor-to-donor variability in expression of these genes may reflect the inflammatory environ-

ment from which the stem cells were procured. However, 3DE organoids derived from IBD

and non-IBD donors displayed comparable gene expression patterns except the decreased

OASL expression in IBD donor-derived colonic 3DE organoids (S1H Fig). Intestinal organoids

can be grown as differentiated monolayers to expose the apical side and facilitate viral entry.

We found that the level of ACE2, TMPRSS2, TMPRSS4, APOA1, ISG15, OASL, and MX2
expression in organoid-derived 2D monolayers correlated well with 3DD organoids generated

from the same donor (Fig 1A–1D), suggesting that organoid lines retain their intrinsic gene

expression patterns independent of these 2 culturing conditions. In addition, we found that

monolayers exhibited the highest ACE2 and TMPRSS2 expression among the culture
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Fig 1. Heterogeneous gene expression patterns in small intestinal and colonic organoids. (A–D) Correlation

analysis of ACE2 and TMPRSS2 (A), TMPRSS4 and APOA1 (B), ISG15 and OASL (C), or MX2 (D) expression in

human intestinal (circle) and colonic (rectangle) organoids cultured as monolayers grown in differentiation media for

7 days with those cultured as human 3D organoids grown in differentiation media (3DD) for 7 days. (E–K) RT-PCR

data comparing ACE2 (E), TMPRSS2 (F), TMPRSS4 (G), APOA1 (H), ISG15 (I), OASL (J), and MX2 (K) expression in
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forming unit; RNA-seq, RNA sequencing; RPMI,

Roswell Park Memorial Institute; RT, room

temperature; S, spike; SARS-CoV-2, Severe Acute

Respiratory Syndrome Coronavirus 2; VSV-G,

vesicular stomatitis virus G protein.
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conditions we examined (Fig 1E and 1F), whereas 3DD organoids showed the highest

TMPRSS4, APOA1, ISG15, OASL, and MX2 expression (Fig 1G–1K). Therefore, we used the

monolayer model for subsequent analyses.

We investigated whether ACE2, TMPRSS2, or TMPRSS4 expression differed between small

intestinal and colonic organoid–derived monolayers. Although ACE2 expression did not dif-

fer, TMPRSS2 and TMPRSS4 expression were higher, and APOA1 was decreased in colonic

monolayers (S1I–S1L Fig). Five pairs of the small intestinal and colonic organoid lines were

generated from the same individual. We found that gene expression patterns were generally

the same when comparing small intestinal and colonic monolayers from the same donor (S2A

Fig). The lack of correlation between ACE2 or TMPRSS2 expression and APOA1 expression

suggested that heterogeneous ACE2 and TMPRSS2 levels were not an artifact caused by insuffi-

cient differentiation (S2B and S2C Fig). When we segregated the data based on disease status

or sex, the only difference we observed was decreased ACE2 and APOA1 expression in colonic

monolayers derived from IBD patients compared with non-IBD donors (S2D–S2F Fig). The

expressions of ISG15, OASL, and MX2 were also not correlated with disease status or sex (S2E

and S2F Fig), although we note that ISG15 and OASL transcripts were higher in colonic versus

small intestinal monolayers (S3A and S3B Fig). These transcripts generally did not correlate

with the age of participants (S2 Table).

ACE2 expression differed by as much as 5.9-fold when comparing monolayers with the

highest and lowest expression of this gene (Fig 2A). To test whether such differences lead to

heterogeneity in viral infection, we infected monolayers with SARS-CoV-2 at a multiplicity of

infection (MOI) of 4 for 72 hours. Remarkably, the amount of virus detected in the superna-

tant of culture media by plaque assay differed by as much as 423-fold (Fig 2B). Immunofluo-

rescence microscopy analyses of ACE2 and SARS-CoV-2 nucleoprotein (NP) in representative

monolayers confirmed these findings—SI1 and C1 (susceptible small intestinal and colonic

monolayers, respectively, with high ACE2 transcript levels) displayed higher degrees of ACE2

and NP staining compared with SI10 and C8 (resistant small intestinal and colonic monolay-

ers, respectively) (Fig 2C and 2D). Indeed, SARS-CoV-2 infection correlated with ACE2 and

TMPRSS2 expression, but not TMPRSS4 and APOA1 expression (Fig 2E–2H). We validated

these findings based on relative ACE2 transcript levels by enumerating absolute RNA copy

numbers. The strong correlation of high copy numbers of ACE2 (2.9 × 105 to 1.7 × 106 tran-

scripts/μg of RNA) with SARS-CoV-2 infection supported the relationship between suscepti-

bility to infection and ACE2 expression (S3D Fig). The amount of virus recovered from

monolayers was comparable when the data were segregated by the tissue location, the disease

status, or sex of the donors (S3E Fig). Similarly, virus production did not correlate with donor

age (S3F Fig).

The association between susceptibility to SARS-CoV-2 infection and ACE2 expression was

clear in most cases, but there were outliers for the colonic monolayers. For instance, C7 and

C8 have moderate to high levels of ACE2 but low levels of virus production (Fig 2A and 2B).

Thus, we investigated whether other factors may contribute to differential SARS-CoV-2 infec-

tivity. Several polymorphisms are predicted to alter the stability of ACE2 or alter its affinity to

the SARS-CoV-2 spike (S) protein [42–45]. However, the sequence of the ACE2 coding region

of C7 and C8 were identical to other donors (S1 Table). Differences in interferon responses

human 3D organoids grown with expansion media (3DE), 3DD, and monolayers grown in differentiation media for 7

days. Data points are mean of at least 2 technical replicates of individual organoid lines. Bars represent mean ± SEM,

and at least 2 independent experiments were performed. Underlying data can be found in S1 Data. P, P value; r,

Pearson correlation coefficient. ��P� 0.01, ���P� 0.001, and ����P� 0.0001 by simple regression analysis in A–D

and paired t test, 2 tailed in E–K. ACE2, angiotensin I converting enzyme 2; RT-PCR, reverse transcription PCR.

https://doi.org/10.1371/journal.pbio.3001592.g001
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Fig 2. Differential susceptibility of intestinal organoid–derived monolayers correlates with ACE2 and TMPRSS2 expression. (A)

RT-PCR analysis of ACE2 expression in small intestinal (SI1-SI12) and colonic (C1-C13) monolayers. (B) PFUs determined by virus titration

on Vero E6 cells of supernatant from monolayers at 72 hours postinfection with SARS-CoV-2. (C) Representative immunofluorescence

microscopy images showing co-staining of DAPI (blue), ACE2 (green), and SARS-CoV-2 NP (red) in SARS-CoV-2 infected SI1, SI10, C1, and

C8 monolayer lines. An image of uninfected C1 is shown as a representative uninfected condition and a Matrigel-coated well without cells is
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may also contribute to SARS-CoV-2 infectivity, where higher ISG levels are predicted to confer

protection against viral infection [46–48]. Baseline ISG15, OASL, and MX2 expression in C7

and C8 did not explain the lower virus production (S3A–S3C Fig), and we did not observe cor-

relations between ISG15, OASL, or MX2 and SARS-CoV-2 susceptibility (S3G–S3I Fig). Next,

we examined ISG expression following stimulation with interferon beta (IFNβ) or interferon

lambda 2 (IFNλ2). Although we observed varied levels of ISG induction, they were not associ-

ated with reduced viral infection (S4A Fig, S3 Table). Generally, we did not detect an associa-

tion between the degree to which these ISGs were induced and properties of the donor tissue

location, disease status, and age (S4A–S4C Fig, S3 Table). However, small intestinal monolay-

ers from female donors displayed higher ISG expression than male donors following IFNβ or

IFNλ2 stimulation (S4D and S4E Fig). ACE2 and TMPRSS2 expression were not altered by

IFNβ or IFNλ2 (S5 Fig), indicating that ACE2 and TMPRSS2 are not ISGs in monolayers. We

note that this limited survey of transcript level changes does not rule out a potential role for

antiviral cytokines, and a comprehensive protein level analyses of immune mediators will be

necessary to identify additional mechanisms of resistance.

Our results thus far are consistent with the possibility that ACE2 gene expression is a key

determinant of the degree to which the intestinal epithelium of an individual is susceptible to

SARS-CoV-2 infection. As organoids are differentiated from primary stem cells and expanded

in culture [49,50], it was unclear whether interdonor differences reflect ACE2 levels in the pri-

mary tissues. Therefore, we measured ACE2 protein by immunofluorescence microscopy in

small intestinal and colonic sections from the same donors corresponding to individual lines

of organoid-derived monolayers (Fig 3, S6 Fig). ACE2 staining was restricted to the epithelium

and most intense along the apical brush border (villi in the small intestine and top of the crypts

in the colon; Fig 3A and 3B, S6A and S6B Fig), consistent with our data and previous studies

showing that ACE2 expression is enriched in differentiated enterocytes [32,33]. Primary tissue

specimens also displayed heterogeneous ACE2 protein levels (Fig 3C, S6 Fig). The ACE2 mean

intensity was decreased in colonic sections of IBD patients, but did not differ when comparing

tissue location or sex (Fig 3D). The mean intensity of ACE2 staining in intestinal tissue sec-

tions strongly correlated with ACE2 transcript and SARS-CoV-2 levels in monolayers derived

from the same individual, but not with age (Fig 3E). Therefore, organoid-derived monolayers

retain the variable ACE2 levels from its original tissue.

To further investigate how susceptible and resistant organoids differ from each other, we

selected the 3 colonic monolayer lines that each displayed high infection (HI; C1, C2, and C3)

or low infection (LI; C8, C12, and C13) for RNA sequencing (RNA-seq) analysis. We validated

the transcriptional and microscopy analyses (Fig 2A, 2C and 2D) by Western blot, which

showed higher levels of ACE2 protein in HI compared with LI monolayers and comparable

levels of TMPRSS2 protein (Fig 4A). We then infected the monolayers with SARS-CoV-2 for

24 and 72 hours (I24 and I72, respectively) and compared these samples with mock infected

monolayers harvested at 0 and 72 hours (UI0 and UI72, respectively). SARS-CoV-2 continues

to replicate in organoids after the initial 24 hours, likely due to the low proportion of cells that

are initially infected [33]. We reasoned that sampling early and late time points may

shown as a control for background fluorescence. (D) Total intensity of NP and ACE2 normalized with cell counts of SI1, SI10, C1, and C8.

(E–H) Correlation of SARS-CoV-2 PFU with ACE2 (E), TMPRSS2 (F), TMPRSS4 (G), or APOA1 (H) expression among monolayers. Data

points in A, B, and D are each technical replicate, and data points in E–H are the mean of at least 2 technical replicates of individual organoid

lines. Bars represent mean ± SEM, and at least 2 independent experiments were performed. Underlying data can be found in S1 Data. P, P
value; r, Pearson correlation coefficient. �P� 0.05, ��P� 0.01, ���P� 0.001, and ����P� 0.0001 by simple regression analysis in E–H. ACE2,

angiotensin I converting enzyme 2; NP, nucleoprotein; PFU, plaque-forming unit; RT-PCR, reverse transcription PCR; SARS-CoV-2, Severe

Acute Respiratory Syndrome Coronavirus 2; SI, small intestine.

https://doi.org/10.1371/journal.pbio.3001592.g002
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Fig 3. Differential ACE2 expression observed in individual intestinal organoid lines are conserved in primary tissue from the same donor.

(A and B) Representative ACE2 staining images in primary tissues of terminal ileum (A) and ascending colon (B) from which SI1, SI10, C1, and

C13 organoids were established. (C) Mean intensity of ACE2 per area in each field of view from the primary tissues from which small intestinal

and colonic organoids were established. (D) Mean intensity of ACE2 by disease (left) or sex (right). (E) Correlation of ACE2 mean intensity with

ACE2 expressions (left) and SARS-CoV-2 PFU (middle) among monolayers or donor age (right). Data points in C are the field of views, and

PLOS BIOLOGY Heterogeneous SARS-CoV-2 susceptibility in intestinal organoid-derived monolayers

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001592 March 31, 2022 7 / 23

https://doi.org/10.1371/journal.pbio.3001592


distinguish transcriptional changes that contribute to resistance and susceptibility to infection

versus those that are a consequence. Because these 6 monolayer lines were prepared from inde-

pendently thawed batches of frozen organoid stocks, we quantified virus and confirmed that

higher amounts of SARS-CoV-2 were recovered from HI compared with LI monolayers at

both time points (Fig 4B and 4C). Both HI and LI monolayers remained viable following

SARS-CoV-2 infection (S7A Fig). Similar to our findings with IFN-stimulated monolayers (S5

Fig), ACE2 and TMPRSS2 transcripts in both HI and LI monolayers were stable during the

course of infection (S7B and S7C Fig).

The number of transcripts displaying >2-fold changes (adjusted P value < 0.05) in 12 pair-

wise comparisons are summarized in S7D Fig. The conditions that displayed the most differ-

ences from one another were those comparing early time points to 72 hours postinfection.

Uninfected samples at 0 and 72 hours displayed no differences, indicating that the transcrip-

tome of uninfected HI and LI monolayers remained stable over time. This result increased our

confidence that monolayers were fully differentiated at the onset of our experiments. Also, few

genes displayed differential expression when comparing uninfected HI and LI monolayers.

Principal component analysis (PCA) showed that infection at 72 hours separated samples on

PC1 and susceptibility to infection (HI versus LI) separated samples on PC2 (S7E Fig). PCA

also confirmed observations from the pairwise comparison indicating that uninfected mono-

layers and those infected for 24 hours were transcriptionally similar.

At the 72-hour time point, where the largest transcriptional changes occurred between con-

ditions, we found that the majority of the differentially expressed genes (DEGs) when compar-

ing uninfected and infected conditions (55 of 71) were common to LI and HI monolayers,

while most DEGs (65 of 81) when comparing infected HI and LI monolayers were unique to

this comparison (Fig 4D). Gene ontology analyses and ingenuity pathway analysis (IPA)

showed that SARS-CoV-2 infection impacts antiviral pathways, especially those related to the

interferon response, and that this signature was more pronounced in HI monolayers com-

pared with LI monolayers following infection (Fig 4E–4G, S7F Fig). Indeed, DEGs related to

the response to type I IFN (SAMHD1, NLRC5, USP18, IFIT1, ZBP1, SHFL, STAT2, IRF7,

SP100, MX1, OAS3, STAT1, ISG15, and OAS2) and JAK-STAT (STAT5A, STAT1, STAT2,

CCL2, and NMI) included common ISGs, and, although these were up-regulated in both HI

and LI monolayers infected by SARS-CoV-2, they were induced to a higher degree in HI

monolayers (S7G and S7H Fig). Because these ISGs are more highly expressed in HI monolay-

ers and not detected at 24 hours, they are likely a response to the increased degree of infection.

These results are consistent with other studies suggesting that the interferon response to

SARS-CoV-2 is delayed [33,48,51–53]. Unexpectedly, multiple genes associated with pathways

related to zinc and copper homeostasis were specifically up-regulated in LI compared to HI

monolayers after 72 hours of infection (Fig 4E and 4H, S7I Fig). The increased expression of

MT1 genes encoding metallothioneins in LI monolayers was particularly striking and may be

indicative of a stress response activated by viral perturbations in the epithelium [54,55]. Collec-

tively, longitudinal transcriptome analyses identified robust yet late transcriptional changes

induced by SARS-CoV-2, the magnitude of which corresponded to the levels of viral infection.

The transcriptome analysis did not provide additional insight into the difference in ACE2
expression displayed by HI and LI monolayers. The transcription factors BRG1, FOXM1, and

data points in D and E are mean of at least 2 technical replicates of individual organoid lines. Bars represent mean ± SEM, and at least 2

independent experiments were performed. Underlying data can be found in S1 Data. Scale bars: 200 μm. P, P value; r, Pearson correlation

coefficient. �P� 0.05, ��P� 0.01, ���P� 0.001, and ����P� 0.0001 by unpaired t test, 2 tailed in D and simple regression analysis in E. ACE2,

angiotensin I converting enzyme 2; F, female; IBD, inflammatory bowel disease; M, male; PFU, plaque-forming unit; SARS-CoV-2, Severe Acute

Respiratory Syndrome Coronavirus 2; SI, small intestine.

https://doi.org/10.1371/journal.pbio.3001592.g003
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Fig 4. Transcriptome analysis reveals a heighted and delayed interferon response to SARS-CoV-2 infection in susceptible organoid-derived

monolayers. (A) Western blot analysis of ACE2, TMPRSS2, and ACTB in high infection (HI; C1, C2, and C3) and low infection (LI; C8, C12, and C13)

lines. Blots are representative of at least 3 independent repeats. (B) PFU determined by virus titration on Vero E6 cells of supernatant of HI and LI

monolayers at 24 and 72 hours after infection with SARS-CoV-2. (C) RT-PCR analysis of SARS-CoV-2 expression in HI and LI monolayers upon 24

and 72 hours infection with SARS-CoV-2. (D) Venn diagram depicting the number and overlap of DEGs according to RNA-seq analysis (see S7 Fig) of
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FOXA2 mediate ACE2 expression [56,57] but consistent with the RNA-seq results, HI and LI

monolayers displayed comparable BRG1, FOXM1, and FOXA2 expression (S8A–S8C Fig).

However, we detected increased protein levels of FOXA2 in HI monolayers by Western blot,

suggesting a probable mechanism for the high ACE2 expression observed in these donors

(S8D Fig).

During the preparation of this manuscript, a new variant of concern designated as Omicron

emerged with multiple amino acid substitutions in the S protein. Thus, we examined the ability

of the Omicron S protein to mediate entry into intestinal epithelial cells using SARS-CoV-2 S

protein–pseudotyped lentiviral reporter viruses [58]. Vesicular stomatitis virus G protein

(VSV-G) pseudotyped control virus displayed high infectivity of organoid-derived monolayers

demonstrating feasibility of this approach (S9A Fig). Although Omicron S protein has been

observed to have weaker or comparable binding affinity to ACE2 [59,60], Omicron S protein

pseudotyped virus displayed 2.5- and 5-fold higher infection than Delta and D614G pseudo-

types, respectively (S9A Fig), suggesting that Omicron exploits different or additional cell

entry pathways to replicate in human intestinal organoids. Consistent with our observation, a

recent study showed efficient entry of Omicron using the endosomal route [61]. D614G and

Omicron S protein pseudotyped viruses showed 1.2- to 1.3-fold higher infection of HI mono-

layers compared with LI monolayers, whereas the Delta S protein pseudotyped virus displayed

comparable infectivity (S9B Fig). This marginal contribution of the differential ACE2 expres-

sion to infection of these pseudotyped viruses suggests that other factors may be involved in

SARS-CoV-2 susceptibility of intestinal epithelial cells. For example, MT1 genes identified in

our RNA-seq experiment (Fig 4E and 4H) are associated with resistance to hepatitis C virus

and human cytomegalovirus, and zinc ion suppresses the SARS-CoV-2 replications by inhibit-

ing its main proteases [62–65]. Although we caution against overinterpreting these results

obtained with pseudotyped viruses, we believe that these preliminary results justify future stud-

ies using intestinal organoids and other donor-derived cell culture systems to examine differ-

ential susceptibility to intact viruses representing existing and future variants.

When taken together, our results show that human intestinal organoids reveal interindivid-

ual differences in responses to viral infection. Organoid-derived monolayers showed substan-

tial differences in their susceptibility to SARS-CoV-2 infection, and ACE2 levels were the

strongest correlate of susceptibility. Although transcriptome analysis identified many DEGs

upon SARS-CoV-2 infection when comparing organoid lines, these differences were not

apparent at 24 hours postinfection, a time point at which the degree of virus infection already

diverged between resistant and susceptible monolayers. Therefore, these gene expression pat-

terns are unlikely to account for differential susceptibility and instead, provide a glimpse as to

how increased viral replication can affect properties of the intestinal epithelium. Although the

presence of SARS-CoV-2 RNA in the gut has been associated with diarrhea in patients with

COVID-19 [27], the consequence of intestinal epithelial infection remains largely unclear and

an important area of investigation. Extensive experiments in animal models predict that

HI or LI monolayers infected with SARS-CoV-2 for 72 hours. (E) Highly enriched biological process GO terms for the DEGs in HI and LI infected with

SARS-CoV-2. (F and G) IPA of the transcriptome of SARS-CoV-2–infected HI or LI for upstream regulators. Interferon-related genes (F) or top 5

molecules within the classes cytokine, transcription regulator, transmembrane receptor, ligand-dependent nuclear receptor, and others (G) commonly

associated with HI infected/uninfected and LI infected/uninfected conditions. (H) DEGs of LI infected/HI infected condition were analyzed by IPA for

upstream regulators. Top 5 upstream regulators related to zinc ion homeostasis and interferons for the LI. Data points in B and C represent the mean of

at least 2 technical replicates of individual organoids lines. Bars represent mean ± SEM, and at least 2 independent experiments were performed.

Underlying data can be found in S1 Data. �P� 0.05 and ��P� 0.01 by unpaired t test, 2 tailed in B and C. ACE2, angiotensin I converting enzyme 2;

DEG, differentially expressed gene; GO, Gene Ontology; IFN, interferon; IFNα, interferon alpha; IFNAR, interferon alpha/beta receptor; IFNβ,

interferon beta; IFNλ, interferon lambda; IPA, ingenuity pathway analysis; PFU, plaque-forming unit; PRR, pattern recognition receptor; RNA-seq,

RNA sequencing; RT-PCR, reverse transcription PCR; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2.

https://doi.org/10.1371/journal.pbio.3001592.g004

PLOS BIOLOGY Heterogeneous SARS-CoV-2 susceptibility in intestinal organoid-derived monolayers

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001592 March 31, 2022 10 / 23

https://doi.org/10.1371/journal.pbio.3001592.g004
https://doi.org/10.1371/journal.pbio.3001592


activation of viral RNA sensors trigger immune responses including ISGs that impact the

intestinal barrier [66–76]. Coculturing organoids with leukocytes may help our understanding

of the downstream consequences of epithelial infections [7]. Additionally, loss of microbiome

diversity is associated with COVID-19 severity [77–80]. It would be important to determine

whether the microbiome is involved in infection of the epithelium or represents an indepen-

dent variable of disease outcome.

Finally, it is notable that organoids retained the differential ACE2 levels observed in intact

primary tissue sections from the same donor. These results indicate that at least some tran-

scriptional properties of the original intestinal epithelium that are individual specific are

retained following ex vivo differentiation. Consistent with this theme, a recent study demon-

strates that gastric organoids can be used to investigate age-dependent features of the stomach

and yield insight into differential infection and interferon responses of children versus adults

to SARS-CoV-2 [53]. If these findings are generalizable, then organoids can be a powerful plat-

form to investigate interindividual differences in infectious disease susceptibility.

Methods

Human intestinal tissue specimen collection

Patients with and without IBD were recruited at outpatient colonoscopy performed for colon

cancer screening, surveillance, or IBD activity assessment at New York University (NYU) Lan-

gone Health’s Ambulatory Care Center, New York, under an NYU Grossman School of Medi-

cine Institutional Review Board–approved study (Mucosal Immune Profiling in Patients with

Inflammatory Bowel Disease; S12-01137). Approximately 6 pinch biopsies were obtained from

the ascending colon of each patient using a 2.8-mm standard endoscopic biopsy forceps. The

inflammation status of tissue was confirmed by endoscopic and histopathological examination.

All pinch biopsies were collected in ice-cold complete Roswell Park Memorial Institute

(RPMI) (RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS), penicillin/

streptomycin/glutamine, and 50 μM 2-mercaptoethanol). Pinch biopsies were then transferred

to freezing media (90% FBS + 10% DMSO) in cryogenic tubes and stored in liquid nitrogen.

Culture of human small intestinal and colonic organoids

Human organoids were cultured as described previously [7,68]. Pinch biopsies were thawed in

PBS and then incubated in Gentle Cell Dissociation Reagent (STEMCELL Technologies, Van-

couver, BC, Canada) on ice for 30 minutes, followed by vigorous pipetting to isolate crypts.

The crypts were embedded in 30 μl of Matrigel and cultured with Human IntestiCult Organoid

Growth Medium (OGM) (Basal Medium and Organoid Supplement, STEMCELL Technolo-

gies) supplemented with 100 IU penicillin and 100 μg/ml streptomycin (Corning, Corning,

NY, USA) and 125 μg/ml gentamicin (Thermo Fisher Scientific, Waltham, MA, USA), herein

referred to as expansion medium. The culture medium was changed every 2 to 3 days. For pas-

saging human organoids, 10 μM Y-27632 (Sigma-Aldrich, Burlington, MA, USA) were added

for the first 2 days. For differentiation, the human organoids were cultured with 1:1 mix of

Human IntestiCult OGM Basal Medium and Dulbecco’s Modified Eagle Medium (DMEM)/F-

12 (Thermo Fisher Scientific) in the presence of 100 IU penicillin and 100 μg/ml streptomycin,

125 μg/ml gentamicin, and 2 mM L-glutamine (Corning), herein referred to as differentiation

medium. To generate organoid-derived monolayers, mature human small intestinal and

colonic organoids grown with the expansion media were digested into single cells using Try-

pLE Express (Thermo Fisher Scientific) and seeded into Matrigel-coated 96-well culture plate

(Corning) in Y-27632-supplemented expansion medium at 150,000 cells/well for the first 2

days. The culture media were changed every day. In experiments in which organoids were
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treated with recombinant interferons, monolayers grown with the differentiation media for 7

days were stimulated with human IFNβ (100 or 300 IU/ml, R&D Systems, Minneapolis, MA,

USA) or IFNλ2 (10 or 30 ng/ml, R&D Systems) for 12 hours.

Transcript analysis

Total RNA was extracted from human organoids using RNeasy Mini Kit with DNase treat-

ment (QIAGEN, Hilden, Germany), and synthesis of cDNA was conducted with High-

Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific) according to the manu-

facturer’s protocol. RT-PCR was performed using SybrGreen (Roche, Basel, Switzerland) on a

Roch480II Lightcycler using the following primers: ACE2, Fwd 50-TCAAGGAGGCCGA

GAAGTTC-30 and Rev 50-TTCCTGGGTCCGTTAGCATG-30; TMPRSS2, Fwd 50-ACCT

GATCACACCAGCCATG-30 and Rev 50-CTTCGAAGTGACCAGAGGCC-30; TMPRSS4,

Fwd 50-CCGATGTGTTCAACTGGAAG-30 and Rev 50-GAGAAAGTGAGTGGGAACTG-30;

APOA1, Fwd 50-TGGATGTGCTCAAAGACAGC-30 and Rev 50-AGGCCCTCTGTCTCCT

TTTC-30; ISG15, Fwd 50-GAGAGGCAGCGAACTCATCT-30 and Rev 50-CTTCAGCTCTG

ACACCGACA-30; OASL, Fwd 50-AAAGAGAGGCCCATCATCC-30 and Rev 50-ATCTGGG

TAACCCCTCTG C-30; MX2, Fwd 50-CAGCCACCACCAGGAAACA-30 and Rev 50-TTCTG

CTCGTACTGGCTGTACAG-30; BRG1, Fwd 50-AGTGCTGCTGTTCTGCCAAAT-30 and

Rev 50-GGCTCGTTGAAGGTTTTCAG-30; FOXM1, Fwd 50-GCAGGCTGCACTATCAAC

AA-30 and Rev 50-TCGAAGGCTCCTCAACCTTA-30; FOXA2, Fwd 50-GGGAGCGGTGAA

GATGGA-30 and Rev 50-TCATGTTGCTCACGGAGGAGTA-30; GAPDH, Fwd 50-GATGG

GATTTCCATTGAT GACA-30 and Rev 50-CCACCCATGGCAAATTCC-30; ACTB, Fwd

50-CCCAGCCATGTACGTTGCTA-30 and Rev 50-TCACCGGAGTCCATCACGAT-30;

SARS-CoV-2 NP, Fwd 50-ATGCTGCAATCGTGCTACAA-30 and Rev 50-GACTGCCGCC

TCTGCTC-30. The expression of the respective genes was normalized by geometric mean of

GAPDH and ACTB expression with ΔΔCT method [81]. Where indicated, the values were

expressed as fold change from uninfected or untreated organoids. To determine the copy

number of ACE2 mRNA, a standard curve was constructed with the range of 1.4 × 105 to

9.4 × 109 molecules of hACE2 (Plasmid #1786, Addgene, Watertown, MA, USA) [82] in which

ACE2 transcripts showed optimal PCR efficiencies. The copy number of ACE2 transcripts in

the organoids was calculated from the linear regression of the standard curve and normalized

with the RNA input.

Virus infection and plaque assay

SARS-CoV-2 infection experiments were performed in the ABSL3 facility of NYU Grossman

School of Medicine in accordance with its Biosafety Manual and Standard Operating Procedures.

The organoid monolayers grown with the differentiation media for 7 days were infected with

icSARS-CoV-2-mNG (isolate USA/WA/1/2020) obtained from the UTMB World Reference Cen-

ter for Emerging Viruses and Arboviruses [83]. A working stock of SARS-CoV-2-mNG was gen-

erated by infecting a 90% to 95% confluent monolayer of Vero E6 cells (ATCC CRL-1586) for 48

hours at 37˚C. Following incubation, the supernatant was collected, centrifuged at 1,200 rpm for 5

minutes, aliquoted, and stored at −80˚C. Viral titers were quantified by plaque assay as described

below. For the infection, organoid monolayers were infected with SARS-CoV-2-mNG at an MOI

of 4 for 1 hour at 37˚C. Following incubation, organoids were washed 4 times with PBS, and dif-

ferentiation media was added for the indicated time. Total virus in the third or fourth wash was

also quantified to ensure that excess virus was removed. Thus, virus quantified at the end of the

experiment can be assessed as replicative particles rather than residual particles persisting in cul-

ture. Viral titers in the monolayer supernatants were quantified by plaque assay.
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To quantify infectious virus by plaque assay, 10-fold serial dilutions of each sample were

made in DMEM. Each dilution was added to a monolayer of Vero E6 cells for 1 hour at 37˚C.

Following incubation, DMEM supplemented with 2% FBS and 0.8% agarose was added and

then incubated for 72 hours at 37˚C. Cells were then fixed with 10% formalin, the agarose plug

removed, and wells stained with crystal violet (10% crystal violet, 20% ethanol). Virus titers

(plaque-forming unit [PFU]/ml) were determined by counting the number of plaques on the

lowest countable dilution.

For thiazolyl blue tetrazolium bromide (MTT) reduction assay, staining with MTT was

adapted from a previously described method [7]. Briefly, we added MTT (Sigma-Aldrich) into

the monolayers to a final concentration of 500 μg/ml on 72 hours postinfection. After incuba-

tion for 2 hours at 37˚C, 5% CO2, the medium was discarded, and 20 μl of 2% SDS (Sigma-

Aldrich) solution in water was added to solubilize the Matrigel for 2 hours. Then, 100 μl of

DMSO (Thermo Fisher Scientific) was added for 1 hour to solubilize the reduced MTT, and

Optical density was measured on a microplate absorbance reader (PerkinElmer, Waltham,

MA, USA) at 562 nm. The specific organoid death (%) was calculated as MTT deduction (%)

by normalizing to uninfected monolayers which were defined as 100% viable.

ACE2 sequencing

A 2,418-bp region containing the ACE2 coding region was amplified from cDNA prepared

from organoids (see above) by PCR using a pair of primers (Fwd 50-ATGTCAAGCTCTTCC

TGGCTCC-30 and Rev 50-CTAAAAGGAGGTCTGAACATCATCAGTG-30). Amplicons

were cloned into pCR2.1-TOPO (Invitrogen, Waltham, MA, USA). The plasmids were

sequenced by Sanger sequencing from Psomagen (Rockville, MD, USA) using 4 primers:

M13F, 50-GTAAAACGACGGCCAGT-30; M13R, 50-CAGGAAACAGCTATGAC-30;

ACE2_600F, 50- GGGGATTATTGGAGAGGAGACT-30; ACE2_1800R, 50-GTCGGTACTC

CATCCCACA-30.

Immunofluorescence

ACE2 staining was performed as described previously [84]. Briefly, pinch biopsies of the termi-

nal ileum and ascending colon were fixed in 10% formalin and embedded in paraffin blocks.

Sections were cut to 5-μm thickness at the NYU Center for Biospecimen Research and Devel-

opment and mounted on frosted glass slides. For deparaffinization, slides were baked at 70˚C

for 1.5 hours, followed by rehydration in descending concentration of ethanol (100%, 95%,

80%, 70%, ddH2O twice; each step for 30 seconds). Heat-induced epitope retrieval was per-

formed in a pressure cooker (Biocare Medical, Pacheco, CA, USA) using Dako Target

Retrieval Solution, pH 9 (Dako Agilent, Santa Clara, CA, USA) at 97˚C for 10 minutes and

cooled down to 65˚C. After further cooling to room temperature (RT) for 20 minutes, slides

were washed for 10 minutes 3 times in TBS containing 0.1% Tween 20 (Sigma-Aldrich;

TBS-T). Sections were blocked in 5% normal donkey serum (Sigma-Aldrich) in TBS-T at RT

for 1 hour, followed by incubation with rabbit anti-ACE2 antibody (1:100, Abcam, Cambridge,

England, ab15348) in the blocking solution at 4˚C overnight. Sections were washed 3 times

with TBS-T and stained with the Alexa Flour 555 conjugated with donkey anti-rabbit IgG

(1:500, Thermo Fisher Scientific, A-31572) in PBS with 3% bovine serum albumin (BSA)

(Thermo Fisher Scientific), 0.4% saponin, and 0.02% sodium azide at RT for 1 hour. Following

this, sections were washed 3 times with TBS-T and mounted with ProLong Glass Antifade

Mountant with NucBlue Stain (Thermo Fisher Scientific, P36918). Images were acquired

using an EVOS FL Auto Cell Imaging System (Thermo Fisher Scientific) and then processed

and quantified using ImageJ.
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SARS-CoV-2–infected monolayers were fixed with 4% paraformaldehyde (Electron Micros-

copy Sciences, Hatfield, PA, USA) for 3 hours at RT. Following fixation, cells were washed 3 times

with PBS then blocked and permeabilized in PBS with 0.1% Triton-X100 and 3% BSA for 30 min-

utes at RT. The permeabilized organoids were washed 3 times with PBS and incubated with

mouse anti-SARS-CoV-2 N antibody (1:1,000, Prosci, Fort Collins, CO, USA 10–605) and rabbit

anti-ACE2 antibody (1:500, Abcam, ab15348) diluted in PBS containing 3% BSA overnight at

4˚C. The monolayers were washed 3 times with PBS and stained with Alexa Flour 647 conjugated

with goat anti mouse IgG (1:2,000, Thermo Fisher Scientific, A32728) and Alexa Flour 594 conju-

gated with donkey anti rabbit IgG (1:1,000, Thermo Fisher Scientific, 21207) diluted in PBS with

3% BSA and DAPI for 1 hour at RT. The monolayers were then washed 3 times with PBS and

imaged using the CellInsight CX7 High-content Microscope (Thermo Fisher Scientific).

Immunoblotting

Organoids were processed for immunoblotting as previously described [76]. Briefly, monolay-

ers were incubated in lysis buffer (20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1% Triton X-100,

10% glycerol, and 2x Halt Protease and Phosphatase Inhibitor Cocktail (Thermo Fisher Scien-

tific)) on ice for 5 minutes and centrifuged at 14,000 rpm for 20 minutes. Samples were

resolved on Bolt 4–12% Bis-Tris Plus Gels (Invitrogen), transferred onto polyvinylidene

difluoride membranes, and blocked using 5% skim milk. The following antibodies were used

for immunoblotting studies: mouse anti-β-actin (1:5,000, Sigma-Aldrich, AC-15), rabbit anti-

ACE2 (1:1,000, Abcam, ab15348), mouse anti-TMPRSS2 (1:1,000, Santa Cruz Biotechnology,

Dallas, TX, USA, sc-515727), rabbit anti-BRG1 (1:250, R&D Systems, MAB5738), mouse anti-

FOXM1 (1:100, Santa Cruz Biotechnology, sc-271746), and rabbit anti-FOXA2 (1:200, Cell

Signaling Technology, Danvers, MA, USA, 8186). Secondary antibodies (mouse anti-rabbit

and goat-anti mouse, 211-032-171 and 115-035-174, respectively) were purchased from Jack-

son ImmunoResearch (West Grove, PA, USA).

RNA deep sequencing and analysis

Monolayers were cultured in differentiation media for 7 days and then were infected with

SARS-CoV-2 at an MOI of 4 for 24 hours or 72 hours before RNA extraction with 2 to 3 tech-

nical duplicates per line. CEL-seq2 was performed on 53 RNA samples of human organoids.

Sequencing was performed on Illumina NovaSeq 6000 (Illumina, San Diego, CA, USA). RNA-

seq results were processed using the R package “DESeq2” to obtain variance stabilized count

reads, fold changes relative to specific condition, and statistical P value. Analysis of the orga-

noid transcriptome focused on DEGs, defined as the genes with an absolute fold change rela-

tive to specific condition >2 and an adjusted P value< 0.05.

Plasmids

SARS-CoV-2 S expression vectors have been previously described [58]. Briefly, the SARS-CoV-2

S expression vector pcCoV2.S.Δ19, S gene was amplified from pcCOV2.S (Wuhan-Hu-1/2019

SARS-CoV-2 isolate) [58] with a forward primer containing Kpn-I site and reverse primer that

deleted the 19 carboxyl-terminal amino acids and contained Xho-I site. The amplicon was then

cloned into the Kpn-I and Xho-I of pcDNA6 (Invitrogen). The D614G mutation was introduced

by overlap extension PCR of the Δ19.S gene using internal primers overlapping the D614G muta-

tion and cloned into pcDNA6. Mutations in Delta variant S were introduced by overlapping PCR

overlapping each Delta mutations and cloned into pcDNA6. The Omicron S expression vector

was chemically synthesized and cloned into pcDNA6 [85]. pcVSV-G, pLenti.GFP.Nluc, lentiviral

packaging plasmids pMDL, and pRSV.Rev have been previously described [58].

PLOS BIOLOGY Heterogeneous SARS-CoV-2 susceptibility in intestinal organoid-derived monolayers

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001592 March 31, 2022 14 / 23

https://doi.org/10.1371/journal.pbio.3001592


SARS-CoV-2 S lentiviral pseudotypes

SARS-CoV-2 variant S protein pseudotyped lentiviral stocks were generated by cotransfection

of 293T cells (4 × 106) with pMDL, pLenti.GFP-NLuc, pcCoV2.S.Δ19, and pRSV.Rev (4:3:4:1

mass ratio) by calcium phosphate coprecipitation as previously described [58]. VSV-G pseudo-

typed lentivirus was generated substituting the S protein vector for pcVSV-G. Two days post-

transfection, supernatant was harvested and passed through a 0.45-μm filter and

ultracentrifuged over a 20% sucrose cushion at 30,000 rpm for 90 minutes. The virus pellet was

resuspended to 1/10 the initial volume in DMEM with 10% FBS, and virus titers were normal-

ized by real-time PCR reverse transcriptase activity. Pseudotyped virus infectivity assay was

done with HI and LI monolayers at an MOI of 0.2. After 72 hours of infection, luciferase activ-

ity was measured by Nano-Glo luciferase substrate (Promega, Madison, WI, USA) with an

Envision 2103 microplate luminometer (PerkinElmer).

Computational and statistical analysis

Gene ontology analysis was performed using the R package “clusterProfiler.” PCA was per-

formed using the R package “stats.” Heatmaps were generated using the R package “pheat-

map.” Upstream regulators analysis was performed by uploading the DEGs to IPA software

(QIAGEN). Statistical differences were determined as described in figure legend using either R

or GraphPad Prism 9 software (La Jolla, CA, USA).

Supporting information

S1 Data. Excel spreadsheet containing, in separate sheets, the underlying numerical data

for Figs 1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 1K, 2A, 2B, 2D, 2E, 2F, 2G, 2H, 3C, 3D, 3E,

4B, 4C, 4E, 4F, 4G, and 4H, S1A, S1B, S1C, S1D, S1E, S1F, S1G, S1H, S1I, S1J, S1K, S1L,

S2A, S2B, S2C, S2D, S2E, S2F, S3A, S3B, S3C, S3D, S3E, S3F, S3G, S3H, S3I, S4A, S4B,

S4C, S4D, S4E, S5A, S5B, S6C, S7A, S7B, S7C, S7E, S7F, S7G, S7H, S7I, S8A, S8B, S8C,

S9A, and S9B Figs, and S2 and S3 Tables.

(XLSX)

S1 Fig. Transcriptional analysis in SI and colonic organoids cultured in different media

conditions. (A–G) RT-PCR analysis of ACE2 (A), TMPRSS2 (B), TMPRSS4 (C), APOA1 (D),

ISG15 (E), OASL (F), and MX2 (G) expression among SI or colonic 3D organoids grown in

expansion media (3DE) or differentiation media (3DD) for 7 days. (H) RT-PCR data showing

ACE2, TMPRSS2, TMPRSS4, APOA, ISG15, OASL, and MX2 expression in 3DE organoids

according to disease status. (I–L) RT-PCR analysis of ACE2 (I), TMPRSS2 (J), TMPRSS4 (K),

and APOA1 (L) expression among SI and colonic monolayers grown in differentiation media

for 7 days. Data points are mean of at least 2 technical replicates of individual organoid lines.

Bars represent mean, and at least 2 independent experiments were performed. Underlying

data can be found in S1 Data. P, P value. �P� 0.05, ��P� 0.01, ���P� 0.001, and
����P� 0.0001 by paired t test, 2 tailed in A–G and unpaired t test, 2 tailed in H–L. ACE2,

angiotensin I converting enzyme 2; ISG, interferon-stimulated gene; RT-PCR, reverse tran-

scription PCR; SI, small intestine.

(TIF)

S2 Fig. Transcript analysis of organoid-derived monolayers according to tissue location,

disease, and sex of donors. (A) RT-PCR analysis of ACE2, TMPRSS2, TMPRSS4, APOA1,

ISG15, OASL, and MX2 expression between matched donor-derived SI and colonic monolay-

ers grown in differentiation media for 7 days. Data are displayed fold-change differences

between the expression of the indicated genes in colonic monolayers over expression in SI
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monolayers. (B and C) Correlation of ACE2 (B) and TMPRSS2 (C) expression with APOA1
expression among monolayers grown in differentiation media. (D) RT-PCR analysis of ACE2
expression among monolayers grown in differentiation media according to the disease status

or sex of donors. (E and F) RT-PCR data depicting ACE2, TMPRSS2, TMPRSS4, APOA1,

ISG15, OASL, and MX2 expression of monolayers according to disease (E) or sex (F). Data

points are mean of at least 2 technical replicates of individual organoid lines. Bars represent

mean ± SEM, and at least 2 independent experiments were performed. Underlying data can be

found in S1 Data. FC, fold change; r, Pearson correlation coefficient; P, P value. �P� 0.05,
��P� 0.01, and ���P� 0.001 by paired t test, 2 tailed in A, simple regression analysis in B and

C, and unpaired t test, 2 tailed in D–F. ACE2, angiotensin I converting enzyme 2; F, female;

ISG, interferon-stimulated gene; M, male; RT-PCR, reverse transcription PCR; SI, small intes-

tine.

(TIF)

S3 Fig. Analysis of gene expression and viral replication in organoids by intestinal region,

disease, sex, or age of donors. (A–C) RT-PCR analysis of ISG15 (A), OASL (B), and MX2 (C)

expression in monolayers. (D) Correlation of ACE2 copy number with ACE2 expression (left)

or PFU of SARS-CoV-2 (right). (E) PFU of SARS-CoV-2 according to intestinal region (left),

disease (middle), or sex (right) of donors. (F–I) Correlation of PFU of SARS-CoV-2 with age

of donors (F) or ISG15 (G), OASL (H), and MX2 (I) expression. Data points are mean of at

least 2 technical replicates of individual organoid lines. Bars represent mean ± SEM, and at

least 2 independent experiments were performed. Underlying data can be found in S1 Data. r,

Pearson correlation coefficient; P, P value. �P� 0.05, ��P� 0.01, ���P� 0.001, and
����P� 0.0001 by unpaired t test, 2 tailed in A–C and E and simple regression analysis in D

and F–I. ACE2, angiotensin I converting enzyme 2; F, female; M, male; PFU, plaque-forming

unit; RT-PCR, reverse transcription PCR; SARS-CoV-2, Severe Acute Respiratory Syndrome

Coronavirus 2.

(TIF)

S4 Fig. Transcript analysis of IFNβ- or IFNλ2-stimulated organoids according to intestinal

region, disease status, or sex of donors. (A–E) RT-PCR data depicting fold change in ISG15,

OASL, and MX2 expression in SI and colonic monolayers stimulated with IFNβ (100 or 300

IU/ml) or IFNλ2 (10 or 30 ng/ml) for 12 hours according to intestinal region (A), disease sta-

tus (B and C), or sex (D and E) of donors. Each value is normalized to nonstimulated organoid

lines. Data points are mean of at least 2 technical replicates of individual organoid lines. Bars

represent mean ± SEM, and at least 2 independent experiments were performed. Underlying

data can be found in S1 Data. P, P value. �P� 0.05 and ��P� 0.01 by unpaired t test, 2 tailed.

F, female; IFNβ, interferon beta; IFNλ2, interferon lambda 2; ISG, interferon-stimulated gene;

M, male; RT-PCR, reverse transcription PCR; SI, small intestine.

(TIF)

S5 Fig. Stimulation with IFNβ or IFNλ2 does not alter ACE2 and TMPRSS2 expression in

organoids. (A and B) RT-PCR depicting ACE2 (A) and TMPRSS2 (B) expression in monolay-

ers stimulated with IFNβ (100 or 300 IU/ml) or IFNλ2 (10 or 30 ng/ml) for 12 hours. Data

points are mean of at least 2 technical replicates of individual organoid lines. Bars represent

mean ± SEM, and at least 2 independent experiments were performed. Underlying data can be

found in S1 Data. ACE2, angiotensin I converting enzyme 2; IFNβ, interferon beta; IFNλ2,

interferon lambda 2; RT-PCR, reverse transcription PCR; SI, small intestine.

(TIF)
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S6 Fig. Representative images of ACE2 staining in primary intestinal tissue. (A and B) Rep-

resentative ACE2 staining images in primary tissues of terminal ileum from which SI (SI2-9

and 12, A) or colonic (C2-9, 11, and 12, B) organoid-derived monolayers were established.

Images of remaining monolayers are included in main Fig 3. (C) Quantification of the total

intensity of ACE2 staining and surface area in each visual field from the primary tissues from

which the indicated organoid lines were established. Data points in C are the visual field. Bars

in A and B: 200 μm. Bars in C represent mean ± SEM. Underlying data can be found in S1

Data. ACE2, angiotensin I converting enzyme 2; SI, small intestine.

(TIF)

S7 Fig. Transcriptome and viability of SARS-CoV-2–infected organoids. (A) Viability

according to MTT reduction assay of SARS-CoV-2–infected high infection (HI; C1, C2, and

C3) and low infection (LI; C8, C12, and C13) lines. (B and C) RT-PCR data depicting ACE2
(B) and TMPRSS2 (C) expression in HI and LI monolayers with or without SARS-CoV-2

infection. (D) Number of up- and down-regulated genes identified by RNA-seq analysis in the

indicated pair-wise comparison of HI and LI monolayer lines at different time point postinfec-

tion. n = 3 organoid lines per group and at least 2 technical replicates per individual organoid

line. (E) Unsupervised clustering based on expression of most variable genes by organoids

lines and infection with SARS-CoV-2 at 24 and 72 hours. (F) Highly enriched molecular func-

tion GO terms for the DEGs in HI and LI infected with SARS-CoV-2 for 72 hours. (G and H)

Heatmaps displaying normalized expression values of DEGs in HI infected/uninfected and LI

infected/uninfected conditions (average fold-change >2 and adjusted P value < 0.05) anno-

tated in GO:0060338 and GO:0034340 (G) and GO0:07259 (H). (I) Heatmap displaying nor-

malized expression values of DEGs in LI infected/HI infected conditions (average fold-change

>2 and adjusted P value < 0.05) annotated in GO:0006882. Data points in A–C are mean of at

least 2 technical replicates of individual organoid lines. Bars represent mean ± SEM, and at

least 2 independent experiments were performed. Underlying data can be found in S1 Data.

UI0, uninfected 0 hour; UI72, uninfected 72 hours; I24, infected for 24 hours; I72, infected for

72 hours. ACE2, angiotensin I converting enzyme 2; DEG, differentially expressed gene; GO,

Gene Ontology; MTT, thiazolyl blue tetrazolium bromide; RNA-seq, RNA sequencing;

RT-PCR, reverse transcription PCR; SARS-CoV-2, Severe Acute Respiratory Syndrome Coro-

navirus 2.

(TIF)

S8 Fig. Transcript and Western blot analyses of BRG1, FOXM1, and FOXA2. (A–C)

RT-PCR analysis of BRG1 (A), FOXM1 (B), and FOXA2 (C) expression in HI and LI monolay-

ers. (D) Western blot analysis of BRG1, FOXM1, FOXA2, and ACTB in HI and LI monolayers.

Blots are representative of at least 2 independent repeats. Data points are mean of at least 2

technical replicates of individual organoid lines. Bars represent mean ± SEM, and 2 indepen-

dent experiments were performed. Underlying data can be found in S1 Data. UI0, uninfected

0 hour; UI72, uninfected 72 hours; I24, infected for 24 hours; I72, infected for 72 hours.

RT-PCR, reverse transcription PCR.

(TIF)

S9 Fig. Infection of SARS-CoV-2 S protein–pseudotyped lentiviral reporter viruses. (A and

B) HI and LI monolayers were infected with VSV-G or SARS-CoV-2 D614G, Delta, or Omi-

cron S protein pseudotyped viruses at an MOI of 0.2. At 72 hours postinfection, infectivity was

measured by luciferase assay. Data points are mean of at least 2 technical replicates of individ-

ual organoid lines. Bars represent mean ± SEM, and 2 independent experiments were per-

formed. Underlying data can be found in S1 Data. P, P value. ����P� 0.0001 by unpaired t
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test, 2 tailed. MOI, multiplicity of infection; RLU, relative luminescence unit; S, spike; SARS-

CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2.

(TIF)

S1 Table. Donor information for human endoscopic specimens. CD, Crohn disease; F,

female; IBD, inflammatory bowel disease; M, male; NA, not attempted; ND, not detected;

SNP, single nucleotide polymorphism; UC, ulcerative colitis.

(PDF)

S2 Table. Correlation between donor age and gene expression among the organoid mono-

layers grown in differentiation media for 7 days. P, P value; r, Pearson correlation coeffi-

cient; SI, small intestine.

(PDF)

S3 Table. Correlation of donor age or PFU of SARS-CoV-2 with ISG induction in orga-

noids stimulated with IFNβ (100 or 300 IU/ml) or IFNλ2 (10 or 30 ng/ml) for 12 hours. P,

P value; r, Pearson correlation coefficient. �P� 0.05 and ���P� 0.001 by simple regression

analysis. IFNβ, interferon beta; IFNλ2, interferon lambda 2; PFU, plaque-forming unit; SARS-

CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; SI, small intestine.

(PDF)

S1 Raw Images. Raw Western blot images for Fig 4A and S8D Fig.

(PDF)
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