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Abstract

Bacterial DsbA enzymes catalyze oxidative folding of virulence factors, and have been identified as targets for
antivirulence drugs. However, DsbA enzymes characterized to date exhibit a wide spectrum of redox properties and
divergent structural features compared to the prototypical DsbA enzyme of Escherichia coli DsbA (EcDsbA).
Nonetheless, sequence analysis shows that DsbAs are more highly conserved than their known substrate virulence
factors, highlighting the potential to inhibit virulence across a range of organisms by targeting DsbA. For example,
Salmonella enterica typhimurium (SeDsbA, 86 % sequence identity to EcDsbA) shares almost identical structural,
surface and redox properties. Using comparative sequence and structure analysis we predicted that five other
bacterial DsbAs would share these properties. To confirm this, we characterized Klebsiella pneumoniae DsbA
(KpDsbA, 81 % identity to EcDsbA). As expected, the redox properties, structure and surface features (from crystal
and NMR data) of KpDsbA were almost identical to those of EcDsbA and SeDsbA. Moreover, KpDsbA and EcDsbA
bind peptides derived from their respective DsbBs with almost equal affinity, supporting the notion that compounds
designed to inhibit EcDsbA will also inhibit KpDsbA. Taken together, our data show that DsbAs fall into different
classes; that DsbAs within a class may be predicted by sequence analysis of binding loops; that DsbAs within a class
are able to complement one another in vivo and that compounds designed to inhibit EcDsbA are likely to inhibit
DsbAs within the same class.
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Introduction

Antibiotic resistance has increased dramatically over the last
decade and the consequent lack of treatment options poses a
major threat for public health [1]. One approach to develop new
chemical classes of antibacterials is to target virulence factors
that cause disease in antibiotic resistant organisms [2]. Most
pathogenic Enterobacteriaceae encode an oxidative folding
pathway essential for virulence factor production [2-5].
Typically, the oxidative folding machinery includes a soluble
thioredoxin-fold protein, DsbA, and an integral membrane

protein partner, DsbB [6-8]. The disulfide form of DsbA is highly
oxidizing and donates its disulfide bond to unfolded substrate
proteins [9], leaving DsbA in the inactive reduced form. The
inner membrane protein DsbB, in concert with its cofactor
ubiquinone, interacts with reduced DsbA to oxidize the active
site cysteines and convert DsbA to its functionally competent
disulfide form [10]. Inhibition of the interaction between DsbA
and substrate proteins or between DsbA and its partner DsbB
could constitute a means of blocking virulence factor formation
and thereby of inhibiting virulence of bacterial pathogens.
Supporting this notion, deletion of DsbA homologues in
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pathogenic organisms results in diminished virulence in
infection models [2,11] and deletion of dsbA or dsbB in
uropathogenic E. coli (UPEC) severely attenuated its ability to
colonize the bladder [11,12].

The characteristic properties of EcDsbA include: an active
site CPHC motif that forms a destabilizing disulfide (Tm reduced
EcDsbA 350 K; Tm oxidized EcDsbA 342 K) [13]; the more N-
terminal of the two cysteines is nucleophilic and highly acidic,
pKa 3.3 (usual value for a cysteine is 8-9) [9]; and EcDsbA is
highly oxidizing (redox potential -122 mV) [9]. The past 5 years
has seen the characterization of DsbA enzymes from many
other bacteria including DsbAs with varying degrees of
sequence identity to EcDsbA such as Neisseria meningitidis
DsbA1 (NmDsbA1, 23% identity), Pseudomonas aeruginosa
DsbA (PaDsbA, 30%) and Vibrio cholerae DsbA (VcDsbA, or
TcpG, 40%). These DsbAs share a similar structural fold with
EcDsbA though their surface properties vary [14] and they
exhibit a wide range of redox properties (Table 1). Importantly,
the EcDsbA hydrophobic groove that interacts with its essential
partner EcDsbB is considerably truncated in NmDsbA1,
PaDsbA and VcDsbA [15-17]. This modification and other
surface changes in these DsbAs indicate that they fall into a
separate class, distinct from EcDsbA, and that inhibitors
designed against EcDsbA may not inhibit members of this
class of DsbA. Conversely, DsbAs closely related to EcDsbA
should be susceptible to the same mode of chemical inhibition.

Here we tested how close the sequence relationship must be
to produce similar redox properties and binding interactions.
We investigated two well-characterised DsbAs sharing 86%
sequence identity, from E. coli K-12 strain (EcDsbA) and S.
enterica Typhimurium DsbA strain SL1344 (SeDsbA), by
applying comparative structural, sequence and redox analyses
to identify properties conserved across these two enzymes.
The results allow us to place DsbAs of five other Gram-
negative bacteria Enterobacteriaceae, namely Shigella flexneri

Table 1. Comparison of structures and redox properties of
DsbAs.

 
Seq id to
EcDsbA

RMSD
(Å)

RMSD
#Cα E°’ (mV)

pKa
“Cys30”

Tm (K)
(red/ox)

Other DsbAs
a 10 - 40 %

1.3 -
2.9

122 -
167

-80/-163 3.0 - 5.1
337-357 /
331-341

EcDsbAb 100 % 0.6 176 -122 3.3 350 / 341
SeDsbAc 86 % 0.9 176 -126 3.3 351 / 343
KpDsbA 81 % 0.8 176 -116 3.2 347 / 335
VcDsbAd 40 % 1.8 168 - 116 5.1 357 / 346
NmDsbA1e 23 % 2.6 163 - 80 3.0 348 / 333

a. [14] , redox potential range for NmDsbA1 (-80 , WpDsbA (- 163); pKa range,
NmDsbA1 (3.0), VcDsbA (5.1); Tm oxidised (min) NmDsbA3, (max) VcDsbA and
reduced (min) NmDsbA3, (max) VcDsbA.
b. [6] [14],, RMSD of EcDsbA derived from the overlay of molecules A and B from
the asymmetric unit in 1FVK.
c. [43] and [14]
d. [54]
e. [51]
doi: 10.1371/journal.pone.0080210.t001

 8401 (SfDsbA, 100% sequence identity to EcDsbA),
Enterobacter cloacae SCF-1 (EnDsbA, 84%), Citrobacter
koseri ATCC BAA-895 (CkDsbA, 84%), Cronobacter sakazakii
SP291 (CsDsbA, 82%) and K. pneumonia 342 (KpDsbA, 81%)
into the same DsbA cluster as SeDsbA and EcDsbA. To
assess whether the redox and structural properties are
maintained in this DsbA group we focused on KpDsbA, which
shares the lowest sequence identity with EcDsbA. We
determined the high resolution crystal structure of reduced
KpDsbA and the NMR solution structure of oxidized KpDsbA,
and we measured the redox properties of this enzyme. As
expected, the redox properties, surface characteristics and
binding properties of KpDsbA are similar to those of EcDsbA
suggesting that inhibitors developed against EcDsbA are likely
to also be effective against other members of this DsbA
subclass.

Materials and Methods

Protein production
Codon-optimized K. pneumoniae dsbA (GenBank®

accession number ACI08793), lacking the sequence coding for
the predicted signal sequence (19 aa), was cloned into a
modified pMCSG7 (Midwest Center for Structural Genomics)
vector compatible with ligation-independent cloning. This
modified vector encoded a leader sequence consisting of an N-
terminal His6-tag followed by a linker containing the tobacco-
etch virus protease (TEV) recognition sequence. KpDsbA was
expressed in BL21(DE3)pLys cells using autoinduction medium
[18] and purified with Talon® resin (Clontech, Australia). The
His6-tag was removed by TEV protease, leaving the
engineered KpDsbA with two additional amino acids (S–1 and
N0) at the N-terminus. A final size-exclusion chromatography
step using a Superdex75 column (GE Healthcare, USA)
yielded highly purified KpDsbA, as judged by SDS-PAGE.
Oxidized or reduced KpDsbA was prepared using a 25-fold
molar excess of copper-(II)-1,10-phenanthroline or DTT,
respectively. Oxidizing/reducing agent was then removed and
the protein buffer-exchanged into 10 mM HEPES, pH 7.4 in
one step using GE-25 Sephadex desalting resin for
crystallization and biochemical experiments.

Preparation of E. coli DsbA (CAA56736), S. enterica
Typhimurium DsbA (AAB81592) and E. coli DsbC (AAA83074),
lacking the periplasmic leader signal were purified as described
for KpDsbA. For peptide oxidation experiments, E. coli DsbB
(AAC74269) membrane extracts were prepared as described
previously [19] and re-suspended in phosphate buffered saline
(PBS, 137 mM NaCl, 2.7 mM KCl, Na2HPO4 10 mM and
KH2PO4, pH 7.4) containing 10 % glycerol.

KpDsbA Complementation of EcDsbA
The ability of KpDsbA to rescue non-motile E. coli dsbA- null

(JCB817) and dsbA-/dsbB- double-null (JCB818) strains was
assessed in a cell-swarming assay as described previously
[16]. The mature KpDsbA coding sequence was cloned into
pBAD33 under an arabinose inducible promotor with the
EcDsbA periplasmic signal sequence. A wild-type EcDsbA
cloned into pBAD33 vector was used as a positive control.

Comparative Analysis of Klebsiella pneumoniae DsbA
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Non-motile E. coli dsbA- deficient (JCB817) or dsbA- / dsbB-

double-mutant (JCB818) [3] cells (2x106) transformed with a
KpDsbA or EcDsbA pBAD33 inducible vector were spotted
onto the center of a soft M63 minimal agar plate containing 40
mg/mL of each amino acid (except L-cysteine). Plates were
incubated at 37 °C and motility of cells monitored using a
Molecular Imager® Gel Doc™ system from BIO-RAD (CA
94547, USA) after 3-7 h. Complementation experiments were
repeated as biological triplicates.

KpDsbA Disulfide Reductase Activity
Under mild reducing conditions, DsbA proteins can reduce

the intermolecular disulfide bonds formed between insulin
chains A and B [3]. The rate of disulfide bond reduction can be
spectroscopically followed at OD650nm by an increase in turbidity
resulting from production of the insoluble insulin chain B [20].
Samples were prepared in 1 cm cuvettes containing 10 μM of
protein (KpDsbA, EcDsbA or EcDsbC), 0.33 mM DTT and 2
mM EDTA in 100 mM NaH2PO4 / Na2HPO4 titrated to pH 7.0.
Catalysis was initiated by the addition of 0.131 mM insulin
(I0516, Sigma-Aldrich, Australia) to the sample mixture. The
assay was repeated three times and data were plotted showing
standard deviations.

Measurement of KpDsbA Redox Potential
The standard redox potential of KpDsbA was measured

using its intrinsic tryptophan fluorescence, as described
previously for EcDsbA [6]. Oxidized KpDsbA was incubated for
12 h at 25 °C in degassed 100 mM NaH2PO4 / Na2HPO4 buffer
(pH 7.0, 1 mM EDTA, 298K), containing 1 mM oxidized
glutathione (GSSG) and varying concentrations of reduced
glutathione (GSH) (0–2 mM). KpDsbA (200 µL) from each
redox condition was dispensed into a 96-well plate (TPP AG,
Switzerland #92096) and tryptophan fluorescence was
measured (excitation at 280 nm, emission set to 332 nm) using
a microplate reader (Synergy H1 and Gen5 2.0 software,
Biotek, USA). Data were normalized and the redox potential
was calculated as described for EcDsbA [6]. In brief, the
equilibrium constant Keq was calculated using the equation: Y =
([GSH]2 / [GSSH])/(Keq + ([GSH]2 / [GSSH])), where Y is the
fraction of reduced protein at equilibrium. The redox potential
for KpDsbA was calculated from the Nernst equation: E0’

KpDsbA =
E0’

GSH/GSSH - (RT/nF)lnKeq where E0’
GSH/GSSH = - 240 mV, R is the

ideal gas constant 8.314 JK-1mol-1, T is the absolute
temperature in K, n is the number of electrons transferred (n =
2), F is the Faraday constant 9.648x104 Cmol-1 and Keq is the
equilibrium constant derived from the binding equation. All
measurements were performed as biological triplicates. The
graph shows a plot of the average values including error bars
representing the standard deviation for the replicates.

KpDsbA Thiolate Anion pKa Determination
The pH-dependent absorbance of the catalytic thiolate anion

of KpDsbA was followed at 240 nm [21] using a CARY 50
UV/VIS spectrophotometer (Agilent Technologies, USA). The
pH titration measurements of oxidized or reduced KpDsbA (40
μM) in 2 mL composite buffer (10 mM Tris, 10 mM sodium
citrate, 10 mM K2HPO4, 10 mM KH2PO4, 200 mM KCl, and 1

mM EDTA) were conducted at 22 °C. Absorbance (λ = 240 and
280 nm) was measured between pH 6.5 and 2.0 in 0.25
increments. The pKa value was calculated from the fitted
curves of three replicates using the Henderson-Hasselbalch
equation (pH = pKa - log ([A240 ⁄A280]red ⁄ [A240 ⁄A280]oxid)).
Experiments were repeated at least three times. Plotted data
represent average values and error bars represent the
standard deviations across the replicates.

Relative Stability of Oxidized and Reduced Forms of
DsbA Enzymes

Temperature-induced unfolding of native SeDsbA and
KpDsbA was determined as described previously [13] using a
Jasco J-810 circular dichroism (CD) spectropolarimeter (Jasco,
USA). The redox state of the protein was confirmed using
Ellman’s reagent [22]. The largest difference in molar ellipticity
for oxidized or reduced enzymes was calculated from initial far-
UV CD spectra (from 250 nm to 190 nm) recorded at 25 °C and
95 °C, respectively. The unfolding of oxidized and reduced
protein (SeDsbAox = 220 nm, SeDsbAred = 220.5 nm and
KpDsbAox = 211 nm, KpDsbAred = 209.5 nm) was monitored at
a heat rate of 1 K / min from 298 K to 368 K in a 1 mm quartz
cuvette. All measurements were carried out with 10 µM protein
in 100 mM NaH2PO4 / Na2HPO4, 1 mM EDTA at pH 7.0.
Samples for measurement of reduced enzyme contained 0.75
mM DTT. Raw data were analyzed in Prism and fitted to a two-
state unfolding model as described previously [23]. The
standard deviation was measured from three replicates.

KpDsbA Dithiol Oxidation Activity
A peptide (CQQGFDGTQNSCK) with a 1,4,7,10-

tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) group
amide-coupled to the N-terminus, and a methylcoumarin
amide-coupled to the ε-amino group of the C-terminal lysine,
was purchased from AnaSpec (Fremont, CA). Lyophilized
peptide was re-suspended in 100 mM imidazole, pH 6, at a
concentration of 2 mM. Europium trifluoromethanesulfonate
(Sigma Aldrich, Australia) solution (100 mM) was added to the
peptide at a molar ratio of 2:1 and incubated for 5 min at room
temperature, to allow europium chelation. The peptide solution
was then immediately aliquoted, flash frozen in liquid nitrogen
and stored at -80°C. An increase in fluorescence occurs upon
oxidation of the peptide cysteines to form a disulfide. Thus,
fluorescence can be used to monitor the capacity of DsbA
enzymes to catalyse dithiol oxidation.

Assays were conducted using a Synergy H1 multimode plate
reader (BioTek, USA) with the excitation wavelength set to 340
nm and emission to 615 nm. A 150 μs delay before reading
and 100 μs reading time were used for time-resolved
fluorescence. The assay was performed in a white 384-well
plate (Perkin Elmer OptiPlate-384, Part #: 6007290). The buffer
consisted of 50 mM MES, 50 mM NaCl and 2 mM EDTA at pH
5.5. The reaction consisted of a 50 μL solution in each well,
containing 160 nM EcDsbA, KpDsbA or SeDsbA, 1.6 μM
EcDsbB (crude membrane extracts, containing ubiquinone)
and 8 μM peptide substrate added last to initiate the reaction.
Samples containing buffer and DsbA or buffer and peptide
were used as controls. Data were measured for three
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replicates and are presented as mean values, with the
standard error of the mean indicated by error bars.

KpDsbA Crystallization and Crystal Structure
Determination

After initial screening using the UQ ROCX facilities, crystals
of reduced KpDsbA were grown at 20 °C in VDXm 24-well
plates (Hampton Research) using the hanging-drop vapor
diffusion method. Screening plates were imaged and incubated
in a RockImager 1000 (Formulatrix, MA, USA). Drops
contained 0.5 μL of 180 mg/mL reduced KpDsbA and 0.5 μL of
crystallization solution (0.1 M succinic acid pH 5.3, 25 % (w/v)
polyethylene glycol 1500 and 15 % (v/v) 2-methyl-2,4-
pentanediol). For diffraction data measurement, crystals were
frozen in liquid nitrogen without additional cryo-protectant.
Diffraction data were measured at the Australian Synchrotron
micro-focus MX2 beamline using BlueIce software [24].
Reflections were processed in Mosflm [25] and XDS [26],
analyzed and converted to MTZ in Pointless [27] and scaled in
SCALA [27]. Phases were obtained by molecular replacement
(MR) using PHASER [28] with EcDsbA as template (PDB code:
1DSB) . The initial model was improved by iterative model
building in COOT [29] and refinement in PHENIX [30].
However, the progress of refinement was stalled with a high R-
factor/Rfree of 25.7 % / 29.3 %. Diffraction data analysis in
Phenix.xtriage indicated that the crystal was merohedrally
twinned with a twinning fraction of 0.42. Further refinement
cycles were performed using the twin target function as
implemented in PHENIX with the twinning operator h,-h-k,-l.
Two fold non-crystallographic symmetry (NCS) is present
(which does not align with space group axes), though NCS was
not used at any stage of refinement. The refinement finally
converged after several TLS refinement cycles. No atoms were
modeled into additionally spherical density located between
chain D (L133) and chain B (T57) because it was not obvious
what was bound. The stereochemical quality of the final model
was assessed using MolProbity [31]. A summary of the data
processing and refinement statistics are provided in Table 2.

Molecular figures were generated in PyMOL (The PyMOL
Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC)
and figures of the electrostatic potential were generated using
APBS [32]. The surface, including the proportion of carbon
atoms lining the hydrophobic groove in KpDsbA, was
calculated using the CastP server [33], by averaging over all
six molecules within the asymmetric unit. RMSD calculations
and structural alignments were conducted using PyMOL as
well as FATCAT [34].

NMR Structure Determination of Oxidized KpDsbA
A sample of uniformly 13C,15N labeled oxidized KpDsbA (1.3

mM) was prepared in 50 mM MES (pH 6.5, 10% 2H2O and 90
% 1H2O). NMR experiments were conducted at 303 K on either
600 MHz or 800 MHz spectrometers equipped with
cryogenically cooled probes. All spectra were acquired with
standard pulse sequences and processed using TOPSPIN3.1
(Bruker BioSpin). HN, N, Cα, Cα-1, Cβ, Cβ-1 peak lists were
generated manually in CARA using 2D [15N,1H]-HSQC, 3D
HNCA, 3D CBCA(CO)NH and 3D HNCACB spectra and used

as the input for automated backbone assignments using UNIO-
MATCH. These assignments were refined manually and
extended using 3D 15N-resolved [1H,1H]-NOESY. Hβ, Hα

assignments were obtained using a 3D HBHA(CBCACO)NH
spectrum. HN, N, Cα and Cβ assignments together with Hβ, Hα

were provided as input for UNIO-ATNOS/ASCAN for
automated side-chain assignments using 3D 15N-, 13Cali - and
13Caro - resolved [1H,1H] NOESY datasets [35,36]. Upper limits
for distance restraints used in structure calculations were
automatically generated from NOESY datasets using UNIO-
ATNOS/CANDID and the structure of oxidized KpDsbA was
determined using the torsion angle dynamics program
CYANA3.0 [37]. Conformers with lowest CYANA target function
values were energy minimized using OPALp and validated
using structure validation tools (http:/www.pdb.org/ and http:/
www.nihserver.mbi.ucla.edu/). Structures were inspected and

Table 2. X-ray data measurement and refinement statistics
for KpDsbA.

Data collection Value
Space group P 32
Unit cell dimensions  
a (Å) 91.5
b (Å) 91.5
c (Å) 147.2
α, β, γ (°) 90, 90, 120
Wavelength (Å) 0.95369
Resolution (Å) 53.94 - 1.99 (2.10 - 1.99)
Number measured reflections 527,166
Number of unique reflections 94,694
Rmergea 0.091 (0.566)
Rp.i.m. 0.043 (0.264)
<I>/<σI> 11.1 (2.9)
Redundancy 5.6 (5.5)
Completeness (%) 99.9 (99.9)

Refinement statistics  
Number of Reflections 94,693
Resolution (Å) 53.9-1.99 (2.02 -1.99)
Rfree (%) 19.6 (31.9)
Rwork (%) 16.1 (27.8)
Number of monomers in a.u. 6
Number of protein atoms 16622
Number of waters 371
B factors (Å2)  
Wilson 29.6
Protein atoms 39.4
Waters 41.4
RMSD Bond length (Å) 0.004
RMSD Bond angles (°) 0.740
Ramachandran favored / outlier (%) 97.4 / 0
Molprobity clashscore / scoreb 2.23 [99th(712)] / 1.12 [100th(12290)]

a. The values in parentheses refer to the highest resolution shell.
b. 100th Molprobity [31] percentile is the best among structures of comparable
resolution; 0th percentile is the worst. The number of structures included in the
comparison is given in parentheses within square brackets.
doi: 10.1371/journal.pone.0080210.t002
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analyzed with MOLMOL [38]. Table 3 summarizes the NMR
statistics.

Binding Affinity of DsbA-Interacting Peptides
Crystal structures of the EcDsbA:EcDsbB complex revealed

that the P2 loop region of EcDsbB interacts with EcDsbA
[39,40]. Two peptides derived from the P2 loop sequences of
EcDsbB and KpDsbB (Ec – PSPFATCD and Kp – PSPFQTCD)
were synthesized by solid-phase methods using Fmoc
deprotection on rink-amide MBHA resin (leading to C-terminal
amidation) and capped by N-terminal acetylation. Amidation
and acetylation ensure that there are no charges on the
peptide termini, as these are not present in the native DsbB

Table 3. Parameters for structure calculation and
characterization of 20 lowest energy minimized NMR
conformers of oxidised KpDsbA (1─188).

Quantitya Value
NOE upper distance limits 3859
intraresidual 813
short-range 1052
medium-range 969
long-range 1025
Residual target function value [Å2] 3.3 ± 0.2
Residual NOE violations  
number ≥ 0.1 Å 36.8 ± 7.5
maximum [Å] 0.16 ± 0.11
Residual dihedral angle violations  
number ≥ 2.5° 1.1 ± 0.6
maximum [°] 4.2 ± 3.2
AMBER energies [kcal/mol]  
total -7513 ± 381
van der Waals -562 ± 213
electrostatic -8402 ± 159

RMSD from mean coordinatesb [Å]  
For well-defined regions (1-15,24-187)  
backbone 0.67 ± 0.17
heavy atoms 1.03 ± 0.13
For TRX domain (1-15, 24-62,146-187)  
backbone 0.55 ± 0.12
heavy atoms 0.99 ± 0.11
For helical domain (67-142)  
backbone 0.44 ± 0.08
heavy atoms 0.81 ± 0.09

Ramachandran plot statisticsc  
most favoured regions [%] 77.7
additional allowed regions [%] 19.6
generously allowed regions [%] 1.2
disallowed regions [%] 1.5
a Except for the top five entries (those relating to NOEs), average values and
standard deviations for the 20 energy-minimized conformers are given. The top six
entries represent the output generated in the final cycle of the UNIO-ATNOS/
CANDID-CYANA3.0 calculation. b The numbers in parentheses indicate the
residues for which the RMSD was calculated. c As determined by PROCHECK.
doi: 10.1371/journal.pone.0080210.t003

loop sequence. Binding affinity was measured using a
MicroCal™ Auto-iTC200 from (GE Healthcare, USA) at 25 °C.
The sample cell was loaded with 200 μL of 100 μM KpDsbA or
EcDsbA in 25 mM HEPES, 50 mM NaCl, pH 7.4, and DMSO
0.8 %. The peptide (3 mM) diluted in the same buffer was
titrated with an initial injection of 0.5 μL into DsbA, followed by
19 consecutive injections (2.0 μL) offset by 180 s, while the
solution was constantly stirred (1000 rpm). Data were fitted to a
single-site binding model using MicroCal™ Origin 7.0 software
(Origin 7 SR4 v7.0552). Experiments were conducted in
triplicate and affinity and thermodynamic parameters are
reported as means and standard deviations (Table 4).

Comparative Sequence and Structural Analyses
The sequence conservation of ten virulence factors

previously identified [2] as substrates of DsbA were analyzed
here. Sequences from published and validated DsbA substrate
virulence factors were taken from the original literature and
used to search the publicly available UniProt database [41] for
potential homologues in E. coli, S. enterica Typhimurium and
K. pneumoniae. Most of the 10 factors were originally identified
in those three organisms except YscC and Caf1M, which were
initially reported in Yersinia pestis. A protein-protein BLAST
search was performed using the UniProt bacterial genome
database with a threshold of P < 0.0001. Unless stated
otherwise, homologues were identified in pathogenic strains,
i.e. E. coli UPEC O6:K15:H31 and EPEC O127:H6 / O55:H7,
S. enterica Typhimurium SL1344 and non-motile K.
pneumonieae (hvKP1 / MGH 78578 / NTUH-K2044). Sequence
identity between homologues was extracted from the UniProt
protein BLAST results. All other sequence alignments reported
herein (e.g. for Table 1) were conducted using ClustalW2 [42].

Results

Binding Residues of EcDsbA are conserved in SeDsbA
and DsbAs of Five Other Enterobacteriaciae

EcDsbA and SeDsbA share 86 % sequence identity and both
have been characterized previously [14,43]. SeDsbA can
complement EcDsbA [44] in a null mutant motility assay,
indicating that SeDsbA is able to interact with the EcDsbA
binding partner EcDsbB and with the EcDsbA substrate E. coli
FlgI [45]. Both are weak disulfide reductants in the standard

Table 4. Affinity and enthalpy for DsbB-derived peptides
binding to DsbA proteins1.

DsbA DsbB-peptide Stoichiometry Kd (μM) ΔH (kcal/mol)
EcDsbA PSPFATCD 1.0 16.1 ± 1.8 -8.4 ± 0.1
 PSPFQTCD 0.99 10.9 ± 0.6 -9.1 ± 0.2
KpDsbA PSPFATCD 0.93 17.9 ± 1.5 -9.5 ± 0.7
 PSPFQTCD 0.97 16.7 ± 0.6 -11.1 ± 0.2

1. Apparent dissociation constant (Kd) and enthalpy of binding (ΔH) at 20 °C
obtained from three independent ITC experiments. See Figure S3 for
representative ITC traces.
doi: 10.1371/journal.pone.0080210.t004
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insulin reduction assay for redox enzymes [43]. Both are
similarly oxidizing enzymes: the redox potentials of EcDsbA
and SeDsbA are -122 and -126 mV, respectively [9,43],
whereas the range for all DsbAs is -80 to -163 mV (Table 1). In
both EcDsbA and SeDsbA the measured pKa of the
nucleophilic cysteine is 3.3 [7,43], though values vary across all
DsbAs from 3.0 to 5.1 (Table 1). Although disulfide bonds
generally stabilize folded proteins, the disulfide form of DsbA
enzymes is destabilizing [6,7]. The melting temperatures of the
oxidized and reduced forms of EcDsbA and SeDsbA are
almost identical (reduced 350 K and 351 K; oxidized 341 K and
342 K, respectively) [13] (Figure S1), whereas the range of
melting temperatures across all DsbAs varies considerably
(Table 1). Importantly, the crystal structures of EcDsbA and
SeDsbA can be superimposed with an RMSD of 0.8 Å for 176
Cα atoms, whereas across all structurally characterized DsbAs
the RMSD with EcDsbA varies from 1.3 Å to 2.9 Å (for 122-167
Cα atoms) (Table 1) [14].

Two catalytically relevant EcDsbA complex structures have
been described, a complex between EcDsbA and EcDsbB
[39,40,46] and one between EcDsbA and a peptide segment of
SigA, an autotransporter protein from Shigella flexneri [47].
Analysis of these structures revealed that the binding interface
comprises the N-terminal regions of the active site helix H1, as
well as loops L1 (the first of two loops connecting the
thioredoxin and helical domains), L2 (the second of two loops
connecting the thioredoxin and helical domains, also referred to
as the cisPro loop) and L3-H7 (residues in the loop preceding
and at the N-terminal region of helix H7) (Figure 1A). A
hypothesis is that DsbAs sharing overall high sequence identity
with EcDsbA and with highly conserved loop lengths and
residues in these regions will share similar binding activities. As
shown in Figure 1B, SeDsbA falls into this cluster as does
Shigella flexneri (SfDsbA, P52235), Enterobacter cloacae
(EnDsbA. E3G5L9), Citrobacter koseri (CkDsbA, A8AL80) and
Cronobacter sakazakii (CsDsbA, I2ED40) and K. pneumoniae
(KpDsbA) (Figure 1B). Of these, the DsbA with lowest
sequence identity to EcDsbA is KpDsbA (81 %) encoded by an
important human pathogen responsible for many antibiotic-
resistant nosocomial infections [1,48,49]. To determine whether
KpDsbA falls within the same class as EcDsbA, we
investigated its structure, surface, redox and binding properties
and compared them with EcDsbA.

KpDsbA Complements EcDsbA in vivo
The E. coli protein FlgI is required for E. coli motility and, in

turn, FlgI requires the DSB machinery of E. coli to function. FlgI
function is impaired in E. coli dsbA- deficient (JCB817) and
dsbA-/dsbB- double-mutant (JCB818) strains due to the
absence of EcDsbA mediated dithiol oxidase activity [50]. As a
consequence, these E. coli strains are non-motile. Intriguingly,
K. pneumoniae is non-motile and does not encode a FlgI
homologue. We tested whether KpDsbA was able to catalyse
disulfide bond formation of E. coli FlgI using an in vivo
complementation strategy [3]. We demonstrated that KpDsbA –
like SeDsbA [44] – can fully restore the motility of dsbA-

deficient strains, but not in the double dsbA-/dsbB- mutant cells
(Figure S2). This experiment shows that KpDsbA is able to

oxidize FlgI cysteines and this requires the presence of
EcDsbB.

Some distantly related DsbAs do not complement EcDsbA in
this assay, including Gram-negative Wolbachia pipientis α-
DsbA1 [23] and Gram-positive Staphylococcus aureus DsbA
[13]. However, rescue or partial rescue of motility has been
observed for a wide range of DsbA homologues, some sharing
quite low sequence identity with EcDsbA, such as VcDsbA (40
%), PaDsbA (30 %) and NmDsbA1 (23 %) [15-17,51].
Consequently, EcDsbA complementation may not be a suitable
guide for categorizing DsbA enzymes into distinct classes.

KpDsbA has redox properties almost identical to those
of EcDsbA and SeDsbA

EcDsbA exhibits weak insulin reductase activity in the
presence of dithiothreitol [52] whereas the E. coli disulfide
isomerase EcDsbC is highly active in this assay. Reduction of
the intermolecular disulfide bonds between the A and B chains
of insulin results in precipitation of the B chain and this can be
monitored by measuring the OD650nm. We found that purified
recombinant KpDsbA has the same weak insulin reductase
activity as EcDsbA (Figure 2A) and SeDsbA [43]. The activity
of other characterized DsbA enzymes varies. NmDsbA1, for
example, has a much weaker activity than that of EcDsbA [15],
and DsbA from Mycobacterium tuberculosis (MtbDsbA) is
inactive in this assay [53]. In contrast, TcpG (VcDsbA) from
Vibrio cholerae catalyses insulin reduction much faster than
EcDsbA [54].

We next determined the standard redox potential of KpDsbA
relative to glutathione ([GSH]2/GSSG, E0’ = -240 V). The
equilibrium constant for KpDsbA was estimated from the
[GSH]2/GSSG titration experiment to be 61.4 ± 0.1 µM (Figure
2B), which corresponds to a standard redox potential of -116
mV. This value falls very close to the values reported for
EcDsbA (-122 mV [9]) and SeDsbA (-126 mV [43]) considering
the wide range of values reported across all DsbA enzymes
(-80 to -163 mV) [14].

The pKa value of the nucleophilic cysteine in the active site
CXXC motif is a key determinant of DsbA reactivity towards
substrate proteins. We measured the pKa value for the
nucleophilic cysteine of KpDsbA using pH-dependent thiolate
absorbance at λ = 240 nm (Figure 2C). The pKa

Cys30 for
KpDsbA was found to be 3.2, nearly identical to that of EcDsbA
and SeDsbA (3.3) compared with the observed range for other
DsbAs (3.0-5.1).

We also confirmed that reduced KpDsbA (Tm
red 347.1 ± 0.2

K) is more stable than oxidized KpDsbA (Tm
ox 335.8 ± 0.3 K)

(Figure 2D). The melting temperatures fall between values
reported previously for EcDsbA (Tm

red 350.9 ± 0.2 K, Tm
ox 341.7

± 0.2 K [7]) and those for SeDsbA (Tm
red 351.2 ± 0.2 K, Tm

ox

342.8 ± 0.4 K) reported here (Figure S1). Again, the range
reported for all DsbAs is much wider (Tm

red 337-357 / Tm
ox

331-341 K) [51,54].
We then tested the dithiol oxidase activity of KpDsbA using a

fluorescently labeled peptide substrate. The activity was
monitored by the increase in europium fluorescence resulting
from cyclization of the substrate peptide through formation of
an intramolecular disulfide bond. In the presence of EcDsbB,
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we found that the rate for KpDsbA and SeDsbA catalyzed
disulfide bond formation was almost indistinguishable from that
of EcDsbA measured at the same concentration of enzyme
(Figure 3). This result suggests that KpDsbA (and SeDsbA) is
able to interact in the same way as EcDsbA with the peptide
substrate and with EcDsbB. TcpG has a similar activity to
EcDsbA in this assay [54], whereas MtbDsbA is inactive in the
presence of EcDsbB [53].

Crystal structure of reduced KpDsbA
We determined the crystal structure of reduced KpDsbA

(PDB: 4MCU) at 1.99 Å resolution by molecular replacement,
using EcDsbA as the template. As expected, the structure is
very similar to that of EcDsbA (Figure 4A). The asymmetric unit
contains six KpDsbA molecules each adopting the typical DsbA
fold. Structural superposition of these six independent copies
yielded a root mean square deviation (RMSD) < 0.45 Å for 176
Cα atoms between residues Gly6 - Val181. Likewise, structural

Figure 1.  Comparison of EcDsbA and SeDsbA.  A. Structural superposition of EcDsbA (magenta, PDB id: 1FVK) and SeDsbA
(blue, PDB Id: 3L9S). N- and C-termini, helices (H1 - 7) and strands (β1-5) are indicated. In addition, surface loops (L1 – L3)
predicted to be involved in binding EcDsbB periplasmic loop P2 or substrate are labeled in red. Active site cysteines are shown as
orange spheres and the cisPro motif in the L2 loop is indicated by a yellow star. B. Sequences of EcDsbA loops that bind DsbB
(blue/red) or SigA substrate (blue). Homologues with highly conserved loop sequences are shown: S. flexneri (SfDsbA, P52235), S.
enterica Typhimurium (SeDsbA E1WE53), C. koseri (CkDsbA, A8AL80), E. cloacae (EnDsbA, E3G5L9), C. sakazakii (CsDsbA,
I2ED40) and K. pneumoniae (KpDsbA B5XZJ6). Conserved residues are shown in grey, and variable residues in black.
doi: 10.1371/journal.pone.0080210.g001
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alignment of KpDsbA with EcDsbA (1FVK, 1.7 Å, molecule B)
and SeDsbA (3L9S, 1.6 Å) gave RMSD values < 0.9 Å for the
identical range of 176 Cα atoms. By comparison, high
resolution crystal structures of distantly related DsbAs have
much higher RMSDs covering a smaller range of equivalent Cα
atoms (e.g. PaDsbA (PDB code 3H93) and EcDsbA (1FVK,
molecule B), 161 Cα atoms RMSD of 2.4 Å) [16]. These higher
values are a consequence of structural deviations including a
truncated helix H7 and a shortened hydrophobic groove.

The structure of the catalytic site of KpDsbA is strictly
conserved with that of EcDsbA, comprising the active site motif
30Cys-Pro-His-Cys33 located at the N-terminal end of helix H1
and the adjacent cisPro (Val-Pro151) L2 loop (Figure 4B). The
cysteine residues (Cys30 and Cys33) are present in the
reduced state in the crystal structure. A hydrophobic patch and
a large groove surrounds the nucleophilic Cys30, as also
occurs in EcDsbA and SeDsbA (Figure 4C). As expected,
these surface features are lined with residues contributed from
the L1, L2 and L3 loops.

The six independent copies of KpDsbA in the crystal
structure allow an analysis of conformational variability of the
loop residues forming the binding surface. This revealed that
the side chains of His32, Phe63, Leu64, Gln147, Thr167 and
Met170 adopt various rotamer conformations, whereas there is
no evidence of conformational variability in Tyr29, Cys30,
Pro31, Val149, Pro150, and Phe173 (Figure 5A). The side
chain variations do not influence the surface accessibility of the
hydrophobic groove, which was calculated to be 371 ± 32 Å2 by
CastP [33] across the 6 molecules. Moreover, the hydrophobic
nature of the groove is unaffected by the side chain
conformational variability as indicated by the proportion of
carbon atoms lining this groove (69 ± 3 %) [33].

NMR Solution Structure of KpDsbA is Similar to the
Crystal Structure

Previous studies have demonstrated that there are minimal
differences between reported structures (crystal and NMR) of
oxidized and reduced EcDsbA. To determine if this was also

Figure 2.  KpDsbA redox properties.  A. Disulfide bond reduction activity of KpDsbA (▲), EcDsbA (■) EcDsbC (●) and a control
without enzyme (△) was monitored spectrophotometrically. SeDsbA activity has been published elsewhere [43]. B. Redox equilibria
of KpDsbA with glutathione (GSH/GSSG). C. Determination of the nucleophilic Cys33 (CXXC) pKa. The pH-dependent absorbance
of the thiolate anion at 240 nm was fitted to the Henderson-Hasselbach equation D. Temperature induced unfolding of oxidized (ox,
■) and reduced (red, □) KpDsbA was determined by far-UV CD spectroscopy, showing that the reduced form is more stable than the
oxidized form.
doi: 10.1371/journal.pone.0080210.g002
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the case for KpDsbA, a semi-automated NMR approach was
used to determine the structure of oxidized KpDsbA (PDB ID:
2MBS, BMRB ID: 19413). Following UNIO-ATNOS/ASCAN,
manual verification and refinement enabled assignment of 89.2
% of the non-labile proton resonances in KpDsbA. These were
used to generate the NOE-based distance constraints for final
structure calculation. Twenty conformers with lowest target
function and least violations of input restraints were chosen to
represent the structure of oxidized KpDsbA (Figure S4 A/B). It
was not possible to assign several backbone amide
resonances corresponding to residues in the β1- β2 loop (Ile16,
Gly18, Glu19, Gln21, Val22, Leu23), so that this region
appears to be largely disordered in the NMR ensemble
compared with the rest of the structure. The backbone (N, Cα,
C’) and all-heavy atom RMSD for the 179 well-defined residues
(1–15, 24-187) of the 20 KpDsbA conformers were 0.67 ± 0.17
Å and 1.03 ± 0.13 Å, respectively. Structural statistics are
summarized in Table 3. As observed for other DsbA structures,
the individual thioredoxin and helical domains can be
superimposed with higher precision than the entire structure.
This is most likely due to inter-domain motion, which has also
been reported in the structures of EcDsbA [55] and VcDsbA
[56]. Residues which fall into disallowed Ramachandran
regions include the unassigned residues Glu19, Gln21, Val22,
and His32, and residues in loop regions, i.e. Lys55, Phe63,
Leu64, Asn155 and Met170.

The overall conformation of the NMR structure of oxidized
KpDsbA is similar to that of the crystal structure of reduced
KpDsbA (Figure 5C). For example, superposition of molecule A
in the crystal structure of reduced KpDsbA with the first

Figure 3.  In vitro peptide dithiol oxidation.  A. Dithiol
oxidase activities of EcDsbA (■), SeDsbA (●) and KpDsbA (➉)
were monitored using a fluorescently labeled peptide substrate.
Samples lacking the partner protein EcDsbB (KpDsbA/peptide
△), EcDsbA/peptide □, SeDsbA/peptide ○, or buffer alone ▼)
showed no increase in signal over the same time period.
doi: 10.1371/journal.pone.0080210.g003

structure in the NMR ensemble of oxidized KpDsbA, yields an
RMSD of 1.09 Å over 169 Cα atoms. To make a similar
comparison, the crystal structures of oxidized (1FVK, molecule
B) and reduced (1A2L, molecule B) EcDsbA have an RMSD of
0.45 Å (over 186 Cα atoms) and the crystal structure of
oxidized EcDsbA (1FVK, molecule B) and the first structure in
the NMR ensemble of reduced EcDsbA (1A24) have an RMSD
of 1.95 Å over 181 Cα atoms [57,58].

The structures of the catalytic sites and hydrophobic surface
features are similar, considering that the cysteines of the CXXC
motif are oxidized in the NMR structure and reduced in the
crystal structure (Figure S4C). As has been noted previously
for other DsbA solution and crystal structures [56,59], L3 of
KpDsbA is a relatively flexible part of the protein in both NMR
and crystal structures (Figure 5B and C). Thus, overall the
structures of oxidized and reduced KpDsbA are similar,
notwithstanding the different conditions and approaches used
for structure determination.

Binding Affinity of DsbB peptides is similar for KpDsbA
and EcDsbA

The similar surface features and similar predicted binding
residues of KpDsbA and EcDsbA suggested that these
enzymes would interact with binding partners with similar
affinity. The crystal structures of the EcDsbA:EcDsbB complex
showed that the second periplasmic loop P2 of EcDsbB binds
directly to EcDsbA [39,40]. The binding residues are 98-
PSPFATCD-104 and these are highly conserved in KpDsbB
(98-PSPFQTCD-104). These two P2 peptides were
synthesized and isothermal titration calorimetry (ITC) was used
to assess their binding affinity for both enzymes. KpDsbA and
EcDsbA were found to bind to PSPFATCD and PSPFQTCD
with similar affinities (Kd 11-18 µM, Table 4, Figure S3A). We
investigated the interaction of KpDsbA with PSPFQTCD by
structural superposition of KpDsbA onto the structure of
EcDsbA in the EcDsbA:EcDsbB complex structure. Residue
Ala of EcDsbB PSPFATCD was mutated in silico to
PSPFQTCD, using the most commonly observed rotamer for
glutamine. The superimposed model showed that the P2 loop
matched the surface of KpDsbA very well, with no clashes
apparent between the P2 residues and KpDsbA (Figure S3B).

Discussion

We have shown that the structural, surface, redox and
binding properties of EcDsbA, SeDsbA and KpDsbA enzymes
are highly conserved, and that these three DsbAs and four
other DsbAs (from Enterobacter cloacae, Citrobacter koseri,
Shigella flexneri and Cronobacter sakazakii) might be
considered an Enterobacteriaceae subclass of DsbA.
Carbapenem-resistant Enterobacteriaceae are responsible for
a large proportion of difficult to treat community- and hospital-
acquired infections [60] and there is an urgent need to develop
novel therapeutic strategies to tackle these so-called ‘super
bugs’ [61].

One approach to generate new classes of antibacterials is to
target virulence rather than viability of bacteria. An
antivirulence approach is predicted to lead to less selective
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Figure 4.  Crystal structure of KpDsbA.  A. Superposition of crystal structures of KpDsbA (cyan, PDB Id: 4MCU) and EcDsbA
(magenta, PDB id: 1FVK). The N- and C-termini, helices (H1 - 7) and strands (β1-5) are indicated. Surface loops L1 – L3 are
labeled in red, and active site cysteines are shown as orange spheres. B. Electron density in the active site region of KpDsbA
indicates that the cysteines are reduced. The 2Fo - Fc map was created using Phenix (model-map correlations) [30] and is
contoured at 1.0 σ C. Electrostatic surface representation of EcDsbA, SeDsbA and KpDsbA (left, middle, right). Positive and
negative electrostatic potentials are contoured from blue (+7.5 kT/e) to red (-7.5 kT/e). The hydrophobic grooves of all three
enzymes are indicated by a dashed oval [8,43].
doi: 10.1371/journal.pone.0080210.g004
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pressure for resistance development, since most virulence
traits are not essential for survival [62]. Targeting virulence may
also expand the repertoire of antimicrobial targets, preserve the
endogenous host microbiome and extend the lifespan of
conventional antibiotics [61]. Most antivirulence strategies
developed to date target individual virulence factors [61-65]
and this has yielded some successes [66,67]. However, the
armory of DsbA substrate virulence factors expressed in
different Enterobacteriaceae varies (Figure 6), so that drugs

targeting specific virulence factors may not be effective against
all Enterobacteriaceae. On the other hand, DsbA itself
catalyzes assembly of many virulence factors [68-70] and
DsbA knockouts severely attenuate virulence in infection
models [12]. Targeting DsbA is therefore a compelling
approach for the development of anti-virulence agents,
because DsbA inhibitors should inhibit a range of virulence
traits. Significantly, our findings point to the opportunity to

Figure 5.  Conformational variability in X-ray and NMR structures of KpDsbA.  A Superimposition of the six KpDsbA molecules
(blue) in the asymmetric unit shows the limited conformational variability in the side chains of active site and L1, L2, and L3 loop
residues (stick representation). B. Cartoon representation of the KpDsbA crystal structure (Molecule D), with Cα atoms colored by
temperature factor (B-factor). Molecule D was selected as its temperature factor distribution is the most pronounced due to minimal
crystallographic contacts. In particular, the high B-factor of loop L3 indicates mobility in that region, consistent with the NMR data C.
Stereo diagram of representative states of reduced (X-ray, cyan) and oxidized (NMR, yellow) structures of KpDsbA. Red arrows
highlight differences in the structures at N-terminal and L3 loop regions.
doi: 10.1371/journal.pone.0080210.g005
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develop a single antivirulence drug effective against DsbAs
encoded by at least seven Enterobacteriaceae pathogens.

The crystal structure and NMR solution structure of KpDsbA
(the latter derived by semi-automated approaches) reported
here are in excellent agreement. The availability of structural
data for KpDsbA opens up the possibility of using structure-
based approaches to generate DsbA inhibitors. Moreover, the
close similarity of the crystal and NMR structures, and the use
of semi-automated NMR, highlights how NMR can be used as
an efficient first screen in e.g. drug-like fragment campaigns.
By contrast, the six molecules in the asymmetric unit of
KpDsbA crystal structure is far from ideal for rapid fragment-
screening, but is nevertheless advantageous for follow up
analysis.

Taken together, our data show that DsbA enzymes sharing
>80% sequence identity with EcDsbA also share almost
identical redox and surface properties and can thus be
categorized as a distinct DsbA subclass. Further analyses will
be required to determine how many subclasses of DsbA exist,
and whether DsbAs with lower than 80% sequence identity will
fall into the EcDsbA-like class. Importantly, our results suggest
that compounds designed to inhibit EcDsbA will likely inhibit all
DsbAs within the same class. Finally, we propose that
compounds that bind KpDsbA might be identified rapidly using
semi-automated NMR approaches, and that development of
‘hits’ to optimise potency can be achieved using a pipeline

comprising biochemical and structural assays similar to those
outlined herein.

Supporting Information

Figure S1.  Thermal unfolding of SeDsbA. A. Temperature-
induced unfolding of oxidized (ox, ν) and reduced (red, θ)
SeDsbA was monitored by far-UV CD spectroscopy. Unfolding
was monitored in 1 K steps from 298 K to 368 K. Normalized
average data points of three measurements were fitted to a
two-state folding model. The reduced state of SeDsbA (351.2
+/- 0.2 K) is 9 K more stable than its oxidized (342.8 +/- 0.4 K)
form.
(TIF)

Figure S2.  Summary of in vivo complementation of
KpDsbA and EcDsbA (A). E. coli cells lacking dsbA- (JCB817)
or dsbA- /dsbB- (JCB818) are non-motile. Expression of
KpDsbA or EcDsbA can rescue the swarming of E. coli dsbA-

(JCB817) but not of dsbA- /dsbB- cells. Expression of KpDsbA
or EcDsbA is induced by inclusion of arabinose (arab).
(TIF)

Figure S3.  Binding studies of PSPFQTCD to KpDsbA. A.
Representative ITC profile for PSPFQTCD peptide binding to
EcDsbA. For all combinations tested see Table 4. B. Model of

Figure 6.  Conservation of DsbA substrate virulence factors.  Comparison of the sequence conservation of DsbA
oxidoreductases from E. coli (Ec), S. enterica Typhimurium (Se) and K. pneumonia (Kp) and of characterized DsbA substrate
virulence factors. Sequence identities relative to the characterized substrate protein are represented in different colours, as shown
in the key. White squares indicate the lack of a sequence homologue in the specific bacteria. *YscC and Caf1M were identified as
DsbA substrate proteins in Yersinia pestis [71,72]. a [68], b [73], c [44], d [74], e,f [75], g [5], h,k [71,72], i [45], j [69].
doi: 10.1371/journal.pone.0080210.g006
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the interaction of the KpDsbA (molecule A) with PSPFQTCD
generated by structural superposition on the EcDsbA:EcDsbB
complex [76].
(TIF)

Figure S4.  NMR structure of oxidized KpDsbA. A. Overlay
of the 20 NMR models; disordered region highlighted in blue.
B. lowest energy NMR conformer. c. magnification of the active
site region showing the disulfide bond formed between the
cysteines in the averaged NMR solution structure of oxidized
KpDsbA.
(TIF)
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