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Abstract

All pharmaceutical companies are required to assess pharmacokinetic drug-drug interac-

tions (DDIs) of new chemical entities (NCEs) and mathematical prediction helps to select

the best NCE candidate with regard to adverse effects resulting from a DDI before any costly

clinical studies. Most current models assume that the liver is a homogeneous organ where

the majority of the metabolism occurs. However, the circulatory system of the liver has a

complex hierarchical geometry which distributes xenobiotics throughout the organ. Never-

theless, the lobule (liver unit), located at the end of each branch, is composed of many

sinusoids where the blood flow can vary and therefore creates heterogeneity (e.g. drug con-

centration, enzyme level). A liver model was constructed by describing the geometry of a

lobule, where the blood velocity increases toward the central vein, and by modeling the

exchange mechanisms between the blood and hepatocytes. Moreover, the three major DDI

mechanisms of metabolic enzymes; competitive inhibition, mechanism based inhibition and

induction, were accounted for with an undefined number of drugs and/or enzymes. The liver

model was incorporated into a physiological-based pharmacokinetic (PBPK) model and sim-

ulations produced, that in turn were compared to ten clinical results. The liver model gener-

ated a hierarchy of 5 sinusoidal levels and estimated a blood volume of 283 mL and a cell

density of 193 × 106 cells/g in the liver. The overall PBPK model predicted the pharmacoki-

netics of midazolam and the magnitude of the clinical DDI with perpetrator drug(s) including

spatial and temporal enzyme levels changes. The model presented herein may reduce

costs and the use of laboratory animals and give the opportunity to explore different clinical

scenarios, which reduce the risk of adverse events, prior to costly human clinical studies.

Introduction

A pharmacokinetic drug-drug interaction (DDI) is where a drug(s), the perpetrator drug(s),

interacts with a metabolizing enzyme(s) or membrane transporter(s) such that the
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pharmacokinetics (PK) of another drug(s), the victim drug(s), is altered. In the late 1970s, the

first cases of pharmacokinetic DDIs were reported [1], and since then more and more DDIs

have been identified especially in the situation of polypharmacy as is often the case for elderly

patients [2]. The increase in observed DDIs coupled to some lethal cases [1] led the FDA to

publish in 1997 the first in vitrometabolism drug interaction guidance document [3] for phar-

maceutical companies. In order to identify the possible interactions of new chemical entities

(NCEs), many strategies have been suggested as it is essential to know before costly clinical tri-

als, whether a NCE will be a safe drug. One of those strategies relies on the combination of in
vitro information coupled to mathematical models to predict the clinical DDIs. This has the

advantage to be cost effective, reduce the use of laboratory animals and give the opportunity to

explore different clinical scenarios in order to identify optimum dose regimens. Excluding the

limitations of in vitro experiments, the modeling approach is limited by the sophistication of

the implemented models. Current models are classified into two different categories that

depend on whether they are a function of time or not (i.e. static and dynamic models), and

mainly focus on one enzyme and/or one particular aspect of DDIs (e.g. reversible inhibition

[4], mechanism based inhibition [5] or induction [6]). In their most advanced form the static

models may account for all kinds of DDIs [7], but are limited in their ability to describe com-

plex mechanisms related to administration, distribution, metabolism or excretion such as

active drug transport (uptake) into hepatocytes or enterocytes. Although the dynamic models

are more descriptive, traditionally, the dynamic models were developed to describe specific

drug cases [4, 5, 8] and most of them assume that the liver is a homogeneous organ (e.g. well-

stirred model [9, 10]) where the majority of the metabolism occurs. However, the circulatory

system of the liver has a complex hierarchical geometry which helps to distribute xenobiotics

throughout the organ. Nevertheless, the lobule (liver unit), located at the end of each branch, is

composed of many sinusoids (small blood vessels) where the blood flow can vary and therefore

creates heterogeneity (e.g. drug concentration, enzyme level). Some liver models account for

heterogeneity, such as the parallel tube model [9, 10] and the dispersion model [11, 12], but

they have not been used to predict DDIs and do not account for the variation in blood flow

through the lobules. With established methodologies of in vitro screening for DDIs, pharma-

ceutical companies need adequate tools to predict the net result of in vivoDDIs to translate

their in vitro observations to clinical predictions. It is common for elderly patients to receive

several medications to treat different symptoms or conditions. Each of these medicines can

potentially interfere with the usual routes of metabolism for another drug. There is a serious

need for better models to cover all different scenarios, which also takes into account the vari-

abilities between individuals, such as size, weight and differences in genetic polymorphisms

[13]. In this paper, a liver model will be presented that takes into account three major DDI

mechanisms of metabolic enzymes; competitive inhibition, mechanism based inhibition

(MBI) and induction, with an undefined number of drugs and/or enzymes, where the lobule

geometry will be accounted for due to its impact on blood flow heterogeneity. The liver model

will then be incorporated into a physiological-based pharmacokinetic (PBPK) model and sim-

ulations produced that in turn will be compared to clinical results. The description of the

model proposed herein is divided into six parts. The first part will introduce the model and the

notations used throughout the document including a new liver model taking into consider-

ation its hierarchical structure and the different body compartments that are essential to drug

metabolism. In the second part, the algorithm to generate the lobule geometry will be pre-

sented, where length and radius of the sinusoids are produced. In the third part, the transport

and metabolism reactions of the drugs will be mathematically described. As the drugs are dis-

tributed in the body through the bloodstream, the conservation equation will be used in the

liver sinusoids to describe the blood transport and the exchange mechanisms between the
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blood and hepatocytes, such as passive diffusion and active uptake/efflux of the drugs. Inside

the hepatocytes, drug metabolism and drug interactions with metabolic enzymes will be

described. In the fourth part, the PBPK model presented in part one will be fully developed. In

part five, a brief description on how the PBPK was numerically resolved will be given. In the

sixth part, drugs for which data exist will be considered and their physiological parameters

defined. Finally the results from the new liver model will be presented and compared to clinical

data.

Models

Presentation of the liver model and notations

The objective of this section is to provide a brief explanation of the subsequent models that

will be used to develop a formal understanding of DDIs. There are three major aspects to con-

sider; (i) the geometry of the lobule (ii) the set of complex interactions between xenobiotics

and enzymes (iii) the usual set of body compartments (PBPK Model).

Drugs move with the flow of blood and as a result the exchange mechanisms of drug

between the blood and the tissue will be a function of the lobule geometry in which the flow

takes place. The lobules have a peculiar shape idealized as hexagons composed of a series of

peripheral entries (portal veins and hepatic arteries) and a central vein (Fig 1A and 1B). This

spatial configuration and its hierarchical structure will need to be taken into consideration in

order to describe the blood flow and to generate an algorithm to construct a lobule within the

physiological constraints. Furthermore, the blood velocity will be assumed constant and aver-

aged over the cross section of sinusoids present within the lobule while it will vary along the

length of sinusoids as their radii narrow. The latter assumption is the only one that will be

used, which reduces the spatial dimension to one. The spatial variable is noted x and for each

sinusoids portion the x-axis is taken along the bisector and goes from the external part of the

lobule to the central vein (Fig 1C).

To describe the DDIs no assumptions will be made on the number of drugs and enzymes

involved to make the model generic for all animal species. However, the only way to achieve

this is to consider matrix calculus. While this may appear as an unnecessary complication at

first sight, it will be seen that with adequately defined operators the writing of equations is

largely intuitive even for those not fully familiar with matrix algebra. To start with, the follow-

ing notations nC and nE will refer to the number of drugs and enzymes, respectively. To distin-

guish between scalars and matrices (including vectors), matrices and vectors are written in

bold. Thus any set of variables or constants related to drugs shall be described as a column vec-

tor of size nC including their concentrations: C = (C1� � �CnC)
tr or membrane permeability:

P = (P1� � �PnC)
tr. Note here that the subscript “tr” refers to the transposition of a column vector

into a vector line (the same notation shall be used for matrices where in this case the operator

transposed is noted: Atr ¼ ðatri;jÞ 1 � i � m

1 � j � n

¼ ðaj;iÞ 1 � i � m

1 � j � n

where A ¼ ðai;jÞ 1 � i � n

1 � j � m

). Similarly, any

set of variables or constants related to enzymes or their degradation shall be described as a col-

umn vector of size nE including for example the enzyme concentrations: E = (E1� � �EnE)
tr; or

their degradation: kdeg = (kdeg, 1� � �kdeg, nE)
tr. As the number of possible pair interactions

between enzymes and drugs is given by the scalar product: nC × nE, one defines the matrix

EC ¼ ðECi;jÞ 1 � i � nC
1 � j � nE

where the term ECi, j represents the interaction of the i-th drug with the

j-th enzyme. Finally, as the interaction between the i-th drug with the j-th enzyme can lead to

the formation of a product one needs to specify the kinetics of the reaction by another parame-

ter, kcat, i, j, specific to the ECi, j complex. In these conditions the scalar product kcat, i, j × ECi, j
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Fig 1. Lobule geometry and modelling. (A) The lobule cross section as represented displays an apparent elementary

symmetry essential for its physiology primarily given by the blood vessels and the blood flow (Credit to Dr. Roger C. Wagner,

University of Delaware). (B) This symmetry is used when lobule modeling or representation are involved. In general, a lobule is

represented by a hexagon composed of hepatocyte plates. These plates are hierarchically organized to optimize exchanges.

(C) To model the blood flow (and subsequent exchanges between the liver tissues and the blood), an algorithm was designed to
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define the reaction rate of the reaction. To use matrices one needs to define the following oper-

ators: “�” such that kcat � EC ¼ ðkcat;i;j � ECi;jÞ 1 � i � nC
1 � j � nE

. By extension, a division operator is

defined and noted “/” or “−” between vectors or matrices such that: x=y ¼ x
y ¼

xi;j
yi;j

� �

1 � i � n

1 � j � m

.

Finally for completion the column vectors of size nC or nE and of components equal to unity

shall be noted: 1nC
and 1nE

.

Last but not least, a seven-compartment model is used involving: venous blood, arterial

blood, liver, gut, kidneys, lungs (to consider the pulmonary circulation), and the rest of the

body (Fig 2). The average volume and blood flow of each compartment is given in S1 Table.

Lobule geometry

The lobule is the elementary unit of the liver where the exchange of nutrients and xenobiotic

compounds occurs between the blood and the hepatocytes. The shape of the lobule and the

spatial distribution of the hepatocytes are irregular in appearance (Fig 1A). But schematically,

the liver lobule can be represented by a hexagon (Fig 1B), where the hepatic vein is at the cen-

tre and where at each apex, the hepatic artery and the hepatic portal vein pour blood into the

sinusoids. The sinusoids are converging toward the centre where the blood leaves the lobule

through the central vein (Fig 1B).

To suggest a theory on which an amenable model will be based, the lobule geometry will be

simplified. The parameters used to define the geometry are summarized in Table 1, whereas

the algorithm to build the lobule geometry for the simulations is schematically represented in

Fig 1C where each step is numbered and detailed as below:

1. The hexagonal shape of the lobule is replaced by a disc of similar area: 3
ffiffi
3
p

2
R2
lobule ¼ pR2

Circle.

2. Due to the symmetry of an hexagon, only one sixth of the circle will be taken into account.

3. The initial two hepatocyte plates are placed on either edge of the sector (one sixth of the cir-

cle) and respect a minimal distance of 2RSin between the hepatocytes plates, the initial dis-

tances from the centre are estimated by:

a. The first sinusoid output: x0 ¼
RSin
tan y1

þ e
2 sin y1

where yk ¼
y0

2k
and θ0 = 60˚.

b. The first hepatocyte plate: y0 ¼
RSin
sin y1

þ e
2 tan y1

.

c. Iteration initialization: k = 0

4. A loop is implemented as follow: while xk� RCircle do

a. k = k + 1

b. Place a hepatocyte plate on each line of angle θk + (i − 1)θk − 1 for 8i 2 {1, . . ., 2k − 1},

such as the minimal distance of the new hepatocyte plate to the previous one is 2RSin cos

θk + 1, which gives an output diameter of 2RSin.

c. The distance of the outputs: xk ¼ RSin
tan ykþ1

þ e
2 sin ykþ1

.

automatically generate the length and radius of the sinusoids. The latter is used to estimate the changes in velocity within a

sinusoid portion by assuming a constant blood flow and a constant velocity over the cross section.

https://doi.org/10.1371/journal.pone.0183794.g001
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Fig 2. The seven compartmental model. Red and blue arrows represent blood flows (Qi where i represents: T for total blood flow, ha

hepatic artery blood flow, pv portal vein blood flow, L for the liver blood flow, G for the gut blood flow, K for the kidneys blood flow and RB for

the blood flow going to the rest of the body). The black arrows represent absorption (ka: absorption constant rate) or excretion (CLR: Renal

Clearance).

https://doi.org/10.1371/journal.pone.0183794.g002
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d. The distance of the new plates: yk ¼ RSin
sin ykþ1

þ e
2 tan ykþ1

.

5. When xk � RCircle the last level of sinusoid is reached and one poses n = k. Then in order to

be consistent with the direction of the blood flow, the level 1 is defined as the furthest level

from the central vein, and the level n as the closest one.

6. As a result, the length of each sinusoids level is given by: Lk = min(yn− k+1, RCircle) − xn − k.

Now that the number and the length of the sinusoid levels are defined, the radius within

each level changes which is expected to impact the exchange of chemicals between the blood

and the hepatocytes. Therefore it is essential to calculate the sinusoid radius changes for every

level defined above. The radius along the sinusoids of level k, following the blood flow, is then

given by:

RkðxÞ ¼ RSin þ ðLk � xÞ tan yn� kþ1 8x 2 ½0 : Lk� ð1Þ

Finally, as one assumes that the blood flow Qk at a given level k is identical for all sinusoids,

the blood flow and the average velocity are given by:

Qk ¼
QLobule
6 � 2n� k

vkðxÞ ¼
Qk

pRkðxÞ
2
8x 2 ½0 : Lk�

8
>><

>>:

ð2Þ

where the flow in a lobule is QLobule = QLiver/NLobule with NLobule = VLiver/VLobule and VLiver and

VLobule are, respectively, the liver and lobule volumes. This assumes the same flow in each lob-

ule. Finally, to simplify the notation, in the remaining text we define:

8x 2 ½0 : Ln�

RðxÞ ¼ R1ðxÞ1½L0:L1 �
þ
Xn

k¼2

Rkðx � Lk� 1ÞI�Lk� 1:Lk�
ðxÞ

QðxÞ ¼ Q1ðxÞ1½L0:L1 �
þ
Xn

k¼2

Qkðx � Lk� 1ÞI�Lk� 1:Lk�
ðxÞ

vðxÞ ¼ v1ðxÞ1½L0:L1 �
þ
Xn

k¼2

vkðx � Lk� 1ÞI�Lk� 1:Lk �
ðxÞ

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð3Þ

where 8k 2〚1 : n〛Lk ¼ Lk� 1 þ Lk, L0 ¼ 0 and IE is the indicator function of E.

Table 1. Lobule parameters.

Parameter Description Value

RLobule Lobule Radius 790.57μm [14]

Rsin Minimal Sinusoidal Radius 3.65μm [14]

eLobule Lobule Thickness 25.00μm [14]

RH Hepatocyte Radius 8.49μm [14]

e Hepatocyte Plate Width(= 2RH) 16.97μm

https://doi.org/10.1371/journal.pone.0183794.t001
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Conservation and kinetic equations for the liver model

Conservation equation in the blood. Now that the lobule geometry has been defined, the

equations which describe the transport and metabolism of drugs in the liver can be expressed.

Before being metabolized in the hepatocytes, the drugs flow with the blood through the lobules

and are passively or actively transported into the hepatocytes. Considering nC drugs and

assuming no irreversible reaction within the blood, the conservation equation can be used to

describe the concentrations such as:

@Cb

@t
þ v xð Þ

@Cb

@x
¼ � aB!H xð Þ P þ ρinð Þ � f b

u � Cb � P þ ρoutð Þ � f h
u � Ch

� �
ð4Þ

where Cb, Ch, P, ρin, ρout, f b
u, f h

u and v(x) are, respectively, the concentrations of the drugs in

the liver blood and hepatocytes, the permeability and the uptake/efflux rates through the

hepatocyte membrane, the fraction unbound in the blood and hepatocytes and the blood

velocity; and where αB! H(x) is the ratio of the elementary blood-hepatocyte surface exchange

δSExchange(x) to the elementary blood volume δVBlood(x) (see S1 Appendix), given by:

aB!H xð Þ ¼
2R xð Þ þ

eL � 2RH
cos yðxÞ

RðxÞðeL � 2RHÞ
ð5Þ

As the blood flow enters the sinusoid from the hepatic arteries at x = 0, the initial and bound-

ary conditions are given by:

Cbðx > 0; t ¼ 0Þ ¼ 0

Cbðx ¼ 0; tÞ ¼ C0ðtÞ

Chðx; t ¼ 0Þ ¼ 0

8
><

>:
ð6Þ

where C0(t) will be defined once the PBPK model will be decribed.

Drug kinetic equation in the hepatocytes. Once the drugs enter inside the hepatocytes

by passive and/or active transport, a cascade of reactions may occur involving metabolism of

the drugs by one or more enzymes and includes cross reaction(s) between metabolite(s) and

drug(s). The presented model focuses specifically on the reactions schematically represented

in Fig 3 (i.e. Competitive Inhibition, MBI and Induction).

Furthermore, it will be assumed that no exchange of materials between hepatocytes happens

and that the equilibrium between the drugs and enzyme complex is quickly reached (see S2

Appendix for the mathematical simplification). Therefore, by using the law of conservation of

mass, one can describe the equation governing the concentration of drugs within the hepato-

cytes by:

dCh

dt
¼ aH!BðxÞ½ðP þ ρinÞ � f

b
u � Cb � ðP þ ρoutÞ � f

h
u � Ch�

� ðkcat � ECMetÞ1nE

� ðkinact � ECMBIÞ1nE

�
Vmax;2

Km;2 þ f h
u � Ch

� f h
u � Ch

ð7Þ

where ECMet ¼ ðECMet;i;jÞ 1 � i � nC
1 � j � nE

represents the concentration of complex involved in the
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metabolism of drugs, ECMBI ¼ ðECMBI;i;jÞ 1 � i � nC
1 � j � nE

the concentration of complex inactivating the

enzymes and; Vmax, 2 and Km, 2 the constants associated with unspecified metabolic pathway

(s), modeled by a Michaelis-Menten equation. Finally αH! B(x) is the ratio of the elementary

blood-hepatocyte surface exchange δSExchange(x) to the elementary hepatocyte volume δVHep(x)
(see S1 Appendix), given by:

aH!B xð Þ ¼
2R xð Þ þ

eL � 2RH
cos y

RH 2Rk xð Þ þ
eL

cos y

� � ð8Þ

Eq (7) can be rewritten considering the rapidly attained equilibrium assumption. In this

context the enzyme-drug complex concentrations can be expressed as a function of the free

Fig 3. Enzymatic reactions taken into account in the liver model. Reversible inhibition: A drug binds to an enzyme which may result in

its metabolism (but not necessarily) resulting in the temporary blockade or inhibition of the enzyme. Here only competitive inhibition will be

studied, which assumes that each enzyme can interact with one drug at a time. Mechanism Based Inhibition (MBI): A drug inactivates an

enzyme through direct interaction resulting in an inhibited metabolism of any drug metabolized by these enzymes. Induction: A drug induces

the expression of one or more enzymes resulting in an induced metabolism of any drug metabolized by these enzymes. Note that the

notations in this figure regarding the kinetic rate constants are used in the text.

https://doi.org/10.1371/journal.pone.0183794.g003
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enzyme levels and drug concentrations as follow:

ECMet ¼
ðf h

u � ChÞE
tr

Km;1

ECMBI ¼
ðf h

u � ChÞE
tr

KI

ð9Þ

where E = (E1, . . ., EnE)
tr represents the free enzyme levels and where the constants

Km;1 ¼
k21 þ kcat

k12

and KI ¼
k41 þ kinact

k14

are developed in S2 Appendix. Therefore the equation

becomes:

dCh

dt
¼ aHBðxÞ½ðP þ ρinÞ � f

b
u � Cb � ðP þ ρoutÞ � f

h
u � Ch�

� kcat=Km;1 þ kinact=KI

� �
E

� �
� f h

u � Ch �
Vmax;2

Km;2 þ f h
u � Ch

� f h
u � Ch

ð10Þ

Enzyme kinetic equation in the hepatocytes. The remaining set of equations needs to

describe the enzyme kinetics. In general the level of enzymes are assumed to be constant, but

when MBI and/or induction occur, changes in enzyme levels are not immediate and time

needs to be taken into consideration. Therefore modelling the enzyme kinetics is essential,

using classical kinetic equations and assuming that the enzyme induction is additive, the fol-

lowing can be written:

dETot

dt
�
dE
dt
¼ kdeg � E0 þ

Emax � 1nC
Etr

0

EC50 þ ðf
h
u � ChÞ1

tr
nE

 !tr

ðf h
u � ChÞ � ETot

" #

� ðkinact � ECMBIÞ
tr1nC

dECMet

dt
¼
dECInh

dt
¼
dECMBI

dt
� 0

ETot ¼ E þ ½ECMet þ ECInh þ ECMBI�
tr1nC

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð11Þ

where ECInh ¼ ðECInh;i;jÞ 1 � i � nC
1 � j � nE

is the concentration(s) of complex that does not metabolize

the drugs and is also given by ECInh ¼
ðf h

u � ChÞE
tr

Ki
where Ki ¼

k31

k13

(see S2 Appendix). The

equation above can be further simplified by using Eq (9) and by normalizing the enzyme levels

by its initial and basal level E0 and by noting ETot ¼ ETot=E0 and FImax ¼ Emax=ð1nC
E0
trÞ:

d�ETot

dt
¼ kdeg � 1þ

ðFImax � 1Þ

EC50 þ ðf
h
u � ChÞ1

tr
nE

 !tr

ðf h
u � ChÞ �

�ETot � 1þ

1

kdeg
�

kinact

KI

� �tr

ðf h
u � ChÞ

1þ
1

Km;1
þ

1

Ki
þ

1

KI

 !tr

ðf h
u � ChÞ

0

B
B
B
B
B
@

1

C
C
C
C
C
A

2

6
6
6
6
6
4

3

7
7
7
7
7
5

�E ¼
�ETot

1þ
1

Km;1
þ

1

Ki
þ

1

KI

 !tr

ðf h
u � ChÞ

ð12Þ
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Note that if a drug is not metabolized or does not bind or inactivate a specific enzyme, the

related constant is set to infinity, which corresponds to an infinite potency. Furthermore, it is

important to note that if two drugs are metabolized by the same enzyme site they automatically

inhibit each other and as a result Ki can be taken as infinity, except if it is suspected that two

binding sites are active for a given drug (e.g. one will metabolize the drug whereas the other

will just bind to it). However it is difficult to make this distinction experimentally.

PBPK model

Having the liver model defined and the related enzymatic reactions, they need to be incorpo-

rated into a PBPK model to be able to simulate the PK of the different drugs and predict their

interactions. As seen above, the PBPK model is constituted of 7 compartments: Arterial Blood,

Venous Blood, Liver, Gut, Kidneys, Lungs and the Rest of the Body (RB) (Fig 2). All compart-

ments, except the liver and gut, are modeled below as classical compartments associated with

their own physiological volume and partition coefficient for drugs [15]. Furthermore, as the

drug(s) is(are) administered orally at t = 0 the initial concentration of all compartments is

taken equal to zero. Finally, each of the compartments is defined as:

• Arterial Blood Compartment:

VAB
dCAB

dt
¼ QT

CLungs � RBP

Kp;Lungs
� CAB

 !

ð13Þ

where CAB and VAB are the concentration of drugs and volume of the arterial blood, QT the

total blood flow and CLungs and Kp, Lungs the concentration and partition coefficient of the

lungs; and RBP the blood-to-plasma ratio.

• Venous Blood Compartment:

VVB
dCVB

dt
¼ QLiverCLiver þ QK

CK � RBP

Kp;K
þ QRB

CRB � RBP

Kp;RB
� QTCVB ð14Þ

where CVB and VVB are the concentration of drugs and volume of the venous blood com-

partment, CLiver and QLiver are the concentration of drugs and blood flow for the liver and

where, CK, CRB, QK, QRB, Kp, K and Kp, RB, CLiver are the concentrations of drugs, the blood

flows and partition coefficients of the kidney and the compartment corresponding to the

rest of the body (RB-compartment), respectively. To be more specific CLiver is the concentra-

tion at the exit of the lobule.

• Kidney Compartment:

VK
dCK

dt
¼ QK CAB �

CK � RBP

Kp;K

 !

� CLint;R � CK ð15Þ

where CLint, R is the intrinsic renal clearance.

• Lung Compartment:

VLungs
dCLungs

dt
¼ QLungs CVB �

CLungs � RBP

Kp;Lungs

 !

ð16Þ

where VLungs and QLungs are the volume of the lungs and blood flow in the lungs,

respectively.
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• RB-Compartment:

VRB
dCRB

dt
¼ QRB CAB �

CRB � RBP

Kp;RB

 !

ð17Þ

• Gut Compartment:

The gut compartment is composed of two sub-compartments [16]; the gut wall and the por-

tal vein sub-compartments (Fig 4). The model to describe the gut wall sub-compartment is

similar to the liver model with a few differences including a homogeneous compartment

with a first order absorption, differences in enzyme levels and convection to the portal vein.

Therefore the concentration of drugs and enzymes within the gut wall are described by:

dCg

dt
¼

XnDose

i¼1

Fa � Di � ka

Vg
� expð� kaðt � TiÞÞHðt � TiÞ

� ½ðkg
cat=K

g
m;1 þ kg

inact=K
g
I ÞEg � � f

g
u � Cg

�
Vg

max;2

Kg
m;2 þ f g

u � Ch
� f g

u � Cg �
Qg
Vg

f g
u � Cg

d�ETot;g

dt
¼ kg

deg � 1þ
ðFIg

max � 1Þ

ECg
50
þ ðf g

u � CgÞ1
tr
nE

 !tr

ðf g
u � CgÞ �

�ETot;g � 1þ

1

kg
deg

�
kg

inact

Kg
I

� �tr

ðf g
u � CgÞ

1þ
1

Kg
m;1

þ
1

Kg
i
þ

1

Kg
I

 !tr

ðf g
u � CgÞ

0

B
B
B
B
B
@

1

C
C
C
C
C
A

2

6
6
6
6
6
4

3

7
7
7
7
7
5

�Eg ¼
�ETot;g

1þ
1

Kg
m;1

þ
1

Kg
i
þ

1

Kg
I

 !tr

ðf g
u � CgÞ

ð18Þ

8
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where Cg is the concentration of drugs in the gut wall, Fa the fraction absorbed of the drugs,

Di the dose at time Ti, ka the absorption rate constant of the drugs, nDose the total number of

doses given, f g
u the fraction of unbound drugs in the gut wall, Vg the volume of the gut wall,

H the Heaviside function and �Eg and �ETot;g are the free and total normalized enzyme levels to

the initial and basal enzyme level in the gut wall; E0,g. Qg is a hybrid parameter introduced by

Yang [17], which takes into account the membrane permeability of the drugs and blood flow

from the enterocytes to the portal vein (see S3 Appendix for more details). All other parame-

ters, except Vg
max;2 and E0,g, are taken equal to the corresponding liver values.

The concentration within the portal vein sub-compartment is given by:

dCpv

dt
¼
Qpv
Vpv

CAB � Cpv

� �
þ
Qg
Vpv
� f g

u � Cg ð19Þ

where Cpv is the concentration in the portal vein, Qpv the blood flow of the portal vein and

Vpv the volume of the portal vein.

• Liver Compartment:

Finally the liver compartment is described by the liver model previously described with the

boundary condition C0ðtÞ ¼
QhaCABðtÞ þ QpvCpvðtÞ

Qha þ Qpv
at x = 0 (Eq (6)). All volumes and
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blood flows used for the simulation are taken as the average value of a 70 kg man and are

summarized in S1 Table

Numerical resolution

To resolve the herein PBPK, a program was written in MATLAB
1 R2015b [18], using an object-

oriented programming (OOP) approach. First, each compartment was identified as a generic

object which generates a function fi such as
dYi

dt
¼ f t;Yið Þ where fi and Yi are both column

vectors and represent the dynamics of the system and variables of interest (e.g. blood concen-

tration and enzyme level) of the compartment i, respectively. Then, the compartments are

combined in a larger object that connects them with their respective blood flows; used to iden-

tify the source term for each compartment, and generate a generic function f(t, Y) such as

dY
dt
¼ f t;Yð Þ where f tr ¼ ðf tr

1
; f tr

2
; . . . ; f trn Þ and Y tr ¼ ðY tr

1
;Y tr

2
; . . . ;Y tr

n Þ. Finally, Y is resolved

by using the solver ode15s, which was the preferred solver as it can solve stiff problems and

adapt the time step for optimum resolution. A more detailed description of the main architec-

ture of the program can be found in the appendix S6 Appendix and the code with an example

in appendix S1 Code.

Parameters

Clinical studies. Ten clinical studies, summarized in Table 2, were selected to assess the

predictions from the PBPK model with the observations. For each clinical study, midazolam

was used to probe the impact of the perpetrator drug on the CYP3A4 enzyme.

Fig 4. The gut-compartmental model. The gut compartment is composed of two sub-compartments; the gut wall and the portal vein sub-

compartments. After an oral administration of a given drug, a fraction Fa is absorbed from the intestine to the gut wall with an absorption rate

constant ka. Once the drug is in the gut wall, it may be metabolized and will cross the cell membrane (passively or actively) at a flow Qg,

depending on drug permeability and villous blood flow (see S3 Appendix), to join the blood circulatory system. Once the drug is in the blood,

it goes to the liver through the portal vein.

https://doi.org/10.1371/journal.pone.0183794.g004
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CYP3A4 enzyme. The CYP3A4 enzyme was the enzyme of interest, as it is the main

enzyme to metabolize midazolam. The amount of the CYP3A4 enzyme in the liver and intes-

tine was taken as equal to 9.228 μmol [8] and 0.070 μmol [8], respectively. To estimate the con-

centrations E0 and Eg0 for CYP3A4, the respective amounts were divided by the total volume of

hepatocytes Vh, estimated from the liver model, and the gut wall volume given in S1 Table.

The degradation rate constants kdeg and kgdeg for CYP3A4 were taken equal to 0.0192 h−1 [29]

and 0.0288 h−1 [29] for the liver and intestine, respectively.

Hepatic clearance. In the PBPK model, three parameters, kcat, Vmax,2 and Vg
max;2, were

introduced. The hepatic blood clearance CLH can easily be obtained from clinical studies,

which represents the clearance due to drug metabolism in the liver with respect to the blood

compartment. Therefore, CLH was corrected to estimate the three parameters. This is done

first by estimating the apparent intrinsic clearance CLint assuming a parallel tube model [9],

due to the similarity with the herein liver model. Then to correct the impact due to exchange

mechanisms between blood and hepatocytes, the metabolic intrinsic clearance CL�int [30] was

calculated. The equations for CLint and CL�int are:

CLint ¼ �
QLiver
f bu

ln 1 �
CLH
QLiver

� �

CL�int ¼
SexðP þ routÞCLint
SexðP þ rinÞ � CLint

8
>>><

>>>:

ð20Þ

where f bu and Sex are the blood fraction unbound and the total exchange surface between blood

and hepatocytes given by the liver model, respectively. Finally, kcat, Vmax,2 and Vg
max;2 can be

Table 2. Summary of 10 in vivo clinical studies used in comparison to the simulations.

Perpetrator Dosage Regimen (p.o) Victim Dosage Regimen (p.o) Observation Ref.

Dose Numbers Interval Dose Intake Time Ratio

(mg) (mg) (h) AUC a Cmax
b

Azithromycin 500 3 doses q.d.c Midazolam 15 49.5 1.27 1.29 [19]

Cimetidine 400 3 doses Irregulard Midazolam 15 25 1.35 1.26 [20]

Clarithromycin 500 13 doses b.i.d.e Midazolam 8 144 8.39 3.80 [21]

Diltiazem 60 5 doses t.i.d.f Midazolam 15 25 3.75 2.05 [22]

Ethinyl Estradiol 0.03 10 doses q.d. Midazolam 7.5 217 1.20 1.16 [23]

Fluconazole 400 1 doses q.d. Midazolam 7.5 2 3.50 2.50 [24]

Fluoxetine 60 & 20 5 & 7 doses q.d. Midazolam 10 265 0.84 1.11 [25]

Ketoconazole 400 4 doses q.d. Midazolam 7.5 73 15.90 4.09 [26]

Pleconaril 400 15 doses t.i.d. Midazolam 5 112 0.65 0.76 [27]

Rifampin 600 10 doses q.d. Midazolam 5.5 Multipleg 0.12 0.17 [28]

aAUC: Area Under the Curve AUC ¼
Rþ1

0

CðtÞdt

bMaximum Concentration: Cmax ¼ max
t�0

CðtÞ

cq.d.: quaque die (once a day)
dIntakes at 0, 12 and 24.5 h.
eb.i.d.: bis in die (twice a day)
ft.i.d.: ter in die (three times a day)
gIntakes at 118 and 190 h.

https://doi.org/10.1371/journal.pone.0183794.t002
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calculated by:

kcat ¼ fm;3A4 �
CL�intKm;1
E0Vh

Vmax;2 ¼ ð1 � fm:3A4Þ �
CL�intKm;2
Vh

Vg
max;2 ¼

ð1 � f g3A4ÞA
g
CYPVGW

ð1 � f3A4ÞACYPVh
Vmax;2

8
>>>>>>>><

>>>>>>>>:

ð21Þ

where fm, 3A4 is the fraction metabolized by the CYP3A4 enzyme, ACYP and AgCYP are the total

amount of CYP in the liver and intestine, respectively, and f3A4 and f g3A4 are the fraction

amount of CYP3A4 in the liver and intestine, respectively. Hepatic and intrinsic clearances

CLH/CLint/CL�int and fraction metabolized fm, 3A4 are reported in Table 3, blood fraction

unbound f bu in Table 4, and fraction amounts f3A4/f g3A4 and CYP amounts ACYP/ A
g
CYP in

Table S2 Table.

Renal clearance. The renal clearance values CLR were obtained from the literature

(Table 3). As the renal clearance is expressed with respect to the blood compartment, as it is

the case for hepatic clearance, an intrinsic renal clearance CLint,R was calculated by assuming a

well-stirred model [9]. The intrinsic renal clearance CLint,R can be expressed as:

CLint;R ¼
RBP
Kp;K

�
QKCLR
QK � CLR

ð22Þ

where QK, RBP and Kp,K are the kidney blood flow (S1 Table), the blood-to-plasma ratio

(Table 4) and the kidney partition coefficient (Table 5), respectively.

Remaining parameters. The partition coefficients for each compartment and drug are

found in Table 5. Parameters related to reversible inhibition, MBI and induction are reported

Table 3. Metabolism parameters of the drugs.

Drug CLH CLm, int CL�m;int Km fm, 3A4 CLR

L/h L/h L/h μM L/h

Midazolam 34.42 [31] 1095.19 1991.20 2.30 [32] 0.96 [33] 0.09 [5]

Azithromycin 33.60a 353.81 392.18 150.00 [29] 1.00b 9.29a

Cimetidine 13.44 [34] 16.22 16.83 10.00c 0.00 17.22a

Clarithromycin 26.52 [31] 112.47 131.30 50.00d 0.80 6.00 [31]

Diltiazem 50.20a,e 340.21 375.54 30.00d 1.00 [35] 2.88a

Ethinyl Estradiol 42.52a 1643.00 5334.34 18.00d 0.60 [36] 0.00

Fluconazole 0.71 [37],e 0.80 0.80 10.00c 0.00 1.03a

Fluoxetine 40.32 [38] 1083.31 1546.61 10.00c 0.00 0.00

Ketoconazole 0.69 50.74 [4] 51.46 1.52 [4] 0.00 0.00

Pleconaril 24.29 [39] 1953.50 4248.41 10.00c 0.00 0.00

Rifampin 8.66a 50.45 51.17 10.00c 0.00 1.68a

aAverage value from PharmapPendium® database: www.pharmapendium.com
bDrugBank.
cAssumed.
dAssumed to be Equal to Ki when fm, 3A4 is not equal to 0.
eThe Hepatic Clearance was estimated by: CLH = CLT − CLR

https://doi.org/10.1371/journal.pone.0183794.t003

A quantitative systems pharmacology model to predict pharmacokinetic drug-drug interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0183794 September 14, 2017 15 / 28

http://www.pharmapendium.com
https://doi.org/10.1371/journal.pone.0183794.t003
https://doi.org/10.1371/journal.pone.0183794


in Table 6 for each drug, whereas fraction absorbed Fa, absorption constant rate ka, the hybrid

gut wall flow Qg, and the permeability P for each drug are shown in Table 7. Finally, it is

assumed that there is no active hepatocyte uptake or efflux for all drugs considered in this pres-

ent work (i.e.ρin = 0 and ρout = 0).

Table 5. Tissue-to-plasma partition coefficients of the drugs.

Drug Kp, RBC
a Kp, RB

b Kp, Kidney Kp, Lungs Kp, Liver Kp, Gut

Midazolam 0.005c 0.84 [44] 1.41 [44] 1.61 [44] 1.31 [44] 1.40 [44]

Azithromycin 12.424c 77.34c 110.75c 23.16c 226.15c 126.72c

Cimetidine 0.657c 0.74c 0.88c 0.89c 0.88c 0.83c

Clarithromycin 0.252c 1.51c 1.02c 0.43c 1.24c 1.83c

Diltiazem 0.816c 5.39c 6.26c 1.49c 11.76c 8.10c

Ethinyl Estradiol 0.632c 10.93c 6.11c 1.38c 7.73c 12.79c

Fluconazole 0.467c 0.54c 0.65c 0.63c 0.66c 0.68c

Fluoxetine 1.000c 6.31c 8.96c 1.87c 18.28c 10.30c

Ketoconazole 0.096c 1.75c 1.01c 0.39c 1.20c 2.00c

Pleconaril 0.258c 4.65c 2.58c 0.69c 3.22c 5.34c

Rifampin 0.074c 0.46c 0.32c 0.29c 0.31c 0.49c

aRBC: Red Blood Cells.

bEstimated by averaging the partition coefficients of the remaining tissues: Kp;RB ¼
Xn

i¼1

ViKp;i=
Xn

i¼1

Vi(see S5 Appendix for equation development).

cTheoretical values estimated using the equations by Rodgers and Rowland. Two formula were used; one for the moderate to strong bases (pKa > 7) and

the group 1 zwitterions (pKa,1 > 7) (Rodgers et al. 2005) and the second for acids, neutrals, weak bases (pKa < 7) and group 2 zwitterions (pKa,1 < 7)

(Rodgers et al. 2006). The parameters used in these equations are given in S3 and S4 Tables.

https://doi.org/10.1371/journal.pone.0183794.t005

Table 4. Fraction unbound and blood-to-plasma ratio of the drugs.

Drug fpu fbu RBP fhu
a fgwu

a

Midazolam 0.0264 0.0400 [34] 0.66 [31] 0.0202 0.0189

Azithromycin 0.7000 [40] 0.1200 [41] 5.83b 0.0031 0.0055

Cimetidine 0.8730 0.9000 [34] 0.97 [42] 0.9880 1.0000

Clarithromycin 0.1800 [31] 0.2813 0.64 [42] 0.0122 0.0984

Diltiazem 0.2028 0.2200 [34] 0.92 [43] 0.0173 0.0251

Ethinyl Estradiol 0.0300c 0.0355 0.84b 0.0039 0.0023

Fluconazole 0.6893 0.8900 [41] 0.77b 0.1051 1.0000

Fluoxetine 0.0500 0.0500 [41] 1.00d 0.0057 0.0049

Ketoconazole 0.0095 [43] 0.0136 0.70 [43] 0.0075 0.0048

Pleconaril 0.0100c 0.0146 0.69b 0.0041 0.0019

Rifampin 0.1100c 0.1809 0.61b 0.3513 0.2234

afhu ¼
fpu

Kp;Liver
and fgwu ¼

fpu
Kp;Kidney

bRBP = h × Kp, RBC + 1 − h where h = VRBC /VBlood is the hematocrit coefficient.
cDrugBank database: www.drugbank.ca
dAssumed.

https://doi.org/10.1371/journal.pone.0183794.t004
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Table 6. Interaction parameters of the drugs.

Drug Inhibition MBI Induction

Ki kinact KI FImax EC50 EC�
50

a

μM h−1 μM μM μM

Azithromycin 150.00 [29] 0.30 [7] 19.00 [7] 1b +1b +1

Cimetidine 115.00 [29] 0b +1b 1b +1b +1

Clarithromycin 50.00 [29] 3.18 [29] 18.90 [29] 1b +1b +1

Diltiazem 30.00 [29] 1.68 [29] 1.15 [29] 1b +1b +1

Ethinyl Estradiol 18.00 [7] 2.40 [7] 18.00 [7] 70.00 [7] 20.00 [7] 3.33

Fluconazole 3.40 [29] 0b +1b 1b +1b +1

Fluoxetine 8.00 [29] [29] 0.61 [29] 3.10 [29] 0.54 [29] 0.18

Ketoconazole 0.006 [29] 0b +1b 1b +1b +1

Pleconaril +1 0b +1b 34.00 [45] 16.40 [45] 3.83

Rifampin 100.00 [29] 0b +1b 34.00 [29] 0.57 [29] 0.54

aEC50 was corrected to take into account fraction unbound in incubation, permeability and active transport where: EC�
50
¼ fu;inc

SexðPþ rinÞ

SexðPþ routÞ þCL�int
� EC50,

Sex = 10046 dm2 is given by the liver model and fu, inc is calculated theoretically by using the formula by Kilford et al. 2008.
bNot known as being a reversible inhibitor, MBI inhibitor or inducer. If not a reversible inhibitor Ki = +1, if not a MBI inhibitor kinact = 0 and KI = +1 and if not

an inducer FImax = 1 and EC50 = +1.

https://doi.org/10.1371/journal.pone.0183794.t006

Table 7. Fraction absorbed, absorption constant rate, Qg and permeability of drug chemicals.

Drug Fa ka Qg
a P

h−1 L/h μm/h

Midazolam 1.00b 1.16 [31] 15.44 24228.0 [15]

Azithromycin 0.86 [31] 0.11 [31] 20.51 36000.0b

Cimetidine 1.00b 1.00b 2.57 4468.6 [46]

Clarithromycin 0.55 [47] 1.08 [31] 4.77 7807.8 [48]

Diltiazem 1.00 [8] 1.60 [8] 18.41 36000.0b

Ethinyl Estradiol 1.00b 1.00b 15.13 23635.9 [36]

Fluconazole 0.86 [37] 0.88 [37] 6.23 13646.5 [46]

Fluoxetine 1.00b 1.00b 22.29 36000.0b

Ketoconazole 1.00b 1.00b 23.34 36000.0b

Pleconaril 0.70c 1.00b 23.31 36000.0b

Rifampin 1.00b 1.00b 19.18 36000.0b

aQg ¼
CLperm

Qv
fbu

CLpermþ
Qv
fbu

: see S3 and S4 Appendices for more details.

bAssumed.
cDrugBank database: www.drugbank.ca

https://doi.org/10.1371/journal.pone.0183794.t007

Table 8. Sinusoids length for each level.

Level Length

μm

1 344.8

2 185.3

3 92.5

4 46.0

5 22.5

Total 691.1

https://doi.org/10.1371/journal.pone.0183794.t008
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Fig 5. Properties of 5 sinusoid levels from the lobule model. (A) The radius of the sinusoids is expressed as a function of the distance to

the periphery of the lobule. For a given level, the radius is decreasing as the sinusoids are converging toward the center of the lobule. Once

the sinusoids reach their minimum size they merge together which increases the radius size in a stepwise manner. (B) The flow of the

sinusoids is expressed as a function of the distance to the periphery of the lobule. For a given level, the flow is constant, but double when two

sinusoids merge. (C) The velocity of the sinusoids is expressed as a function of the distance to the periphery of the lobule. For a given level,

the velocity is increasing as the sinusoid radius is decreasing. Once the sinusoids reach their minimum size they merge which decreases the

blood velocity suddenly.

https://doi.org/10.1371/journal.pone.0183794.g005

Fig 6. Simulated PK of the perpetrator (blue) and victim (orange) drugs. The simulation were run using the clinical dose regimens from

Table 2: (A) Azithromycin (B) Cimetidine (C) Ethinyl Estradiol (D) Rifampin.

https://doi.org/10.1371/journal.pone.0183794.g006
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Results

Algorithm construction of liver

The algorithm to construct the lobule geometry generated 5 sinusoidal levels, where the length

of each level is represented in Table 8. The volume of one lobule and the number of lobules,

estimated from the parameters in Table 1, are respectively 4.06 × 107 μm3 and 4.16 × 107.

Given the average liver volume of 1.69 L for a man of 70 kg (S1 Table), the construction of

the lobules respecting the algorithm presented in Fig 1C gave a total hepatocytes volume

Vh = 1392 mL and blood volume Vb = 283 mL. Therefore the liver volume given by the model

is 1.67 L, which is slightly less than the input volume. Similarly the blood content can be com-

pared to the literature which varies between 250 mL and 312 mL [49]. Furthermore, the sur-

face exchange between blood and hepatocytes Sex given by the model was estimated to be

Fig 7. Simulated enzyme levels as a function of time. The total enzyne level (free enzyne + enzyme-substrate complex) is represented

as a fold change compared to the initial level. The color gradient indicates the positions within the lobule from blue (Entrance of the lobule) to

red (Exit of the lobule): (A) Azithromycin (MBI inducer) (B) Cimetidine (Reversible inhibitor: No effect on enzyme level) (C) Ethinyl Estradiol

(MBI inhibitor and inducer: It seems that in this case the effect cancels each other out) (D) Rifampin (Inducer).

https://doi.org/10.1371/journal.pone.0183794.g007
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10046 dm2, which is expected to influence the calculation of CL�int from in vivo data. Finally,

assuming a cell volume of Vcell = 4 μL/106 cells [50], the number of hepatocytes per liver is

348 × 109 cells which is equivalent to 193 × 106 cells/g of liver. This compares well to the litera-

ture values which range from 65 to 185 × 106 cells/g of liver [51].

The mathematical construction of the lobule gives the radius of the sinusoids for each level

as represented in Fig 5A. Given the number of lobules and the blood flow in the liver, the

blood flow for each sinusoid level can be estimated by dividing the total blood flow by the total

number of sinusoids at a given level as represented in Fig 5B. From the liver blood flow and

the radius of the sinusoids, the velocity in the sinusoids (Fig 5C) was calculated as the ratio of

the sinusoids flow to the cross section area as follows: v(x) = Q(x)/S(s), where the cross section

area of the sinusoids is expressed as S(x) = R(x) (eL − 2RH) (see S1 Appendix).

Simulations and comparisons

The clinical data presented in Table 2 were simulated and the PK profiles of the victim and

perpetrator drugs are represented in Fig 6. In addition to the PK profiles, the model simulates

Fig 8. Simulated PK profile for midazolam after an oral dose of 15 mg and comparison to clinical data. (?) Fee et al. 1987 [20] (•)

Zimmermann et al. 1996 [19].

https://doi.org/10.1371/journal.pone.0183794.g008
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the enzyme level in the liver and gut wall as a result of the different mechanisms involved in

drug metabolism. The enzyme levels as a function of time in the liver are given in Fig 7, where

the spatial effect is also represented with a color gradient. Furthermore, the PK profile of mida-

zolam alone was simulated and compared to clinical data in Fig 8. The model seems to ade-

quately predict midazolam PK. Finally, the PK profiles of midazolam with a placebo and the

perpetrator for each of the clinical studies in Table 2 are represented in Fig 9 and a comparison

of the prediction and clinical observation of the AUCratio and Cmax,ratio are summarized in

Table 9. Fold error in eight out of ten predictions are within 2-fold which is a common criteria

for good prediction [29, 52]. In Fig 10 the observed AUCratio are plotted against the predicted

AUCratio. Most of the predictions are relatively well aligned with the line of unity except for the

pleconaril scenario where the induction was overpredicted, therefore AUCratio underpredicted.

An R2 of 0.85 was calculated which indicates a good correlation between the observations and

the model predictions.

Fig 9. Simulated PK profiles for midazolam with a placebo (blue) or a perpetrator (orange) and comparison to clinical data. The

dots represent the clinical observations: (A) Azithromycin [19] (B) Cimetidine [20] (C) Ethinyl Estradiol [23] (D) Rifampin [28].

https://doi.org/10.1371/journal.pone.0183794.g009
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Discussion

The objective of this work was to develop a mathematical model to predict PK drug-drug

interactions in a dynamic manner which may occur in the liver and the intestine. The main

focus was on the liver, as the majority of drug metabolism and therefore DDIs occur in this

organ. However, to incorporate first pass metabolism the intestine was also included. The

main results from this work are; (i) the liver model is capable of describing the geometry of a

lobule in a simple manner; (ii) the liver model can be incorporated into a PBPK model to pre-

dict the PK profile of a drug; (iii) the PBPK model is, so far, capable of predicting the DDIs

when one enzyme is mainly involved in DDIs. The novelty of the model presented in this

work is the description of the lobule/liver geometry in the simplest manner possible to account

for spatial variation in blood flow, concentrations and enzyme level. Furthermore, a cellular

model was included to model drug transport, i.e. permeability, uptake and efflux, between

blood and hepatocytes and drug metabolism within the hepatocytes, without creating a discon-

tinuity with the historical models (e.g. the well stirred model [9] or parallel tube model [9]). It

has the advantage of comparing the geometrical properties of the lobule generated by the

model to physiological data such as the liver blood content, number of lobules, surface

exchange, sinusoidal radius, velocity, blood flow profile and, the hydrodynamic pressure load.

More detailed geometries have been proposed [14, 53, 54], but their implementation into a

pharmaceutical context is not optimal as it is demanding in computational resources (comput-

ing power and scientific IT support). Therefore it seems that the liver model herein is an

appropriate compromise between the complexity of the model and its implementation. The

calculated blood content in the liver (excluding arteries and veins) is in the range of literature

values which varies between 250 mL and 312 mL [49]. However, the number of cells per gram

of liver is relatively higher than the literature values which range from 65 to 185 × 106 cells/g of

liver [51]. As it was assumed that the hepatocyte plates are homogeneous, the space of Disse

and other cell types (e.g. Kupffer cells) were neglected which could have lead to an overestima-

tion of the number of hepatocytes. Based on the lobule geometry, the surface estimated for

Table 9. DDI prediction for the 10 clinical studies.

Drug AUCratio Cmax, ratio

Perpetrator Victim Observation Prediction F.E.a Observation Prediction F.E.a

Azithromycin Midazolam 1.27 1.16 1.10 1.29 1.08 1.20

Cimetidine Midazolam 1.35 1.32 1.02 1.26 1.20 1.04

Clarithromycin Midazolam 8.39 5.36 1.57 3.80 2.24 1.69

Diltiazem Midazolam 3.75 7.52 2.01 2.05 2.37 1.16

Ethinyl Estradiol Midazolam 1.20 1.00 1.20 1.16 1.00 1.16

Fluconazole Midazolam 3.50 4.85 1.38 2.50 2.15 1.16

Fluoxetine Midazolam 0.84 1.56 1.85 1.11 1.27 1.14

Ketoconazole Midazolam 15.90 18.17 1.14 4.09 3.09 1.33

Pleconaril Midazolam 0.65 0.12 5.30 0.76 0.24 3.17

Rifampin Midazolam 0.12 0.12 1.02 0.17 0.26 1.56

GMFEb 1.52 GMFEb 1.38

aFold Error ¼ 10
log
Ob
Pred

�
�
�
�

�
�
�
�

bGMFE: Geomtric Mean Fold ErrorGMFE ¼ 10

PN

i¼1
log
Obi
Predi

�
�
�
�

�
�
�
�

https://doi.org/10.1371/journal.pone.0183794.t009
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exchanges Sex might have been underestimated as it is half of the maximum surface of

exchange; assuming that the surface of all the cells is in contact with blood, which in turn is

expected to influence the calculation of the metabolic intrinsic CL�int obtained from in vivo data

for low permeable drugs. A comparison of in vivo and in vitro data across a range of drugs may

allow to estimate a more realistic value of Sex. Finally, the pharmacokinetic profile of midazo-

lam was relatively well predicted as well as the impact of the perpetrator drug on its AUC and

Cmax. Indeed the GMFEAUC was estimated to 1.52 which is in the lower range of literature val-

ues (1.47–2.5 [7, 29]). A comparison to the static combined model by Fahmi et al. [7] and to a

well-stirred model similar to the DDI model by Rowland-Yeo et al. [8] was also made (results

not shown) where the GMFEAUC were estimated at 2.55 and 1.71, respectively, which suggests

that dynamic models are far superior to static models and that geometry might help to

improve predictions. However, it is worth noting that the herein results were estimated with-

out taking into account hepatic uptake, which generally improves predictions [55], and with-

out fitting any parameters. All parameters were taken from the literature or calculated using

published algorithms. Ideally, each parameter should be estimated experimentally in a specific

in vitro assays, where it is assumed that they are representative of what is happening in vivo.

Fig 10. Observed AUCratio versus predicted AUCratio. The solid line represents the line of unity, the dashed lines are the 2-fold errors and

the dotted lines the 5-fold errors.

https://doi.org/10.1371/journal.pone.0183794.g010
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This point needs careful consideration as measuring the drug-metabolizing ability of isolated

hepatocytes leads very often to under-predictions of drug clearance. Moreover, studies have

shown that an oxygen gradient [56, 57] and blood flow [58] (i.e. shear stress) affect the expres-

sion levels of CYPs. The liver model shows that the blood flow inside the liver is non-linear

due to its hierarchical anatomical structure and may explain the notion of zonation, i.e. CYPs

are more highly expressed in certain zones of lobules compared to others. Both effects could be

incorporated into the model, where the oxygen concentration and the variation in shear stress,

related to changes in velocity in a lobule, can be modeled.

Conclusion

A liver model including a simple description of the lobule geometry and the uptake/efflux

transport between the blood and hepatocytes was presented. The model predicts the pharma-

cokinetic profiles, enzyme activity and drug-drug interaction for different type of DDIs. Future

research will test the model with two or more enzymes involved in metabolism to validate the

model further, take into consideration uncompetitive, non-competitive or mixed inhibition

and potentially add a component for the biliary excretion which is not negligible for some

drugs. Furthermore, the model needs to be compared to models with increasing complexity,

i.e. from static models to dynamic model, to assess how the new features of the herein model

improves DDI predictions. Finally, this research focused on the liver as it is the main organ

involved in drug metabolism, but the intestine and kidneys may play a significant role in

DDIs. Therefore combining the herein liver model to a more sophisticated gut model (e.g. the

advanced compartmental absorption and transit (ACAT) model) and/or a kidney model,

where transporters are taking into account, could potentially improve the prediction of DDIs

in the future.

Supporting information

S1 Appendix. The geometry of sinusoids. Description of how the the parameters αB! H(x)
and αH! B(x) were obtained.

(PDF)

S2 Appendix. Model simplification. Detailed descriptions on how Eqs (10) and (12) were

obtain from Eqs (7) and (11).

(PDF)

S3 Appendix. The hybride parameter Qg. The two definitions of the parameter Qg by Yang

et al. [17] and Hisaka et al. [16] are presented.

(PDF)

S4 Appendix. Hisaka equation for Qg. Description of how Qg is deduced by Hisaka et al. [16].

(PDF)

S5 Appendix. Average partition coefficient. Description of how the partition coefficient of a

PK compartment composed of different tissues is calculated.

(PDF)

S6 Appendix. Numerical resolution and OOP. A brief description of Object-Oriented Pro-

gramming (OOP) and a detail description on the program to solve the PBPK model.

(PDF)

S1 Table. Average volume and blood flow for a 70 kg man for different tissues.

(PDF)

A quantitative systems pharmacology model to predict pharmacokinetic drug-drug interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0183794 September 14, 2017 24 / 28

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183794.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183794.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183794.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183794.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183794.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183794.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183794.s007
https://doi.org/10.1371/journal.pone.0183794


S2 Table. Amounts and degradation rate constants for different CYP enzymes in the liver

and the intestine.

(PDF)

S3 Table. Physico-chemical properties of the drugs. Physico-chemical parameters used to

calculate the partition coefficients.

(PDF)

S4 Table. Composition of human tissue for different organs. Tissue composition used to

calculate the partitions coefficient.

(PDF)

S1 Code. Matlab code. The code of all the objects used for the simulations and an example on

how to use them to solve a PBPK model.

(RAR)

Author Contributions

Conceptualization: Mohammed H. Cherkaoui-Rbati, Stuart W. Paine.

Data curation: Mohammed H. Cherkaoui-Rbati.

Formal analysis: Mohammed H. Cherkaoui-Rbati.

Funding acquisition: Stuart W. Paine, Cyril Rauch.

Investigation: Mohammed H. Cherkaoui-Rbati.

Methodology: Mohammed H. Cherkaoui-Rbati, Stuart W. Paine, Peter Littlewood, Cyril

Rauch.

Project administration: Stuart W. Paine.

Resources: Peter Littlewood.

Software: Mohammed H. Cherkaoui-Rbati.

Supervision: Stuart W. Paine, Peter Littlewood, Cyril Rauch.

Validation: Mohammed H. Cherkaoui-Rbati, Stuart W. Paine, Peter Littlewood, Cyril Rauch.

Visualization: Mohammed H. Cherkaoui-Rbati.

Writing – original draft: Mohammed H. Cherkaoui-Rbati.

Writing – review & editing: Stuart W. Paine, Peter Littlewood, Cyril Rauch.

References
1. Huang SM, Strong JM, Zhang L, Reynolds KS, Nallani S, Temple R, et al. New era in drug interaction

evaluation: US Food and Drug Administration update on CYP enzymes, transporters, and the guidance

process. J Clin Pharmacol. 2008; 48(6):662–670. https://doi.org/10.1177/0091270007312153 PMID:

18378963

2. Routledge PA, O’Mahony MS, Woodhouse KW. Adverse drug reactions in elderly patients. British Jour-

nal of Clinical Pharmacology. 2004; 57(2):121–126. https://doi.org/10.1046/j.1365-2125.2003.01875.x

PMID: 14748810

3. U S Food and Drug Administration. Guidance for industry: Drug metabolism/drug interaction studies in

the drug development process: Studies in vitro.; 1997. April. Available from: http://www.fda.gov/

downloads/AboutFDA/CentersOffices/CDER/UCM142439.pdf.

A quantitative systems pharmacology model to predict pharmacokinetic drug-drug interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0183794 September 14, 2017 25 / 28

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183794.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183794.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183794.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0183794.s011
https://doi.org/10.1177/0091270007312153
http://www.ncbi.nlm.nih.gov/pubmed/18378963
https://doi.org/10.1046/j.1365-2125.2003.01875.x
http://www.ncbi.nlm.nih.gov/pubmed/14748810
http://www.fda.gov/downloads/AboutFDA/CentersOffices/CDER/UCM142439.pdf
http://www.fda.gov/downloads/AboutFDA/CentersOffices/CDER/UCM142439.pdf
https://doi.org/10.1371/journal.pone.0183794


4. Chien JY, Lucksiri A, Ernest CS, Gorski JC, Wrighton SA, Hall SD. Stochastic prediction of CYP3A-

mediated inhibition of midazolam clearance by ketoconazole. Drug Metabolism and Disposition. 2006;

34(7):1208–1219. https://doi.org/10.1124/dmd.105.008730 PMID: 16611859

5. Quinney SK, Zhang X, Lucksiri A, Gorski JC. Physiologically based pharmacokinetic model of mecha-

nism-based inhibition of CYP3A by clarithromycin. Drug Metabolism and Disposition. 2010; 38(2):241–

248. https://doi.org/10.1124/dmd.109.028746 PMID: 19884323

6. Einolf HJ, Chen L, Fahmi OA, Gibson CR, Obach RS, Shebley M, et al. Evaluation of various static and

dynamic modeling methods to predict clinical CYP3A induction using in vitro CYP3A4 mRNA induction

data. Clinical Pharmacology & Therapeutics. 2014; 95(2):179–88. https://doi.org/10.1038/clpt.2013.170

7. Fahmi OA, Maurer TS, Kish M, Cardenas E, Boldt S, Nettleton D. A combined model for predicting

CYP3A4 clinical net drug-drug interaction based on CYP3A4 inhibition, inactivation, and induction

determined in vitro. Drug Metabolism and Disposition. 2008; 36(8):1698–708. https://doi.org/10.1124/

dmd.107.018663 PMID: 18490437

8. Rowland-Yeo K, Jamei M, Yang J, Tucker GT, Rostami-Hodjegan A. Physiologically based mechanistic

modelling to predict complex drug-drug interactions involving simultaneous competitive and time-

dependent enzyme inhibition by parent compound and its metabolite in both liver and gut—The effect of

diltiazem on the time. European Journal of Pharmaceutical Sciences. 2010; 39:298–309. https://doi.

org/10.1016/j.ejps.2009.12.002 PMID: 20025966

9. Pang KS, Rowland M. Hepatic clearance of drugs. I: Theoretical considerations of a “well-stirred” model

and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding, and the

hepatocellular enzymatic activity on hepatic drug clearance. Journal of Pharmacokinetics and Biophar-

maceutics. 1977; 5(6):625–653. PMID: 599411

10. Pang KS, Rowland M. Hepatic clearance of drugs. II: Experimental evidence for acceptance of the

“well-stirred” model over the “parallel tube” model using lidocaine in the perfused rat liverin situ prepara-

tion. Journal of Pharmacokinetics and Biopharmaceutics. 1977; 5(6):655–680. https://doi.org/10.1007/

BF01059689 PMID: 599412

11. Roberts MS, Rowland M. A dispersion model of hepatic elimination: 1. Formulation of the model and

bolus considerations. Journal of Pharmacokinetics and Biopharmaceutics. 1986; 14(3):227–260.

12. Roberts MS, Rowland M. A dispersion model of hepatic elimination: 2. Steady-state considerations-

influence of hepatic blood flow, binding within blood, and hepatocellular enzyme activity. Journal of

Pharmacokinetics and Biopharmaceutics. 1986; 14(3):261–288. https://doi.org/10.1007/BF01106707

PMID: 3783447

13. Tannenbaum C, Sheehan NL. Understanding and preventing drug-drug and drug-gene interactions.

Expert Review of Clinical Pharmacology. 2014; 7(4):533–544. https://doi.org/10.1586/17512433.2014.

910111 PMID: 24745854

14. Rezania V, Marsh RE, Coombe D, Tuszyński JA. A physiologically-based flow network model for

hepatic drug elimination I: Regular lattice lobule model. Theoretical Biology & Medical Modelling. 2013;

10(1):52. https://doi.org/10.1186/1742-4682-10-52

15. Gertz M, Houston JB, Galetin A. Physiologically based pharmacokinetic modeling of intestinal first-pass

metabolism of CYP3A substrates with high intestinal extraction. Drug Metabolism and Disposition.

2011; 39(9):1633–1642. https://doi.org/10.1124/dmd.111.039248 PMID: 21632965

16. Hisaka A, Ohno Y, Yamamoto T, Suzuki H. Theoretical Considerations on Quantitative Prediction of

Drug-Drug Interactions. Drug Metabolism and Pharmacokinetics. 2010; 25(1):48–61. https://doi.org/10.

2133/dmpk.25.48 PMID: 20208388

17. Yang J, Jamei M, Yeo KR, Tucker GT, Rostami-Hodjegan A. Prediction of intestinal first-pass drug

metabolism. Current Drug Metabolism. 2007; 8(7):676–684. https://doi.org/10.2174/

138920007782109733 PMID: 17979655

18. Matlab. version 8.6 (R2015b). Natick, Massachusetts: The MathWorks Inc.; 2015.

19. Zimmermann T, Yeates RA, Laufen H, Scharpf F, Leitold M, Wildfeuer A. Influence of the antibiotics

erythromycin and azithromycin on the pharmacokinetics and pharmacodynamics of midazolam. Arznei-

mittel-Forschung. 1996; 46(2):213–217. PMID: 8720318

20. Fee JP, Collier PS, Howard PJ, Dundee JW. Cimetidine and ranitidine increase midazolam bioavailabil-

ity. Clinical Pharmacology & Therapeutics. 1987; 41(1):80–84. https://doi.org/10.1038/clpt.1987.13

21. Gurley B, Hubbard MA, Williams DK, Thaden J, Tong Y, Gentry WB, et al. Assessing the clinical signifi-

cance of botanical supplementation on human cytochrome P450 3A activity: comparison of a milk thistle

and black cohosh product to rifampin and clarithromycin. The Journal of Clinical Pharmacology. 2006;

46:201–213. https://doi.org/10.1177/0091270005284854 PMID: 16432272

22. Backman JT, Olkkola KT, Aranko K, Himberg JJ, Neuvonen PJ. Dose of midazolam should be reduced

during diltiazem and verapamil treatments. British Journal of Clinical Pharmacology. 1994; 37:221–225.

https://doi.org/10.1111/j.1365-2125.1994.tb04266.x PMID: 8198928

A quantitative systems pharmacology model to predict pharmacokinetic drug-drug interactions

PLOS ONE | https://doi.org/10.1371/journal.pone.0183794 September 14, 2017 26 / 28

https://doi.org/10.1124/dmd.105.008730
http://www.ncbi.nlm.nih.gov/pubmed/16611859
https://doi.org/10.1124/dmd.109.028746
http://www.ncbi.nlm.nih.gov/pubmed/19884323
https://doi.org/10.1038/clpt.2013.170
https://doi.org/10.1124/dmd.107.018663
https://doi.org/10.1124/dmd.107.018663
http://www.ncbi.nlm.nih.gov/pubmed/18490437
https://doi.org/10.1016/j.ejps.2009.12.002
https://doi.org/10.1016/j.ejps.2009.12.002
http://www.ncbi.nlm.nih.gov/pubmed/20025966
http://www.ncbi.nlm.nih.gov/pubmed/599411
https://doi.org/10.1007/BF01059689
https://doi.org/10.1007/BF01059689
http://www.ncbi.nlm.nih.gov/pubmed/599412
https://doi.org/10.1007/BF01106707
http://www.ncbi.nlm.nih.gov/pubmed/3783447
https://doi.org/10.1586/17512433.2014.910111
https://doi.org/10.1586/17512433.2014.910111
http://www.ncbi.nlm.nih.gov/pubmed/24745854
https://doi.org/10.1186/1742-4682-10-52
https://doi.org/10.1124/dmd.111.039248
http://www.ncbi.nlm.nih.gov/pubmed/21632965
https://doi.org/10.2133/dmpk.25.48
https://doi.org/10.2133/dmpk.25.48
http://www.ncbi.nlm.nih.gov/pubmed/20208388
https://doi.org/10.2174/138920007782109733
https://doi.org/10.2174/138920007782109733
http://www.ncbi.nlm.nih.gov/pubmed/17979655
http://www.ncbi.nlm.nih.gov/pubmed/8720318
https://doi.org/10.1038/clpt.1987.13
https://doi.org/10.1177/0091270005284854
http://www.ncbi.nlm.nih.gov/pubmed/16432272
https://doi.org/10.1111/j.1365-2125.1994.tb04266.x
http://www.ncbi.nlm.nih.gov/pubmed/8198928
https://doi.org/10.1371/journal.pone.0183794
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