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ChIP seq is a widely used assay to measure genome-wide protein binding. The decrease

in costs associated with sequencing has led to a rise in the number of studies that

investigate protein binding across treatment conditions or cell lines. In addition to the

identification of binding sites, new studies evaluate the variation in protein binding

between conditions. A number of approaches to study differential transcription factor

binding have recently been developed. Several of these methods build upon established

methods from RNA-seq to quantify differences in read counts. We compare how these

new approaches perform on different data sets from the ENCODE project to illustrate

the impact of data processing pipelines under different study designs. The performance

of normalization methods for differential ChIP-seq depends strongly on the variation in

total amount of protein bound between conditions, with total read count outperforming

effective library size, or variants thereof, when a large variation in binding was studied.

Use of input subtraction to correct for non-specific binding showed a relatively modest

impact on the number of differential peaks found and the fold change accuracy to

biological validation, however a larger impact might be expected for samples with more

extreme copy number variations between them. Still, it did identify a small subset of

novel differential regions while excluding some differential peaks in regions with high

background signal. These results highlight proper scaling for between-sample data

normalization as critical for differential transcription factor binding analysis and suggest

bioinformaticians need to know about the variation in level of total protein binding

between conditions to select the best analysis method. At the same time, validation

using fold-change estimates from qRT-PCR suggests there is still room for further method

improvement.

Keywords: ChIP-seq, differential binding, methods comparison, normalization, validation

Introduction

Chromatin immunoprecipitation combined with sequencing (ChIP-seq) is a technique used to
identify DNA binding sites for proteins or histone modification of nucleosomes (Pepke et al., 2009;
Furey, 2012). ChIP-seq experiments have become increasingly popular as sequencing costs decrease

Abbreviations: ChIP, chromatin immuneprecipitation; qPCR, quantitative PCR; GR, glucocorticoid receptor; ERα, Estrogen

Receptor alpha; CNAs, copy number alterations; NCIS, Normalization of ChIP-seq; CPM, counts per million; TMM, trimmed

mean ofM values.
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and more validated histone and transcription factor antibodies
are available. Comparisons between ChIP-seq experiments can
provide novel insight into differences in protein occupancy and
histone marks (Xu et al., 2008; Wu and Ji, 2010; Ross-Innes et al.,
2012; Shao et al., 2012; Ji et al., 2013; Wong et al., 2015). Since
transcription factor binding signals often form narrow peaks of
relatively uniform shape, differential count methods from RNA-
seq, using peaks instead of genes, seem well-suited for data
analysis. We review differential transcription factor (TF) binding
methods for ChIP-seq (Xu et al., 2008; Song and Smith, 2011;
Stark and Brown, 2011; Bardet et al., 2012; Liang and Keles, 2012;
Nair et al., 2012; Shao et al., 2012), and compare the performance
of these methods on several ENCODE data sets.

Pairwise comparisons between ChIP-seq experiments can
identify differential binding sites (Figure 1). The simplest way to
identify differential peaks is by overlapping peak regions between
conditions and classifying peaks as unique to one condition or
shared by (common to) both conditions. Another approach is
a quantitative comparison between conditions of the number
of sequencing reads overlapping a peak (peak height). Such
comparisons can identify differential binding in peaks shared
by two conditions that could not be identified from a simple
overlap of peak regions (Figure 1). RNA-seq has several methods
to compare read counts between treatment conditions for an
annotated feature set. For differential binding analysis, peak
regions are the features of interest and are typically obtained from
the ChIP-seq experiments. Figure 2 outlines a typical workflow
to perform differential binding analysis [see Landt et al. (2012)
for guidelines and (Park, 2009; Bailey et al., 2013) for review on
ChIP-seq analysis].

A number of software tools are available to analyze differential
TF binding. We review and evaluate methods adapted from
differential RNA-seq that have variations to address issues
specific to ChIP-seq data (Table 1). The methods are run on
six high quality protein ChIP-seq datasets from the ENCODE
project (Dunham et al., 2012). We use Glucocorticoid receptor
(GR/NR3C1) and Estrogen receptor alpha (ERα/ESR1) data to

FIGURE 1 | Overview of peak types and defining reference binding

regions. (A) Several different types of peak comparisons are shown. The

black curve represents binding signal with the dotted line representing a

hypothetical threshold for enrichment. The black boxes under each curve

represent significant regions as defined by peak caller output with the vertical

line in the box representing summit point. Comparing binding profiles in

conditions (A) vs. (B) we find: binding in condition (A) but not (B)

(Unique—single enrichment), varying degrees of binding between the two

conditions (Unique and Shared peak—differential), and both conditions

having a peak of about comparable signal intensity (Shared peak—similar).

assess increases in binding in response to hormone within a
single cell type, TCF7L2 (TCF4) and NRF1 to assess cell-type
specific binding, and use replicate experiments of Pol2 (POLR2A)
and c-Myc (MYC) as negative controls. We expect increasing
differential binding in GR and ERα hormone-response studies,
some cell-type specific differential binding in TCF7L2 and NRF1
studies, and no differential binding in Pol2 and c-Myc negative
controls.

We demonstrate that analysis step choices have a major
impact on the results depending on the biological conditions
investigated. From this, we highlight critical decisions and
recommend analysis procedures for some standard biological
study designs.

Materials and Methods

Comparison of Peak Regions
The simplest way to compare binding between different
biological conditions is to overlap peaks from different
conditions to identify unique and shared peak regions.
Determining the number of overlapping peaks involves defining
a reference sample and counting overlapping peaks in other
conditions. However, the number of peaks that overlap between
two conditions can vary depending on choice of reference sample
because a peak in one condition could overlap several peaks
in another condition. Under these circumstances, the median
number of overlaps from all pairwise comparisons is reported.
A severe limitation of this approach is that the number of peaks
found depends on sequencing depth, thus, overlap analysis can
be severely biased when conditions are sequenced to different
depths. We evaluate if methods that quantify differential binding
can overcome this limitation.

Comparison of Binding Levels in Peak Regions
Rather than overlapping peaks between conditions, a quantitative
comparison of read counts within peak regions can be used
to identify peaks with significantly different counts. RNA-seq

Frontiers in Genetics | www.frontiersin.org 2 April 2015 | Volume 6 | Article 169

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Wu et al. Differential binding in ChIP-seq

FIGURE 2 | Typical workflow for identifying differential transcription factor binding.

TABLE 1 | Differential binding methods.

Method Steps before counting reads in

peaks

Evaluation

Non-overlap n/a Not overlap 1bp+

edgeR Shift reads edgeR

DiffBind Extend reads, scale down

background

edgeR w/TMM w/bg*

subtract

MAnorm3 Shift reads, normalize using shared

peaks (calculate MA adjustment)

edgeR + MA

adjustment

voom Shift reads + voom transform eBayes

*Background.

methods are typically used to identify differences in counts over
pre-defined features (genes). For ChIP-seq, features of interest
(peaks) are defined from an analysis of the data and can vary
between experiments. To perform differential TF binding, a
reference set of binding regions is defined allowing results to
be summarized in a matrix of counts. Different approaches for
defining a reference set are available. At one extreme, the entire
genome is binned into regions of fixed length. A more typical
approach will simply merge overlapping peak regions from
different experiments. Additionally, differential binding methods
leverage characteristics related to ChIP-seq such as corrections
for non-specific binding (“input”) and normalizing sequencing
depth using shared peaks.

Effect of Input

ChIP-seq experiments usually include input, a measure of
non-specific background binding, as a negative control. Some
factors that could contribute to background signal include

copy number alterations, high mappability regions, or open
chromatin. Some differential binding methods subtract input
counts from binding counts to remove background signal. This
requires an additional step to normalize input reads before
subtraction. Since background does not vary when comparing
treatment conditions within the same cell type this may not
be recommended for all comparisons. Subtracting input lowers
the counts, potentially reducing sensitivity to detect differential
binding within cell type.

Normalization Methods

Normalization is required to properly scale signal between
different experiments. For sequencing, library size is an indicator
of total signal. “Full” library size refers to the number of mapped
reads in the sample and “effective” library size refers to the
number of reads mapped to the features of interest. Although
features of interest are not defined a priori for ChIP-seq analysis
and Full library size might seem a natural choice to normalize
samples for coverage, sometimes normalization is performed
using only the counts for the features of interest (Liang and
Keles, 2012; Ross-Innes et al., 2012), or a subset of the features
(Shao et al., 2012) (reviewed by Bailey et al., 2013). A study of
differential estrogen receptor binding (Ross-Innes et al., 2012)
used TMM (trimmedmean ofM-values) (Robinson andOshlack,
2010), a method proposed for normalizing RNA-seq data when it
can be assumed that most genes are not differentially expressed.
The method trims the tails of the distribution of log fold-
changes (M-values) prior to centering at zero. MAnorm (Shao
et al., 2012), a normalization method designed specifically for
differential protein binding, makes an assumption similar to no
differential expression of most genes, assuming that most shared
peaks are not differentially bound. It normalizes all counts based
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on a linear regression of log-fold change vs. average binding in
shared peaks, peaks common to both experimental conditions.
Table 2 summarizes the combinations of normalization methods
that we evaluated. We show that the results, when comparing
experiments with different levels of total protein bound, are very
sensitive to the choice of normalization method. Our analysis
allows us to suggest the best approach among those evaluated,
and illustrate the many false positive and false negative results
that can arise from a wrong analysis.

Data Sets and Methods Comparison
We use six TF datasets from ENCODE (mar 2012 data release) to
evaluate different software for differential binding analysis. For
each of the six studies, the ChIP-seq experiments are produced
by the same lab, in replicates with multiple different biological
conditions. Study designs we considered are: cell type-specific
differences and treatment differences within a cell type. In the
first design, the same protein was assayed in different cell types to
discover differential binding between cell type (TCF7L2, NRF1);
in the second, the same protein was assayed across multiple
conditions in the same cell line to look for treatment-related
effects (GR, ERα). Lastly, we analyzed two negative control data
sets with the same protein binding experiment repeated multiple
times in the same cells lines (Pol2/c-Myc). The sequence data
were single-end reads, 27–36 base pairs in length depending
on the experiment, and performed on Illumina sequencers.
Two groups produced the data, Hudson Alpha (HAIB) (GR,
ERα) and Snyder’s group (Sydh) (Pol2, c-Myc, TCF7L2, NRF1).
Evaluation of a subset of bam files from each group indicated
that Sydh samples had mean quality values ∼40 while HAIB
samples had mean quality values ∼30. The advantages of
using ENCODE datasets include the high quality standard for
biological experiments, the availability of replicates, multiple
experiments from the same lab, and consistent processing of
data for mapping and peak calling. Peaks were generated from
a modified SPP pipeline (Anshul Kundaje, Lucy Yungsook et al.
Assessment of ChIP-seq data quality using cross-correlation
analysis. Submitted) which incorporates the IDR framework (Li
et al., 2011) to increase reproducibility. For reads, we used the
tagAlign files that were converted from bam files and use less disk
space. Peaks were IDR output with an additional filter q < 0.01
for peak detection. Both of these files are publicly available from

TABLE 2 | Summary of comparisons.

Library size Input subtraction

Effective Full TMM MAnorm None scale CPM

edgeR default x x x

edgeR full x x

DiffBind default x x x

DiffBind full x x x

MAnorm3 x* x x

Voom x x

Each type of analysis is shown with a different row with X indicating the option(s) that was

chosen. *MAnorm3 takes the average of log transformed effective library sizes for scaling.

ENCODE (See Supplemental Table 1 for file names and links to
data).

We perform differential binding analysis with tools that
utilize edgeR (version 3.0.8) (Robinson et al., 2010), an approach
developed for RNA-seq and shown to perform well with small
numbers of replicate samples (Rapaport et al., 2013). The four
methods we compare include: (1) edgeR with either TMM or full
library size normalization; (2) DiffBind (version v1.4.2) (Stark
and Brown, 2011), which adds a step to scale input prior to
performing differential analysis using edgeR. The same input
samples that were used for peak calling are used for scaling; (3)
a modified implementation of MAnorm (Shao et al., 2012) to
allow for replicate ChIP-seq experiments in the normalization
of samples across shared peak regions, and use edgeR for
differential peak calling; and (4) Voom (version 3.14.4) (Law
et al., 2014), a method that transforms Poisson-based read
counts into normal-based signal values that can be used with
pre-existing microarray analysis methods. With the exception
of MAnorm, these methods can be found on Bioconductor
(Gentleman et al., 2004). MAnorm was rewritten and will be
referred to as MAnorm3, availability and list of major changes
can be found in Supplemental Table 2.

All normalization procedures are implemented using an
offset variable in the regression model for differential binding.
MAnorm implicitly uses effective library size and Voom used
full library size for transformation with limma (Smyth, 2004)
for microarray differential expression analysis. Unless otherwise
mentioned, all methods were performed with a false-discovery
rate (FDR)-adjusted cutoff of p < 0.05.

Our analysis included heavy use of GenomicRanges package
(version 1.10.7) (Lawrence et al., 2013). For each dataset, counts
were obtained by using coverageBed (Quinlan and Hall, 2010) to
count reads overlapping peaks. The reference set of peak regions
used for the binding count matrix was obtained bymerging peaks
overlapping 1 bp from the ChIP experiments.

ChIP-qPCR Validation
We performed validation of fold changes via ChIP-qPCR for
GR in A549 cell lines. We choose a mixture of regions that
represented both shared and unique peaks. We followed the
previously described protocol for antibody and cell growth
conditions as well as treatment conditions (Reddy et al.,
2012). Chromatin immunoprecipitation (ChIP) was performed
as previously described (Bittencourt et al., 2012) except that
cells were cross-linked for 10min at room temperature with
formaldehyde only. IP signals were normalized relative to the
signal obtained from input chromatin and fold changes were
calculated by dividing normalized IP signal values followed by
log2 transformation. Up to three qPCR technical replicates were
performed for each experiment along with IgG and 2% input
chromatin as control.

Results

Peak Region-Based Analysis
Overlapping the peak regions for two conditions is the simplest
way to identify differential binding. Overlapping our Pol2 peaks
from two subsets of the data (odd replicates and even replicates),
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we find that the two sets of peaks highly overlap (>80%). An
even higher overlap is observed when comparing peaks from each
subset to the peaks identified from the pool of reads from all six
replicates (96–98% overlap with pooled) (Figure 3A). This result
is expected since Pol2 is a negative control and we compare peaks
from replicates of the same experimental condition.

Overlap analysis comparing experiments sequenced to
different depths is subject to finding unique peaks due to
sequencing depth alone. To illustrate the effect of sampling depth
on peak reproducibility we created data sets with 8 M, 14.4
M, and 46.2M reads from a combination of pooling and sub-
sampling independent Pol2 replicates (replicates 1–4, replicates
5–6, and sub-sampling replicates 5–6). These three data sets show
an increasing number of peaks with increasing read depth (8577,
15851, and 18287 peaks). An overlap analysis found 9059 (49.5%)
unique peaks in the high depth sample that did not overlap any
of the 8577 peaks discovered in the sample with five-fold lower
sequencing depth. The number of unique peaks was halved for
the smaller differential in sequencing depth (three-fold difference
in coverage, 4374 (23.5%) unique peaks). In the c-Myc control
experiment, replicate experiments were conducted by the same
lab, but in two different institutions (first at Yale then at Stanford
several years later). The more recent experiment used a different
input control and was sequenced more deeply (∼20M reads per
replicate vs. ∼4M reads per replicate). The overlap of peaks in
Figure 3B shows that the more recent Stanford dataset has many
more peaks than the Yale dataset, once more highlighting the
importance of sequencing depth when identifying differential
peaks using overlaps as criteria. To account for the extreme
difference in the number of peaks found between the two c-
Myc experiments, we filtered all but the top 5000 peaks (the
approximate number found in the Yale data set) and find that
over 70% of the peaks overlap. Filtering additional peaks did not
increase the overlapping proportion above 75% (data not shown).
The lower 75% overlap compared to the over 80% observed for
Pol2 is not surprising given the length of time separating these
two c-Myc experiments. This suggests that a few of the peaks
with highest occupancy might have changed during the lag time
between the two experiments.

Overlapping binding sites between cell types identifies both
cell type-specific binding as well as shared binding sites between
cell-types, a result that has been reported previously (Frietze et al.,
2012). For TCF7L2, fewer peaks were identified in the HeLa
S3 cell line and fewer cell type-specific peaks were identified in
HeLa S3 (49%) compared to HEK293 (72%) and MCF7 (74%)
(Figure 3C). In NRF1 experiments, much less cell type-specific
binding sites are found with over 60% of peaks shared by all
three cell types (GM12878, H1 hESC, K562) and fewer than 20%
unique to each cell type (Supplemental Figure 1).

Overlapping GR peaks from different hormone
concentrations (Figure 3D), we find GR binding sites increases
with hormone concentration, a result consistent with biology
since GR requires hormone to bind DNA. Almost all peaks
found in lower hormone concentration are a subset of peaks
from higher hormone treatment. All 25 regions specific to
medium hormone binding either have very low enrichment
or have a peak in high hormone treatment nearby. In ERα

datasets, treatment with three different types of hormones (bpa,
genistein, and estradiol) caused differential binding with bpa-
specific binding sites being a subset of genistein and estradiol
binding sites (Supplemental Figure 1). This finding supports the
conclusion from the ERα datasets that bpa and genistein induce
a subset of estradiol treatment effects (Gertz et al., 2012).

In conclusion, overlapping peaks from different conditions is
sensitive to sequencing depth. The number of peaks found at the
same FDR cutoff will change if the samples being compared have
large differences in sequencing depth.

Binding Level Change Analysis
edgeR

We apply the RNA-seq method edgeR to read counts from
ChIP-seq to identify differential binding using a reference set
of peak regions (see Materials and Methods). edgeR utilizes
negative binomial modeling, an approach demonstrated to have
good specificity and sensitivity for differential expression, with
good control of type I error (Rapaport et al., 2013). Two
types of normalization are used with edgeR: effective library
size (the default) will normalize to total number of reads

FIGURE 3 | Results from condition-level comparison methods. Venn diagrams of overlapping peak regions (A, Pol2; B, c-Myc; C, TCF7L2; D, GR).
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overlapping features (genes/peaks) using TMM while full library
size normalizes to the total number of reads in a sample.
Normalizing using both full and effective library size, we found
no differential peaks in Pol2 dataset (Figure 4A). Our other
control, c-Myc, had 292 (about 1% of peaks) differentially bound
regions using effective library size normalization, fewer than
the 5% family-wise error rate used as cutoff, and vastly less
than the number of differential regions found by the overlaps
method. These differential regions can be seen in the MA plots
(Figure 4B), plots of log-fold change (M-value on vertical axis)
against average log counts (peak height, “A” on horizontal axis).
These differential sites are not significant when normalizing using

full library size (Table 3), suggesting that full library size is a more
conservative adjustment for different sequencing depth.

Normalizing for library size showed dramatic differences
when assaying differential binding between hormone treatments.
Many more differential GR and ERα binding sites are found
when using full library size instead of effective library size
(Figures 4C,D, Table 3, Supplemental Table 3, except for ER est
vs. gen). Biologically, we expect most sites to be bound only
in the high hormone treatment condition for GR. As hormone
concentration decreases, a lower proportion of available binding
sites will be occupied by GR with only the hypersensitive
binding sites occupied at low hormone treatment. The MA

FIGURE 4 | MA plots for sample-level comparison methods.

Regions with significant differential binding are highlighted in red.

Controls: (A) Pol2 comparison, (B) c-Myc comparison. Normalization

differences: GR comparison between high vs. low hormone using (C)

effective or (D) full library size normalization. TCF7L2 comparison

between HEK293 and Hela S3 cells using (E) DiffBind with full library

size, (F) MAnorm3, (G) edgeR with full library size, (H) edgeR with

effective library size, (I) voom.
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TABLE 3 | Number of significant differential binding regions.

Pol2 Odd vs. Even c-Myc stanford vs. yale TCF Hek293 vs. HelaS3 NRF1 Gm878 vs. H1esc GR High vs. Low ERa bpa vs. est

Non-overlap 4885 17,962 5314 1497 17,339 15,730

edgeR efflib 0 292 5199 1687 4318 223

edgeR fulllib 0 0 4627 1738 17,246 10,986

DiffBind efflib 5 411 5238 1732 2908 9

DiffBind fulllib 46 7 4663 1594 17,233 9063

MAnorm3 0 1991 5063 1638 14,249 897

voom fulllib 0 1 4496 1206 17,215 10,914

Number of peaks 16,278 22,828 5976 4089 17,439 15,968

This table shows the number of significantly differential binding sites for each of the methods where significant differential is defined as FDR adjusted p-value of less than 0.05 except

for non-overlap where non-overlap is the sum of the unique sites.

plot from using full library size for normalization matches
the biology for GR—most sites are differentially bound and
higher fold changes when comparing high hormone treatment
to low hormone treatment (Figure 4D). When using effective
library size for normalization, a contradiction arises where we
find significantly reduced binding in high hormone treatment
compared to low hormone treatment (Figure 4C). Both datasets
have similar sequencing depth but different amounts of protein
bound, suggesting that normalization using full library size is
more robust to variations in bound protein concentration than
effective library size.

When comparing between different cell types (TCF7L2 and
NRF1 experiments), we find that similar numbers of differentially
bound sites with a high degree of overlap using the two different
normalization methods (Table 3). Sequencing depth is roughly
similar between the cell types and we assume that total protein
binding is also similar. Under these two conditions, only a small
difference between the two library size normalization methods
is observed (Figures 4G,H), suggesting that the choice of library
size has little effect on results when we do not expect varying
protein binding between conditions and sequencing depth is
similar. We conclude that using edgeR with full library size
normalization performs similar to, or better than, edgeR with
effective library size normalization at detecting differentially
bound regions.

DiffBind

This method extends on edgeR by subtracting scaled input
(background) read counts from read counts overlapping peaks.
We expect DiffBind to perform similarly to edgeR for the control
and hormone treatment datasets since they are performed on the
same cell type. However, when comparing between different cell
types, input subtraction might correct for differences in regional
DNA copy number alterations (CNAs).

DiffBind performs similarly to edgeR when using full
library size normalization, with similar or fewer number of
differential peaks found by DiffBind in most comparisons
(Table 3, Supplemental Table 3). When assessing GR binding
in A549 cells, subtracting background has no effect on the
number of differential loci found for large differences in peak

height (high vs. low dose hormone treatment), but results in
fewer differential loci for the more moderate differences (high
vs. med dose). This is not surprising as there are no differences
in copy number for within cell line comparisons, and larger
differences can better tolerate input subtraction without loss of
signal. Interestingly, using DiffBind yielded a similar number
of differentially bound peaks between cell types compared to
edgeR (no input subtraction) (Table 3, Figures 4E,G). Known
CNAs exist for these different cell types and the proteins did bind
in regions with CNAs (Supplemental Table 4). We speculated
that correcting for input could increase true-positives at the
same time it decreases false-positives in regions with copy
number differences. We explored this using CNA summary data
published by ENCODE (Supplemental Tables 4, 5).

CNAs between cell lines are difficult to quantify from the
summary data, however assessing the enrichment of differential
peaks in regions of amplification/deletion for different cell lines
and analysis methods is informative. With or without input
correction, a similar fraction of differential peaks falls in regions
of CNAs for a single cell line. However, two observations suggest
that the DiffBind results may be more accurate. First, we compare
NRF1 binding in K562 cells vs. H1hesc, the former having 16.2%
of peaks in CNA regions and the latter only 0.3%. Differential
peaks identified either with or without input correction are
enriched in K562 CNA regions (25 vs. 16.2%). However, we see
higher enrichment for differential binding in CNA regions when
considering sites only identified without input correction (30
vs. 25%). This suggests that correcting for input identifies fewer
differential-binding sites in CNA regions. Second, a comparison
of HEK293 vs. MCF7 finds a similar result. Here, both cell
lines have copy number alterations (36 and 28% of genome,
respectively) so the comparison is indirect.With or without input
correction, around 33% of the differential peaks are found in
regions of CNA for HEK293 and around 27% of the differential
peaks in regions of CNA for MCF7 (Supplemental Table 5).
However, focusing once more on differential peaks only found
without input correction we see a higher than expected number
occurring in CNA regions for HEK293 (44 vs. 33%), and a lower
than expected number in CNA regions for MCF7 (20 vs. 27%, or
more normal copy regions). Together, these indicate the regions
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identified when input is not corrected are enriched in sites with
CNAs between HEK293 and MCF7. We conclude from this
that subtracting input using DiffBind can potentially improve
accuracy of detecting differential binding in regions where copy
number is different.

MAnorm3

This method applies edgeR after normalizing using peaks that
are shared between conditions. When applied to the control
datasets, this method finds no differences in Pol2 but finds a
surprisingly high number of differentially bound regions in c-
Myc (9% of total) (Table 3). This result remained unchanged
after down-sampling c-Myc samples to similar sequencing depth
and/or only using the top 5000 peaks from each dataset (data
not shown). Most differential regions identified by MAnorm3
in c-Myc are unique to the Stanford data set with higher
sequencing depth (Figure 5A). Although we originally selected
c-Myc as a negative control, this small fraction of differentially
bound regions suggests either that MAnorm3 did not properly
account for differential sequencing depth when total binding is
unchanged, or that some of the peaks with highest occupancy
changed during the lag time between experiments, an explanation
also considered earlier from our overlap analysis. We used our
in-silico derived Pol2 datasets of 8M and 46.2M reads once
more to assess the effect of different sequencing depth on the
false-positive rate for experiments run at the same time. After
normalizing on shared peaks we found less than 1% false-
positives, showing that MAnorm3 can correct for differential
sequencing depth when total binding is the same between
conditions.

When comparing between cell types, the MAnorm3 strategy
performs comparably with the other sample-level comparison
methods but has the highest number of unique differential
regions (TCF7L2 results shown in Figures 4F, 5B). The GR
dataset violates MAnorm3’s assumption that most shared peaks
are not differentially bound since more binding is expected
with higher hormone treatment. Thus, normalizing using

MAnorm3 removes true binding differences in shared peak
regions and has reduced sensitivity for GR dataset (Figure 5C)
with over 3000 differential binding regions identified by all
other methods missed by MAnorm3. We believe that MAnorm3
can be useful in circumstances when average binding for peaks
shared between samples is unchanged, but caution that the
results are very sensitive to this assumption and recommend
full library size normalization when the assumption is
not met.

Voom

This method produces similar or slightly fewer significant
differential regions compared to edgeR with full library size
(Table 3, Supplemental Table 3). MA plots show that this Voom
transformation greatly reduces the read counts (Figure 4I).
Overall, the similar results obtained for these data sets suggest
Voom may be a useful alternative approach for differential
TF binding analysis that would open access to methodology
developed for gene expression microarrays, for example gene set
testing.

Comparing Reproducibility of Differential Binding
Results Across Analysis Approaches
To evaluate the differences between the sample-level comparison
methods, we cluster the fold change estimates for the top
differentially bound sites for different methods with more
weight on the regions that were more robustly differentially
regulated (Table 3). For cell-type comparisons, TCF7L2 showed
that methods clustered based on whether input was subtracted
(Figure 6A). Since two of the three TCF7L2 cell types were cancer
cell lines, input subtraction can help remove effects from copy
number differences due to chromosomal abnormalities in these
cancer samples. All but one of the NRF1 fold changes showed
input subtraction and Voom clustering together (Supplemental
Figure 2). The comparison that did not cluster based on input
subtraction was between two non-cancer cell lines (GM12878

FIGURE 5 | Differences in results of sample-level comparison

methods. We overlap the regions with significant differential binding found

by each method for (A) c-Myc, (B) TCF7L2 HEK293 vs. Hela S3, and (C) GR

high vs. low hormone. For c-Myc (our negative control), we picked methods

with highest number of false-positives and overlap these results with the

peaks found by peak caller (Yale and Stanford).
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FIGURE 6 | Clustering of fold changes from top differentially

bound regions from each method. We combine the top 100

differential peaks in each condition and cluster estimated fold

changes. We used hierarchical clustering with average linkage and

Gower’s distance on log2-fold changes weighted based on how often

that region was significant. (A) TCF7L2 HEK293 cell type vs. HeLa

S3 cell type, (B) GR high vs. low comparison. For the Method row:

edgeR (black), DiffBind (dark blue), MAnorm3 (brown), and voom full

(orange). For the libsize row: effective library size (white) and full

library size (blue).

and H1 ESC) further suggesting the importance of input
subtraction for cancer cell lines.

For hormone treatment comparisons, normalization makes
the biggest difference on fold change estimates (GR in Figure 6B)
and samples using full library size (blue) cluster together when
comparing experiments with a large differential in numbers
of peaks found. One comparison that did not cluster by
normalization method found a large overlap in number of
differential regions (ERα est vs. gen) (Supplemental Table 3 and
Supplemental Figure 2).

Validation of Fold Changes
We validated fold changes by performing ChIP-qPCR on GR
peaks and using the validation data from the supplement of the
published TCF7L2 analysis (Frietze et al., 2012) (also S. Frietze,
personal correspondence) (Supplemental Figure 3). As expected
for the GR dataset, using full library size parameter performs
closest to qPCR validation when comparing between high vs. low
hormone treatment with edgeR performing better than DiffBind.
For TCF7L2 datasets, the fold change estimates from all different
methods are comparable to qPCR data at validated regions. We
conclude that of the methods we considered, edgeR with full
library size estimates fold changes closest to qPCR validation
under most conditions, but the variation in results suggests
further improvements on normalization methods is warranted.

Discussion

A number of new software packages for performing differential
TF binding analysis are publicly available, without accompanying
papers that assess their performance. These approaches build on
mature RNA-seq methods (Rapaport et al., 2013) to perform

differential binding analysis on known protein binding regions.
Although a larger number of methods allow the comparison
of pairs of experiments (Zhang et al., 2008; Heinz et al., 2010;
Huang et al., 2011; Taslim et al., 2011; Bardet et al., 2012), those
reviewed here analyze biological replicates (Stark and Brown,
2011; Liang and Keles, 2012) since accurate identification of
real differential binding is likely to rely more on the number
of biological replicates than sequencing depth (Rapaport et al.,
2013). In addition, to specifically compare statistical modeling
approaches we standardize a number of analysis steps, such as
peak calling and read counting over features.

We evaluate methods that correct for non-specific binding
and use different normalization methods to account for
sequencing depth differences between samples. This differs
from normalization performed during ChIP-seq peak calling to
account for features such as input and GC content, whereas
identifying differential peaks requires additional normalization
to make the different ChIP-seq experiments comparable. The
lack of true gold-standard data sets makes a general comparison
of methods difficult. Nevertheless, the sensitivity of results
to different methods under different biological comparisons
highlights proper normalization as a key analysis step and
identifies issues that bioinformaticians need to know about the
data, such as the expected differences in DNA-protein binding
between conditions and sample chromosome copy number.

Of the analysis steps evaluated, normalization for sequencing
depth between samples had the greatest potential for influencing
differential binding site discovery. ChIP-seq peak callers can also
be sensitive to read depth, with more reads leading to more
peaks found even when using the same FDR and IDR cutoff, as
seen in the c-Myc and the in silico-created Pol2 control datasets.
Normalization for sequencing depth is a crucial step that could
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lead to different conclusions if ignored or performed incorrectly.
Large differences in DNA-protein binding between conditions
causes an imbalance in number of peaks found and will skew
the signal to noise ratio between conditions. Knowing whether
biological differences in the amount of DNA bound protein
targeted by the ChIP antibody are expected between conditions is
crucial for choosing the best normalizationmethod. For example,
in the GR hormone treatment dataset, using full library size (all
reads) for normalization produced results that were consistent
with the expectation of higher binding with higher hormone
concentration and confirmed in our ChIP-qPCR validation.

Given that sample input is often critical for peak calling,
background correction (specifically, input subtraction) had a
modest influence on the identification of differential binding
sites. However, we note that the impact could be greater when
comparing samples withmore extreme variation in copy number.
Using DiffBind, we found some differences in regions with
high input leading to changes in ranks of differential binding
sites, their fold-change estimates, and the number of differential
binding sites discovered for comparisons within the same cell-
type. We found little differences in the number of significant
differential binding sites identified in the comparisons between
cell types, however differences that were observed occurred more
often in regions with CNAs. Future work could investigate how
these results compare to alternate CNA adjustment methods such
as ABCD-DNA (Robinson et al., 2012).

A major difference between ChIP-seq and RNA-seq is that
counts for differential RNA-seq are obtained over features (genes)
defined independently of the mapped sequence reads. These
features are shared between all treatment conditions, whereas
counts for differential ChIP-seq are obtained over peaks defined
from the sequencing reads. In this paper we analyzed differential
binding from merging peak found in our pair-wise comparisons,
a common practice for current differential binding analyses
(Stark and Brown, 2011; Liang and Keles, 2012; Shao et al.,
2012). Recent work suggests that FDR control can be lost when
merging peaks between conditions and instead proposes peak
calling for binding region discovery from the set of reads pooled
across experimental conditions (Lun and Smyth, 2014). Although
this different approach may affect individual results from our
analyses, we do not believe it would change our conclusions
about the steps in the data processing pipeline having the greatest
impact on differential binding results.

Differential peak calling methods are useful when comparing
binding both between different cell types and between the same
cell types after exposure to different treatments. As more ChIP-
seq datasets are published with multiple conditions, interest in

quantifying binding between conditions will only be increased.
Our study provides an overview of the differential ChIP-
seq binding analysis workflow and illustrates for experiments
with different amounts of total protein bound the potential
poor performance of data normalization using methods that
do not consider the full number of reads sequenced. We
recommend performing differential binding on datasets with
similar sequencing depth; using edgeR with full library size
normalization when total binding differs between experiments;

and subtracting input using DiffBind when comparing between
cells with extensive known aneuploidy.
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