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A B S T R A C T   

Increasing evidence suggests that Alzheimer’s disease (AD) and Parkinson’s disease (PD) share monoamine and 
alpha-synuclein (αSyn) dysfunctions, often beginning years before clinical manifestations onset. The triggers for 
these impairments and the causes leading these early neurodegenerative processes to become AD or PD remain 
unclear. We address these issues by proposing a radically new perspective to frame AD and PD: they are different 
manifestations of one only disease we call “Neurodegenerative Elderly Syndrome (NES)”. NES goes through three 
phases. The seeding stage, which starts years before clinical signs, and where the part of the brain-body affected 
by the initial αSyn and monoamine dysfunctions, influences the future possible progression of NES towards PD or 
AD. The compensatory stage, where the clinical symptoms are still silent thanks to compensatory mechanisms 
keeping monoamine concentrations homeostasis. The bifurcation stage, where NES becomes AD or PD. We 
present recent literature supporting NES and discuss how this hypothesis could radically change the compre-
hension of AD and PD comorbidities and the design of novel system-level diagnostic and therapeutic actions.   

1. Introduction 

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the two 
most diffused neurodegenerative disorders worldwide. Globally, AD 
affects an estimated 44 million people, whereas PD affects over six 
million people (Dorsey et al., 2018; Dumurgier and Sabia, 2020). AD 
causes a gradual progression of memory loss and deficits in other 
cognitive domains, including language, visuospatial skills, and execu-
tive functions. In the early and middle stages of the disease progression, 
depression and apathy are also frequent. In the later stages, motor im-
pairments may also appear (e.g., dystonia, tremor) (Scheltens, 2000). A 
first neuropathological feature characterizing AD is the abnormal 
accumulation of extracellular amyloid-β (Aβ) oligomers leading to pla-
que formation. A second one is the aggregation of hyperphosphorylated 
tau protein into neurofibrillary tangles. Both phenomena produce 
cytotoxic effects leading to cortical cell death (Binder et al., 2005; Hardy 
and Higgins, 1992). Another neuropathological finding is the loss of 
cholinergic neurons in the nucleus basalis of Meynert (Schliebs and 

Arendt, 2011). This produces impairments in cholinergic neurotrans-
mission in the cerebral cortex and causes deficits in other target areas 
involved in learning, memory, and emotional regulation (e.g., hippo-
campus and amygdala) (Hasselmo, 2006; He et al., 2014; Maurer and 
Williams, 2017), ultimately leading to the deterioration of cognitive 
functions (Pinto et al., 2011). Several works also suggest abnormalities 
in the principal dopaminergic nuclei, such as the ventral tegmental area 
(VTA) and the substantia nigra pars compacta (SNc) (Burns et al., 2005; 
Gibb et al., 1989; Storga et al., 1996). Pathological alterations of the 
dopamine (DA) meso-corticolimbic circuit contribute to cognitive and 
behavioral signs and occur early in the disease progression (Caligiore 
et al., 2020; Nobili et al., 2017). By contrast, the impairments of the DA 
meso-striatal system contribute to the development of extrapyramidal 
motor deficits, usually occurring in the later stages of AD (Martorana 
and Koch, 2014). Impairments in serotonin (5-HT) production and 
transmission could also affect AD pathogenesis (Ceyzériat et al., 2021; 
Vakalopoulos, 2017; Whiley et al., 2021; Xie et al., 2019). Finally, the 
locus coeruleus (LC), the dorsal pontine nucleus that synthesizes 
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noradrenaline (NA), which is involved in attention, memory, and 
various other aspects of cognition, could show impairments in the early 
stages of disease progression (Bondareff et al., 1987; Braak et al., 2011; 
Mather and Harley, 2016; Šimić et al., 2017; Weinshenker, 2018; Zarow 
et al., 2003). 

Differently from AD, PD involves more precociously and pervasively 
motor functions. The main PD motor symptoms include bradykinesia, 
resting tremor, rigidity, and freezing of gait (Caligiore et al., 2019; 
Jankovic and Kapadia, 2001; Obeso et al., 2010). Some neuropsycho-
logical disorders such as anxiety or depression often develop several 
years before typical motor symptoms (Faivre et al., 2019). Cognitive 
impairments might be evident at the time of diagnosis, even though they 
significantly manifest in the later stage of the disease progression 
(Aarsland et al., 2009; Williams-Gray et al., 2007). The core pathologic 
feature of PD is the loss of dopaminergic neurons in the SNc. 
Alpha-synuclein (αSyn) is the major protein associated with the hall-
mark protein deposit in PD, the Lewy body (Polymeropoulos, 1997; 
Polymeropoulos et al., 1996; Spillantini et al., 1997). Some works sug-
gest that the αSyn abnormal accumulation contributes to dopaminergic 
cell death in the SNc (Mahul-Mellier et al., 2020; Rajagopalan and 
Andersen, 2001). The dopaminergic deficit also involves the VTA, even 
though its contribution to the emergence and progression of motor and 
non-motor PD features is unclear (Alberico et al., 2015; Narayanan et al., 
2013). Aside from the dopaminergic system, PD could also involve 
dysfunction of cholinergic, noradrenergic, and serotonergic neuronal 
populations (Jellinger, 1991; Perez-Lloret and Barrantes, 2016; Singh, 
2020; Wilson et al., 2019). In PD, loss of LC neurons begins before nigral 
pathology and appears to be more severe (Brunnström et al., 2011; 
Delaville et al., 2011, 2012; German et al., 1992). There is also a sero-
tonergic dysfunction beginning earlier than the dopaminergic one and 
involved with the development of both non-motor and motor symptoms 
(Jankovic, 2018; Muñoz et al., 2020; Pasquini et al., 2018; Politis and 
Niccolini, 2015). 

Increasing evidence suggests that AD and PD neurodegenerative 
processes involve a network of areas and circuits interacting dynamically 
and influencing each other, rather than specific regions and molecular 
mechanisms working in isolation (Caligiore et al., 2016, 2017; 2020; 
Castrillo and Oliver, 2016; Helmich, 2018). For this reason, the two 
diseases share several features, including the increased incidence with 
age, some clinical manifestations, chronic and progressive early cell 
death in the brainstem monoaminergic nuclei, and the conspicuous 
presence of protein aggregates. Aside from the aggregation of Aβ olig-
omers and the hyperphosphorylated tau protein, increasing evidence 
also supports a central role of αSyn, the major protein associated with 
the abnormal protein deposit in PD, in the pathogenesis of AD. 
Furthermore, the mixed pathology consisting of Lewy bodies and 
Aβ-amyloid plaques supports a faster progression of extrapyramidal 
motor signs in patients with AD (Iwai et al., 1995a; 1995b; Iwai, 2000; 
Twohig and Nielsen, 2019). 

AD and PD could also share overlapping dysfunctions in monoamine 
interactions (Babić et al., 2021; Huot and Fox, 2013; Scatton et al., 1983; 
Simic et al., 2009; Storga et al., 1996; Trillo et al., 2013). For example, 
data coming from both experimental models and human postmortem 
brains have demonstrated a profound impairment of the noradrenergic 
system in both PD and AD pathogenesis (Singh, 2020 for a recent re-
view). Reduced 5-HT transporter availability could be present in mild 
cognitive impairment in cortical and limbic areas typically affected by 
AD (Smith et al., 2017). Degeneration of dopaminergic and serotonergic 
axons could affect αSyn aggregation at the onset of neurodegeneration 
(Grosch et al., 2016). 

Often these overlapping neurodegenerative mechanisms begin many 
years before the onset of cognitive and motor manifestations in AD and 
PD. Many experimental and clinical studies have provided solid evi-
dence supporting the early cellular and molecular alterations associated 
with the presence of αSyn aggregates and neurodegeneration before AD 
or PD clinical signs (Beason-Held et al., 2013; Butkovich et al., 2018; 

Ghiglieri et al., 2018; Gonera et al., 1997; Rajan et al., 2015). 
The overlapping of AD and PD neurodegenerative processes involving the 

monoaminergic nuclei and their occurrence decades before overt clinical 
manifestations posit several open questions. Among these, what are the 
triggers of these impairments? How do they affect each other? What are 
the causes leading the early neurodegenerative processes to develop AD 
or PD? This article addresses these issues by proposing a radically new 
perspective to frame AD and PD: they are different manifestations of one 
only disease that we call “Neurodegenerative Elderly Syndrome (NES)”. 
More in detail, NES is characterized by three progressive stages. The 
overlapping between αSyn and monoamine system-level dysfunctions in 
AD and PD raises the possibility that a seeding mechanism is involved in 
the pathogenesis and progression of these diseases. Starting from this 
perspective, we consider a first NES phase where dysfunctions of mainly 
NA and 5-HT and αSyn begin but are too weak to produce overt clinical 
symptoms. Different seeds could trigger these early impairments. The 
type of seed could influence the future development of NES in AD or PD. 
For this reason, we indicate the first NES stage as the “seeding stage”. In 
the second NES stage, there are also dysfunctions of DA producing sys-
tems. However, the overt clinical symptoms are still silent thanks to 
compensatory mechanisms keeping different monoamine concentra-
tions homeostasis. We indicate this NES phase as the “compensation 
stage”. Finally, in the light of recent literature evidencing the importance 
of VTA degeneration in the early stages of AD pathogenesis (Caligiore 
et al., 2020; De Marco and Venneri, 2018; Nobili et al., 2017), we sug-
gest that in the third “bifurcation stage”, NES respectively becomes AD or 
PD, depending on which dopaminergic area is most affected (VTA or 
SNc). Genetic, environmental, and lifestyle factors affect the triggering 
event, causing the initial neurodegenerative process during the seeding 
stage. These factors also could confirm or change the initial neurode-
generative trajectory during the bifurcation stage. 

In the rest of the paper, we discuss the recent literature supporting 
the NES core idea and present the three NES stages in more detail. Then 
we highlight how NES could be important for early diagnosis and 
advanced therapies. Finally, we draw conclusions proposing possible 
experiments to verify the NES perspective. 

2. NES core idea 

We could distinguish three different progressive stages in the 
development of the NES. 

2.1. First NES stage: seeding 

2.1.1. αSyn, NA and 5-HT early dysfunctions 
In the first NES stage, there are mainly NA, 5-HT, and the αSyn 

dysfunctions. These impairments are strongly related and influence each 
other. Many experimental and clinical studies have provided solid evi-
dence supporting the early cellular and molecular alterations associated 
with the presence of αSyn aggregates and neurodegeneration before 
clinical manifestations (Fricova et al., 2020; Ghiglieri et al., 2018; 
Twohig and Nielsen, 2019). 

Studies using double transgenic mice demonstrated, in some cases, 
overlapping pathological alterations regarding αSyn/Aβ-amyloid 
(Swirski et al., 2014). In dementia with Lewy bodies, the Aβ-amyloid 
and αSyn may interact to promote neurodegeneration and cognitive 
decline. The detailed mechanisms about the cross-influence between 
those two proteins are still unclear. The presence of Lewy-type synu-
cleinopathy in AD has a significant impact on future clinical symptoms 
(Savica et al., 2019). In the early stage of AD, the αSyn abnormal 
accumulation at the presynaptic site supports aberrant synapse forma-
tion (Brookes and St Clair, 1994; Kim et al., 2004; Twohig and Nielsen, 
2019). Recent experiments using recombinant and brain-derived tau 
and αSyn oligomers to seed monomeric tau aggregation in vitro and in 
vivo have shown that αSyn enhances the harmful effects of tau, thus 
contributing to AD progression (Castillo-Carranza et al., 2018). 
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The initiating event causing the abnormal accumulation of αSyn 
protein is unknown. It could be due to a combination of environmental, 
genetic, and lifestyle factors (Lashuel et al., 2013; Twohig and Nielsen, 
2019; Villar-Piqué et al., 2016). Exposure to heavy metals or pesticides 
could increase the risk for abnormal αSyn aggregation (Kozlowski et al., 
2009; Uversky et al., 2001; Willis et al., 2010). Neuroinflammation, 
oxidative stress, mitochondrial dysfunctions, and genetic poly-
morphisms contribute to creating the conditions for developing an 
abnormal αSyn accumulation (Klein and Schlossmacher, 2006; Roberts 
and Brown, 2015). High-stress conditions support mitochondrial cell 
death mechanisms leading to αSyn aggregates (McCann et al., 2016). 
Age-related decline in the efficiency of the proteolytic mechanism also 
supports the accumulation of αSyn (Kaushik and Cuervo, 2015). 

The αSyn pathology could appear in LC neurons before than in the 
dopaminergic nuclei (Gcwensa et al., 2021; Hansen, 2021). The LC 
dysfunctions often precede the primary symptoms of each disorder 
(dementia in AD and motor dysfunction in PD), suggesting that LC loss 
may contribute to disease initiation, progression, and severity, rather 
than merely representing collateral damage (Braak and Del Tredici, 
2017; Mather and Harley, 2016; Rüb et al., 2016; Theofilas et al., 2017; 
Vermeiren and De Deyn, 2017). LC neurons have several anatomical, 
morphological, and neurochemical characteristics that might contribute 
to their vulnerability, especially with age progression (Betts et al., 2019; 
Weinshenker, 2018). These cells synthesize neuromelanin, a granular 
pigment that binds iron and other heavy metals, as well as chemical 
toxicants and even αSyn. Neuromelanin may initially protect LC neurons 
by chelating heavy metals but eventually aggravate neurodegeneration 
by releasing the toxins later in life (Pamphlett, 2014). In addition, 
prolonged LC abnormal activity (e.g., due to chronic stress, a risk factor 
for neurodegenerative disease) may increase oxidative stress. The LC 
cell bodies proximity to the ventricle affords easy access to the cere-
brospinal fluid. The latter can therefore work as a diffusion mean for 
chemical toxicants and neuroinflammatory molecules. The LC is also 
densely exposed to brain capillaries and thus can be selectively targeted 
by toxicants from the blood, even those present at low levels (Pamphlett, 
2014). 

Another key neuromodulator early involved in the NES progression 
is the 5-HT, whose main telencephalic sources are the median and dorsal 
raphe nuclei (MRN and DRN respectively). This neuromolutor is 
involved both in AD and PD (Babić et al., 2021; Huot and Fox, 2013; 
Scatton et al., 1983; Simic et al., 2009; Storga et al., 1996; Trillo et al., 
2013). It is involved in affective and cognitive functions and with the 
early cognitive decline related to neurodegeneration. The dysfunction of 
the serotonergic system projecting to the hippocampus might contribute 
to early non-motor symptoms such as anxiety and depression. Several 
data support the presence of 5-HT malfunctioning in the early stages of 
PD. People with hereditary risks of developing PD show 5-HT loss in 
several brain areas (Wilson et al., 2019). There is a reduction in raphe 
5-HT transporter availability in the early phases of PD (Pasquini et al., 
2020). 5-HT afferents modulate SNc and VTA DA neurons oppositely 
(Gervais and Rouillard, 2000). The selective stimulation of the various 
5-HT receptor subtypes differentially distributed throughout the brain 
likely supports this process (Di Giovanni et al., 2001; Hoyer et al., 1994). 
Differential modulation of VTA and SNc DA neurons by 5-HT afferents 
from the DRN could have important implications for the progression of 
NES until it becomes AD or PD (Babić et al., 2021; Wilson et al., 2019). If 
the initial dysfunctional seed mainly involves the 5-HT-VTA circuit, it is 
more likely that NES could become AD. Otherwise, if the initial 
dysfunctional process includes the 5-HT-SNc network, NES could 
become PD (see “2.3 Third NES stage: Bifurcation”). 

These dysfunctions are reciprocally related to the one causing an 
abnormal αSyn production. Extracellular αSyn aggregates, indeed, could 
support an early DRN and LC degeneration (Yavich et al., 2006, Wan 
et al., 2016, Wersinger et al., 2006). αSyn can influence NA metabolism, 
and this, in turn, could impact αSyn expression (Butkovich et al., 2018; 
Wan et al., 2016). Other relevant factors determine different 

propagation of αSyn across brainstem nuclei. The isoform LRRK2 kinase 
coded by the gene variation G2019S changes the diffusion pathway, 
making both VTA, SNc, and hippocampus vulnerable to αSyn accumu-
lation (Henderson et al., 2019; Kim et al., 2019). In this line, recent 
evidence shows that transgenic mice overexpressing human αSyn in NA 
neurons develop LC pathology and non-motor features of PD (Butkovich 
et al., 2020). 5-HT supports the initiation and propagation of αSyn ag-
gregation in the nervous system (Falsone et al., 2011; Hijaz and 
Volpicelli-Daley, 2020). The raphe nuclei show early intracellular 
accumulation of αSyn accompanied by the loss of serotonergic neurons 
(Braak et al., 2003; Halliday et al., 1990). 

2.1.2. The entry point of αSyn, NA, and 5-HT dysfunctions affect the NES 
seeding mechanism 

We propose that in the first NES stage, the part of the brain-body 
system where the αSyn, 5-HT, and NA dysfunctions initially originate, 
which we call “entry point”, could critically influence the progression of 
NES towards further explicit PD or AD neurodegeneration. Below we 
describe two entry points mainly involved in NES: the enteric and limbic 
pathways. 

Increasing evidence showed changes in gut microbiota composition 
in association with AD and PD (Bhattarai and Kashyap, 2020; Janeiro 
et al., 2021; Kaur et al., 2021; Marizzoni et al., 2020; Rajput et al., 2021; 
Romano et al., 2021; Shabbir et al., 2021; Shen et al., 2021). Pivoting on 
data suggesting that microbiota unbalance can trigger αSyn misfolding, 
several works investigate the pathology-related changes in the distri-
bution of αSyn in enteric neurons. Based on the pattern of Lewy body 
pathology observed in the postmortem human brain, Braak and col-
leagues proposed that αSyn pathology could diffuse from the gastroin-
testinal tract via the vagus nerve to the ventral midbrain (Braak et al., 
2003, 2004). This hypothesis has been recently empirically validated 
through a novel gut-to-brain αSyn transmission mouse model, with an 
injection of αSyn preformed fibrils into the duodenal and pyloric mus-
cularis layer. The spread of αSyn dysfunction in the brain was observed 
first in the vagus dorsal motor nucleus, then in caudal portions of the 
hindbrain, including LC. Much later, in the basolateral amygdala, the 
DRN, and the SNc. Truncal vagotomy prevented the gut-to-brain spread 
of αSynucleinopathy and associated neurodegeneration (Kim et al., 
2019). Gold and colleagues used immunohistochemical techniques to 
study the age αSyn enteric distribution in the general autopsy population 
and age-matched PD and AD populations. They found that all PD sub-
jects were αSyn positive, with higher prevalence and grade than 
age-matched controls. AD subjects were no more likely to be αSyn 
positive than controls (Gold et al., 2013). 

Gut microbiota could also regulate the bidirectional vagus nerve 
communication by directly affecting release and receptor expression of 
5-HT, NA, and DA (Bhattarai and Kashyap, 2020; Galland, 2014; 
González-Arancibia et al., 2019; Shishov et al., 2009; Strandwitz, 2018; 
Tsavkelova et al., 2000). Several recent works underline how gut 
microbiota dysbiosis contributes to producing initial monoamine dys-
functions leading to AD or PD (Jiang et al., 2017; Kowalski and Mulak, 
2019; Rani and Mondal, 2021; Shabbir et al., 2021). Emerging evidence 
is demonstrating specific microbiota alterations. In AD, for example, 
there is a lower abundance in Bifidobacterium and a greater prevalence 
of Blautia (Miyake et al., 2015; Shen et al., 2021). Despite these 
encouraging data, many questions remain, and more research is needed 
to exploit the gut microbiota analysis as a discriminative tool to study 
AD and PD pathogenesis (Castillo-Álvarez and Marzo-Sola, 2021; Ger-
hardt and Mohajeri, 2018). 

Overall, these data suggest that the enteric system could be a critical 
seeding site for both αSyn and monoamine dysfunctions. These trigger 
the neurodegenerative processes leading to AD and PD. In particular, 
enteric αSyn malfunctioning could mainly support the neurodegenera-
tive trajectory leading to PD but not to AD (Fricova et al., 2020; Gold 
et al., 2013). The gut microbiota dysbiosis could instead contribute to 
producing initial monoamine dysfunctions leading to AD or PD 
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(Kowalski and Mulak, 2019; Rani and Mondal, 2021; Shabbir et al., 
2021). 

A second “entry point” could be the limbic system. Several works 
demonstrated that the limbic system is critically involved in the mal-
functioning of αSyn in AD and PD (Braak et al., 2005; Hamilton, 2000; 
Kalaitzakis et al., 2009; Twohig and Nielsen, 2019; Uchikado et al., 
2006). Studies on a large cohort of familial AD cases with mutations in 
presenilin PSEN genes found that the amygdala is the most vulnerable 
site for αSyn abnormal accumulation (Leverenz et al., 2006; Lippa et al., 
1998; Sorrentino et al., 2019). αSyn burden in the limbic regions could 
differentiate demented from non-demented PD cases with high sensi-
tivity and specificity (Apaydin et al., 2002; Braak et al., 2005; Kalait-
zakis et al., 2009). Biochemical studies demonstrated that the amygdala 
in PD prominently contained specific carboxy-truncated forms of αSyn, 
which are highly prone to aggregate to initiate the development of αSyn 
pathology. By contrast, the αSyn amygdala aggregates could contribute 
to triggering AD pathophysiological mechanisms through indirect 
routes. The amygdala projects to VTA, and its dysfunctions generated by 
the αSyn abnormal accumulation could, in turn, contribute to triggering 
dopaminergic impairments in VTA (Cardinal et al., 2002; Fudge and 
Haber, 2000). Similarly, αSyn aggregation could enhance the harmful 
effects of tau, thus contributing to AD progression (Castillo-Carranza 
et al., 2018). Moreover, αSyn and Aβ-amyloid can synergistically 
interact to promote AD neurodegeneration and cognitive decline (Crews 
et al., 2009; Marsh and Blurton-Jones, 2012). 

The triggering event causing the initial implicit neurodegenerative 
trajectory during NES stage one depends on a combination of several 
genetic, environmental, and lifestyle factors. For example, there is 
accumulating evidence that alcohol intake affects the functioning of the 
microbiota-gut-brain axis. The changes it produces in the microbiome 
support neuroinflammation and could alter the neuroimmune functions 
(Hillemacher et al., 2018). Excessive amounts of alcohol interact with 
the neurotransmitter system and increase blood-brain barrier perme-
ability, resulting in brain damage and dysfunction (Gushcha et al., 
2019). Experimental animal studies indicate that chronic heavy alcohol 
consumption may have DA neurotoxic effects (Eriksson et al., 2013). 
Chronic alcohol exposure decreases DA levels and increases the amount 
of αSyn (Rotermund et al., 2017; Trantham-Davidson and Chandler, 
2015). The assumption of nicotine and coffee influence the 
microbiota-gut-brain axis involving bacterial stains such as Bifido-
bacterium (Derkinderen et al., 2014). In the absence of coffee drinking 
and cigarette smoking, the microbiota would shift toward a 
pro-inflammatory state which promotes chronic gastrointestinal 
inflammation and an enteric glial reaction, which occurs in the early 
stage of PD (Devos et al., 2013). In addition, the local inflammation 
supports the αSyn aggregation within the adjacent submucosal neurons 
(Lema Tomé et al., 2013; Pouclet et al., 2012). Some lifestyles can in-
fluence the limbic system, in particular the amygdala and hippocampus 
(Gerritsen et al., 2015). The high education and low lifetime smoking 
status were associated with larger hippocampal volumes, which medi-
ated indirect effects on episodic memory, processing speed, and global 
cognition (Schreiber et al., 2016). 

Crucially, the same features could confirm or change the course of 
the initial neurodegenerative trajectory. The involvement of these fac-
tors depends on the subjects. For subjects where the genetic aspects play 
a principal role, it is hard to frame and affect the causality of brain 
events producing NES because the hereditary features are often less 
manipulable. By contrast, for subjects where environmental and lifestyle 
factors are more critical, the causality of the brain events producing NES 
could be easier to understand and manipulate. In this case, we could 
make the course of the neurodegenerative trajectory slower or even 
interrupt it. We discuss all these aspects more in detail in the section 
focused on the third NES stage. 

2.2. Second NES stage: compensation 

The prolonged malfunctioning of the NA and 5-HT circuits and the 
abnormal αSyn production mechanisms could, in the long run, 
contribute to producing neurodegeneration within the VTA and SNc. 
These two nuclei start to work in the wrong way leading to DA loss 
(Zhang et al., 2005). However, the brain still shows normal functioning 
with no overt motor or non-motor dysfunctions. The neurodegenerative 
trajectory leading to AD or PD is not yet confirmed. At this stage, the 
ubiquitous influence of NA and 5-HT leads to several system-level 
compensatory processes to recover the DA loss (Jiménez-Sánchez 
et al., 2020; Merlo et al., 2019). For this reason, we indicate this second 
NES phase as the compensation stage. Even though monoamines play 
different functions, they could influence each other. LC neurons receive 
excitatory input from DA neurons in the VTA and send noradrenergic 
innervations to the DA neurons in the VTA and SNc (Bari et al., 2020; 
Mejias-Aponte, 2016; Rommelfanger et al., 2007). DRN receives pro-
jections from both VTA and SNc. It also projects to DA cells in the VTA 
and the SNc and their terminal fields in the nucleus accumbens, pre-
frontal cortex, and striatum (Moukhles et al., 1997; Van Bockstaele 
et al., 1993; Van Bockstaele and Pickel, 1993; Kirouac et al., 2004). 
These pathways support the reciprocal influence between different 
neuromodulators, often through compensatory mechanisms. Here, we 
use the term “compensation” to indicate the action of NA and 5-HT 
neurons to partially boost the functions of the remaining DA neurons. 
When there is a VTA or SNc dysfunction leading to an impairment of the 
DA production, NA and 5-HT could act against this dysfunction modu-
lating DA concentration through the projection (direct and indirect) of 
LC and DRN to VTA and SNc, or by directly modulating DA release in 
other brain regions (Zhang et al., 2016). For example, synaptic dopa-
mine is captured by both NA and DA transporters (Carboni et al., 2006), 
and extracellular DAin the cerebral cortex originates also from terminals 
of NA neurons (Devoto and Flore, 2006). 

LC or DRN impairments could also contribute to producing a DA 
release dysfunction (cf., Sec. “2.1 First NES stage: seeding”). For 
example, experimental findings using animal models of PD suggest that 
the loss of NA brain neurons might exacerbate DA neuron damage and 
that NA could be neuroprotective (Fornai et al., 1997; Marien et al., 
2004; Rommelfanger et al., 2004). The abnormal Aβ amyloid and αSyn 
accumulation in the LC contributes to NA release dysfunctions in both 
AD and PD (Heneka, 2006; Mather and Harley, 2016; Oliveira et al., 
2017; van Dijk et al., 2012). If the LC neurons loss supports the DA 
release dysfunctions, DRN could be involved in the compensation 
mechanisms. In particular, DRN could support the VTA/SNc DA release 
through the projection it sent to these dopaminergic areas. Alterna-
tively, if the DRN impairment contributes to DA release loss, the LC 
could compensate by supporting VTA/SNc activity. Postmortem data on 
humans suggest an inverse relationship between brain NA level and DA 
loss (Tong et al., 2006). Combining clinical and imaging data of a cohort 
of PD patients at an early clinical stage (Hoehn and Yahr stage 1–2) has 
been found an LC compensating activity for the degeneration of DA 
nigrostriatal projections (Isaias et al., 2011). Evidence about a possible 
LC involvement in compensation mechanisms also comes from digit 
span task experiments comparing the performance of patients with mild 
cognitive impairments, AD patients, and human control (Granholm 
et al., 2017; Hoogendijk et al., 1999). LC activity measured using pupil 
dilation (Larsen and Waters, 2018) follows an inverted U-shape pattern, 
with an increase followed by a dropping in the degree of neuro-
degeneration. LC temporary compensation reduces the performance 
drop and counteracts the tendency of refusing to engage in the task 
(resilience to apathy, an early AD sign). Similarly, computational 
modeling research on AD progression showed that LC response follows 
an inverted U shape with the disease progression. More in detail, the LC 
overactivation compensates for the effects of initial VTA degeneration 
characterizing the early stage of the disease progression (De Marco and 
Venneri, 2018; Nobili et al., 2017). This compensation keeps behavioral 
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performance stable and leads to no manifest symptoms. However, with a 
more severe VTA lesion, the LC becomes under-activated, leading to an 
abrupt performance drop (Caligiore et al., 2020). 

Several works support the involvement of DRN in compensation 
processes (Ceyzériat et al., 2021; Jiménez-Sánchez et al., 2020; Merlo 
et al., 2019). DRN could modulate DA concentration through the 5-HT 
projections it sends to VTA and SNc (Bara-Jimenez et al., 2005; Di 
Matteo et al., 2008; Kirouac et al., 2004; Politis and Niccolini, 2015). 

Works on humans show a compensatory upregulation of hippocam-
pal 5–HT1A receptor density in the early stage of mild cognitive 
impairment and a dramatic decline of it at later stages (Truchot et al., 
2007). In the AD prodromal stage, 5-HT could also compensate for VTA 
DA loss indirectly through the projections toward LC (Babić et al., 2021; 
Hoogendijk et al., 1999). The 5-HT compensatory mechanisms also take 
place to maintain normal function for a prolonged pre-diagnostic period 
in PD (Bezard et al., 2003; Blesa et al., 2017; Pagano et al., 2018). For 
example, a study with rats found that 5-HT hyperinnervation into the 
striatum compensates for the loss of DA function (Maeda et al., 2005). 
Increased striatal serotonergic activity has been proposed as a possible 
compensatory mechanism (Boulet et al., 2008). However, data provide 
contradictory results, showing depletion and increasing of serotonergic 
markers (Huot et al., 2011). These different results could be due to the 
variety of distinct receptors mediating various physiological effects of 
5-HT on striatal DA release. 5-HT1A, 5-HT1B, 5-HT2A, 5-HT3, and 
5-HT4 receptors facilitate neuronal DA function and release (Caligiore 
et al., 2021; Jiménez-Sánchez et al., 2020). By contrast, the 5-HT2C 
receptor mediates an inhibitory effect of 5-HT on the basal electrical 
activity of DA neurons and DA release stimulating a GABA-containing 
interneuron (Di Giovanni et al., 2001; Di Matteo et al., 2001). 

2.3. Third NES stage: bifurcation 

In the third NES stage, the compensatory mechanisms operating 
during the previous NES phase cannot further handle the progression of 
neurodegeneration. The compensation stage, indeed, could only slow 
down the course of the neurodegenerative trajectory but not interrupt it. 
For example, the 5-HT overactivity supports the partial recovery of the 
DA function that in turn could inhibit fibrillization and contrasts the 
polymerization of αSyn and Aβ aggregates. However in the long run, the 
5-HT overactivity could contribute to the initiation and propagation of 
αSyn aggregation (Falsone et al., 2011; Hijaz and Volpicelli-Daley, 
2020), triggering a vicious circle leading to neurodegeneration. The 
end of the compensatory effects accelerates the course of the neurode-
generative trajectory but does not affect its direction established during 
the seeding stage. This trajectory could be confirmed or changed by 
lifestyle, genetics, and environmental aspects (see Sec. “2.3.1 Lifestyle, 
genetic, and environmental factors supporting bifurcation” for more 
details). 

Thus, the end of the compensation effect and the lifestyle, genetics, 
and environmental aspects contribute to obtain a bifurcation effect 
boosting the malfunctioning of one of the two DA areas. If the increasing 
malfunctioning involves VTA, subjects start to show AD overt cognitive 
symptoms (Nobili et al., 2017). The chronic malfunctioning of the 
VTA-LC system might affect the functioning of the nucleus basalis of 
Meynert. This area receives the DA input from VTA, NA input from LC 
and provides the principal source of acetylcholine for the prefrontal 
cortex, amygdala, and hippocampus (Gaykema and Zaborszky, 1996; 
Mesulam, 2013; Smiley and Mesulam, 1999). The cholinergic axons 
degeneration contributes to the worsening of AD symptoms (Liu et al., 
2015). By contrast, if the increasing impairment mainly converges to-
wards SNc, subjects show overt motor symptoms typical of PD. Note that 
the bifurcation could not be fully net, producing a partial VTA impair-
ment in PD subjects, so they show cognitive deficits (Alberico et al., 
2015; Narayanan et al., 2013). SNc could become partially impaired also 
in AD subjects, so they show abnormal motor behavior (Martorana and 
Koch, 2014). It is a matter of weight, AD could include some PD features, 

or PD could embed some AD features. Thus, in patients with comor-
bidity, the bifurcation is low. 

A cost-benefit mechanism as those recently proposed in neuro- 
computational literature (Caligiore et al., 2020; Silvetti et al., 2019; 
Silvetti et al., 2018) could support the transition from compensation to 
bifurcation. The cortical-subcortical circuit involving the anterior 
cingulate cortex (ACC) and the brainstem monoaminergic nuclei could 
regulate the compensation mechanism (Caligiore et al., 2020; Celada 
et al., 2013; Silvetti et al., 2018; 2019). For example, if the neuronal loss 
strikes mostly the VTA, ACC will mostly upregulate the LC activity. The 
subsequent LC overactivation compensates for the effects of VTA neural 
degeneration. The ACC boosts monoamine release to keep cognitive and 
behavioral performance within the limits of efficiency. It is a cost-benefit 
process where the cognitive and behavioral benefits counterbalances the 
cost of boosting and vice-versa (Caligiore et al., 2020). This optimization 
mechanism leads to a compensatory boosting signal following an 
inverted U shape. When the brainstem neuronal loss is mild, the ACC 
upregulates monoamine release as a form of compensation. This 
compensatory mechanism increases as a function of brainstem neuronal 
loss until compensation costs overcome the cognitive and behavioral benefits. 
At that point, the ACC operates a progressive “shutdown” of the boosting 
signal promoting monoamine release. There is an abrupt decrease in 
monoamine production, and in particular in DA nuclei. If the DA loss 
mainly involves VTA, there is an increasing malfunctioning of brain 
areas associated with AD (e.g., hippocampus, amygdala, nucleus basalis 
of Meynert, prefrontal cortical areas) (Caligiore et al., 2020; De Marco 
and Venneri, 2018; Nobili et al., 2017). By contrast, when the DA loss 
mainly involves SNc, there is an increasing malfunctioning of brain 
areas associated with PD (e.g., basal ganglia, cerebellum, and thala-
mocortical loops) (Caligiore et al., 2016; 2019; Helmich, 2018). In both 
cases, the result is an acceleration of the rise of overt clinical symptoms. 
The compensation becomes bifurcation. Fig. 1 summarizes the three 
stages of the NES progression. 

Pathological alterations of DA production by VTA might contribute 
to cognitive and behavioral signs that may occur early in the disease 
progression (Gibb et al., 1989; Martorana and Koch, 2014; Storga et al., 
1996). In this regard, a recent work investigating the structural alter-
ations of the midbrain DA system in an animal model of AD (Tg2576 
mouse), found an age-dependent dopaminergic neuron loss in the VTA 
at a stage when Aβ-plaque deposition, hyperphosphorylated tau tangles, 
or any sign of neurodegeneration in hippocampal and cortical regions 
involved in memory deficits has not yet occurred (Nobili et al., 2017). 
The VTA degeneration results in a lower DA outflow in the nucleus 
accumbens and hippocampus and this is associated with dysfunctions in 
memory performance, food reward processing, cost-benefit decision--
making, and depressive-like symptoms (Ito and Hayen, 2011). A mag-
netic resonance imaging study supported this finding by showing a 
positive correlation between the VTA volume, hippocampal size, and 
memory performance in a cohort of patients compared with healthy 
controls (De Marco and Venneri, 2018). Another work used functional 
magnetic resonance imaging to study the VTA-driven modulation of 
connectivity in AD brains and its impact on behavioral symptoms (Serra 
et al., 2021). Finally, it has been recently reported a positive correlation 
of atrophy in VTA projecting areas with severity of depression, apathy, 
and anxiety in the prodromal phase of AD while no metabolic connec-
tivity changes have been detected within nigrostriatal pathway (Iac-
carino et al., 2020). Despite these data started to explain the relationship 
between DA dysfunctions, structural and cognitive and non-cognitive 
alterations along the AD stages, further research will be necessary to 
provide a unifying theory on the causal relations between Aβ oligomers 
formation and DA dysregulation, suggesting the need of integrating 
these phenomena within a system-neuroscience approach (Caligiore 
et al., 2020; Henstridge et al., 2019). 

2.3.1. Lifestyle, genetic, and environmental factors supporting bifurcation 
The neurodegenerative trajectory triggered during the first NES stage 
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could be confirmed or changed by lifestyle, genetics, and environmental 
aspects (Table 1). The degree of involvement of these factors is different 
for each subject. For subjects where the genetic features play the prin-
cipal role, it is more difficult to understand the brain events trans-
forming NES in PD or AD because the hereditary features are often 
latent. By contrast, for subjects where environmental and lifestyle fac-
tors are more critical, the brain events leading to PD or AD could be 
easier to understand. In this case, indeed, we could build on the 
increasing literature linking early NA, 5-HT, and αSyn dysfunctions with 
several environmental and lifestyle factors and with the risk of devel-
oping neurodegeneration (Betts et al., 2019; Lashuel et al., 2013; 
Weinshenker, 2018), trying to isolate the bifurcation causes. 

The first lifestyle risk factor is nicotine. It stimulates DA neurons, 
inhibits αSyn fibril formation, and lessens symptoms of PD (Bono et al., 
2019; Wirdefeldt et al., 2011). By contrast, nicotine increases the risk of 
developing AD (Peters et al., 2008). It contributes to the emergence of 
neurobiological abnormalities in the amygdala, hippocampus, and pre-
frontal cortex (Kalivas and Volkow, 2005; Krueger et al., 2010; Makris 
et al., 2008; Volkov et al., 2021). Furthermore, cigarettes contain 
non-negligible metal concentrations such as copper, iron, and zinc. 
These could support the tau tangles formation, display specific binding 
to the Aβ peptide and modulate its aggregation pathways (Sayre et al., 
2000; Wärmländer et al., 2013). Thus, while nicotine could not support 
the early PD trajectory triggered during NES stage one, it confirms the 
initial AD trajectory set during the same stage. Another risk factor 
identified is alcohol. Depending on the amounts, it may have dual roles 
in worsening or in protecting against neurodegenerative diseases. 
Epidemiological studies reported a reduction in the prevalence of AD in 
individuals who drink low amounts of alcohol (Muñoz et al., 2015); low 
or moderate concentrations of ethanol protect against Aβ-amyloid 
toxicity in hippocampal neurons (Ormeño et al., 2013), whereas 
excessive amounts of ethanol increase the accumulation of Aβ and tau 
phosphorylation (Huang et al., 2018). By contrast, alcohol abuse in-
creases the blood-brain barrier permeability, resulting in brain damage 
and dysfunction (Gushcha et al., 2019). Experimental animal studies 
indicate that chronic heavy alcohol consumption may have DA neuro-
toxic effects (Eriksson et al., 2013). Chronic alcohol exposure decreased 
the levels of DA and increased the amount of αSyn (Rotermund et al., 
2017; Trantham-Davidson and Chandler, 2015). Other lifestyle risk 
factors are cholesterol and pesticides. In vitro and in vivo experiments 
suggest that high levels of blood cholesterol increase the production of 
Aβ (Daneschvar et al., 2015). By contrast, high blood cholesterol is a 
lower risk of PD (de Lau et al., 2006; Huang et al., 2008). Pesticides 

Fig. 1. The progression of the three NES stages. During the seeding stage (left) the different types of seed could set different initial pathways (dashed lines) towards a 
possible future development of NES in AD or PD. The different dashed line thickness indicates the different initial probability that NES could become AD or PD (large 
thickness, greater probability). The initial neurodegenerative trajectory is influenced by lifestyle, genetics, and environmental factors (bifurcation stage), which make 
the seeding stage determine only probabilistically the future outcome of the bifurcation stage leading to AD or PD. In the compensation stage (middle) the ACC could 
upregulate the LC and/or DRN activity to recover the DA loss in SNc or VTA (thicker arrows), according to a cost-benefit trade-off. In the bifurcation stage (right) NES 
becomes AD or PD. Lyfestyle, environmental and genetic factors could affect both the seeding and the bifurcation stages. Abbreviations: AD: Alzheimer’s disease; 
αSyn: alpha-synuclein; AMG: amygdala; BG: basal ganglia; 5-HT: serotonin; CER: cerebellum; CTX: cortex; DA: dopamine; DRN: dorsal raphe nucleus; HIP: hip-
pocampus; LC: locus coeruleus; ACC: anterior cingulate cortex; NA: noradrenaline; NBM: nucleus basalis of Meynert; SNc: substantia nigra pars compacta; PD: 
Parkinson’s disease; TH: thalamus; VTA: ventral tegmental area. 

Table 1 
Lifestyle, environmental, and genetic factors that affect the seeding and the 
bifurcation stages.   

Alzheimer’s Disease Parkinson’s Disease 

Increased 
risk  

• Nicotine  
• Alcohol  
• Pesticides  
• High cholesterol  
• High iron intake  
• SNCA gene (rs6532190, 

rs3775430, and rs10516846)  
• 5-HTT polymorphism (short 

variant of the 5-HTTPLR)  
• MAOA-GT allele 113  

• High iron intake  
• Pesticides  
• SNCA gene (rs2301134, 

rs2301135, and rs11931074)  
• DA polymorphism (COMT 

Val158Met)  
• allele > 188 bp of the MAOB 

(GT)n polymorphism 

Reduced 
risk  

• Coffee  
• DA polymorphism (COMT 

Val158Met)  

• Nicotine  
• Alcohol  
• High cholesterol  
• 5-HTT polymorphism  
• MAOA-GT or MAOB-GT 

polymorphisms  

D. Caligiore et al.                                                                                                                                                                                                                               



IBRO Neuroscience Reports 13 (2022) 330–343

336

destroy DA neurons, which is why many PD animal models use them. 
Several studies prove a higher relationship between PD and AD devel-
opment and exposure to pesticides (Bonetta, 2002; Freire and Koifman, 
2012; Hayden et al., 2010; Parrón et al., 2011; Van Maele-Fabry et al., 
2012). Finally, elevated levels of iron increases the risk of developing PD 
and AD (Ayton et al., 2015; Ayton et al., 2017; Belaidi and Bush, 2016), 
whereas coffee promotes beneficial effects on cognition and resistance to 
AD development (Camandola et al., 2019). 

Aside from lifestyle and environmental aspects, genetic factors could 
also change or confirm the neurodegenerative trajectory triggered dur-
ing the first NES stage. In this respect, several works demonstrated how 
genetic polymorphism is critical to understanding individual differences 
in risk for developing neurodegenerative diseases (Bogdan et al., 2013; 
Pang et al., 2019). There is a relationship between changes in the 
binding of transcription factors produced by various αSyn gene SNCA 
(Synuclein Alpha) polymorphisms and the individual risk of PD and AD 
development (Alkanli and Ay, 2020; Matsubara et al., 2001; Wang et al., 
2016; Rahimi et al., 2017). Polymorphisms of DA-related genes lead to 
the variation of frontostriatal pathway functions that, in turn, could 
support PD development (Bogdan et al., 2013; Nikolova et al., 2011; 
Wong et al., 2012), furthermore the DA-polymorphism can be a risk to 
develop PD or AD (Lee and Song, 2014; Yan et al., 2016; Wang et al., 
2019). Two proteins critically involved in regulating 5-HT levels in the 
brain are the serotonin transporter (5HTT), carrying 5-HT from the 
extracellular space, and the monoamine oxidase A (MAOA), responsible 
for degrading serotonin. Both genes encoding these proteins hold ge-
netic polymorphisms in their promoter regions that affect their tran-
scriptional activity (Bennett et al., 2002; Nordquist and Oreland, 2010; 
Sabol et al., 1998) and can influence the further development in AD or 
PD disorder (Oliveira et al., 1998; Gao and Gao, 2014; Takehashi et al., 
2002; Nanko et al.,1996; Williams-Gray et al., 2009). Studying these 
genetic variants could help understand the individual differences in the 
pathological pathway leading to PD (Cacabelos et al., 2021; Mössner and 
Riederer, 2007; Zhang et al., 2014) and AD (Assal et al., 2004; Quaranta 
et al., 2009; Takehashi et al., 2002; Yamazaki et al., 2016). 

3. NES hypothesis supports early diagnosis and advanced 
therapies for AD and PD 

Early and reliable diagnosis of AD and PD could provide new treat-
ment options for patients and improve their quality of life. At present, 
diagnosis mainly relies on clinical symptoms. Only postmortem patho-
logical confirmation of dopaminergic and cholinergic neuronal degen-
eration could produce a definitive diagnosis. However, the 
neurodegenerative mechanisms leading to AD or PD begin many years 
before the onset of cognitive and motor manifestations. For example, in 
PD initial estimates based on striatal DA imaging or nigral neuropath-
ological findings suggest a five-year preclinical period. However, more 
recent data of Lewy body pathology in other neuronal populations 
preceding nigral involvement suggest that the preclinical phase may be 
much longer. Epidemiologic studies of non-motor manifestations, such 
as constipation, anxiety disorders, rapid eye movement, sleep behavior 
disorder, and anemia, suggest that the preclinical period extends at least 
20 years before the motor symptoms. Olfactory impairment and 
depression may also precede the onset of motor manifestations (Abbott 
et al., 2005; Berg et al., 2021; Heii et al., 1992; Ross et al., 2008; Savica 
et al., 2010; Smith et al., 2017). 

In addition, the similarity of the clinical, cognitive, and neuropath-
ological features between AD and PD calls for new biomarkers suitable 
for differential diagnosis. The NES hypothesis suggests that the primary 
pathogenesis occurs several years before the onset of typical AD and PD 
cognitive and motor symptoms. In addition, the early dysfunctions 
involve other body parts (e.g., gut), peripheral tissues, and brain regions 
traditionally weakly or even not considered in AD and PD literature. In 
particular, our analysis suggests that αSyn impairments at the level of 
gastrointestinal tissues could be critical for the early diagnosis of PD 

before the onset of clinical features. Hence, gastrointestinal αSyn could 
be used as a biomarker to distinguish PD and AD. Several new tech-
niques can improve αSyn detection in gastrointestinal tissues (Fricova 
et al., 2020; Visanji et al., 2014). Among these, the nanoparticle-based 
methodologies, including sensor-based approaches, could be used to 
increase sensitivity (Jang et al., 2020; Kumar et al., 2020). Monitoring 
the differential microbiota alterations for AD and PD could also support 
early diagnosis (Castillo-Álvarez and Marzo-Sola, 2021; Gerhardt and 
Mohajeri, 2018). The NES hypothesis also supports the monitoring of LC 
and DRN activity as indicative early diagnostic markers for both PD and 
AD pathogenesis, specifically during the presymptomatic phase. The LC 
output could augment or decrease depending on the AD disease pro-
gression (Betts et al., 2019; Hoogendijk et al., 1999). During the 
compensation phase (NES stage two), LC follows an inverted U-shape 
pattern, with an increase followed by a dropping in the degree of AD 
neurodegeneration. More in detail, the LC overactivation compensates 
for the effects of initial VTA degeneration characterizing the early stage 
of the disease progression (De Marco and Venneri, 2018; Nobili et al., 
2017). This compensation keeps behavioral performance stable. How-
ever, with a more severe VTA lesion, the LC becomes under-activated, 
leading to an abrupt performance drop (Caligiore et al., 2020; Gran-
holm et al., 2017; Hoogendijk et al., 1999). Similarly, several studies 
showed that LC burden precedes SNc neurons degradation, making the 
LC a good candidate for PD preclinical diagnosis (Braak et al., 2004; 
Seidel et al., 2015; Zarow et al., 2003). Measuring pupil dilation could 
be an effective non-invasive way to monitor LC activity for early diag-
nosis (Joshi et al., 2016; Kremen et al., 2019). Alternatively, could be 
used traditional but more expensive magnetic resonance imaging ap-
proaches (Betts et al., 2019; Hou et al., 2021; Liu et al., 2017). Another 
early diagnosis action could be monitoring 5-HT release through, for 
example, high-resolution PET imaging. Recent data, indeed, reveals 
progressive loss of DRN 5-HT in early PD (Fazio et al., 2020; Pasquini 
et al., 2020). 

The NES system-level hypothesis suggests new therapeutic actions 
for AD and PD, based on the interactions between monoamine and αSyn 
dynamics. Several data have shown that DA and its precursor L-dopa 
could inhibit fibrillization and dissolve existing αSyn and Aβ-amyloid 
aggregates (Bharath and Andersen, 2004; Li et al., 2004). In this way, DA 
could contribute to reversing conformational changes necessary for 
fibril formation. These data are of particular interest because they sug-
gest a common strategy for therapeutic intervention in both AD and PD. 
In particular, treatments that act to raise brain levels of L-dopa or DA in 
AD or PD patients may prevent and even reverse aggregate formation. 
The treatments may include L-dopa administration, monoamine oxidase 
inhibitors which prevent its catabolism, or DA agonists, which act to 
mimic its effects. Early recognition of the various clinical manifestations 
associated with NA deficiency in the brain and elsewhere, which may 
precede the development of motor and cognitive symptoms, could 
provide a window of opportunity for neuroprotective interventions 
(Espay et al., 2014). Administration of selective serotonin reuptake in-
hibitors (SSRIs) reduced the production of toxic Aβ proteins. Chronic 
administration of the SSRI citalopram blocked plaque growth in trans-
genic AD mice (Sheline et al., 2014). In addition, clinical studies on 
humans revealed lower cortical amyloid levels in participants who had 
taken SSRIs within the past five years versus those who had not been 
treated with SSRI (Cirrito et al., 2011). 

Despite these encouraging results, translating the NES ideas to the 
clinic is challenging. It is necessary to investigate the mechanisms un-
derlying neurotransmitter interactions to determine optimal compounds 
and doses for effective therapies producing the maximal benefit with 
minimal adverse events. In addition, a critical issue is to treat patients in 
the very early stages of the disease. Treatments should start at the pro-
dromal phase, or even before, or in MCI patients, even if it is impossible 
to know if their symptoms will evolve and if they will develop AD or PD. 
Such preventive clinical trials are already underway for genetic forms of 
AD and PD (Berg et al., 2021; Claeysen et al., 2015; Shihabuddin et al., 
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2018). 

4. Conclusions 

Increasing evidence supports the central role of αSyn and mono-
amine dysfunctions beginning years before AD and PD clinical mani-
festations. However, many questions remain unclear, including the 
triggers for these impairments, their reciprocal influence, and the causes 
leading these early neurodegenerative processes to develop AD or PD 
(Lamonaca and Volta, 2020; Savica et al., 2010, 2018; Smith et al., 2017; 
Twohig and Nielsen, 2019; Wilson et al., 2019). This article addresses 
these issues by proposing the Neurodegenerative Elderly Syndrome 
(NES) hypothesis. AD and PD are different manifestations of one only 
disorder we call NES. It starts years before the AD and PD clinical 
manifestation and goes through three progressive phases. The seeding 
stage, where the part of the brain-body system where the αSyn, 5-HT, 
and NA dysfunctions initially originate, could critically influence the 
progression of NES towards further explicit PD or AD neuro-
degeneration. The compensatory stage, where the degree of impair-
ments started during the seeding phase increases and also begins DA 
dysfunctions. However, Ethe overt clinical symptoms are still silent 
thanks to compensatory mechanisms keeping different monoamine 
concentrations homeostasis. The bifurcation stage, where NES becomes 
AD or PD. The combination of genetic, environmental, and lifestyle 
factors could affect the triggering event, causing the initial implicit 
neurodegenerative process (seeding stage). These factors could also 
confirm or change the initial neurodegenerative trajectory supporting 
the development of AD or PD (bifurcation stage). 

NES partially supports the stage perspective on PD pathology pro-
posed by Braak and colleagues. This latter view claims that in the first 
PD pathology stage, αSyn dysfunction appears in brainstem nuclei. It 
continues along a caudo-rostral axis, with LC pathology appearing at 
stage two and SNc pathology at stage three before finally extending into 
cortical regions (Braak et al., 2003; Del Tredici et al., 2002). However, 
NES extends it in several ways. NES supports the involvement of DRN 
and proposes that αSyn and monoaminergic system dysfunctions begin 
years before clinical manifestations and represent a common framework 
involving not only PD but also AD. In addition, NES underlines the 
critical role of environmental, lifestyle, and genetic factors for triggering 
NES and driving its progression towards AD or PD. 

Several exams and empirical investigations could validate or 
disconfirm the NES hypothesis. For example, before overt AD or PD 
symptoms manifestation, gut biopsy and RNA gene expression analysis 
(Ambrosini et al., 2019; Cersosimo, 2015; Tang et al., 2020) could be 
useful to detect αSyn abnormalities (seeding stage). Similarly, moni-
toring NA or 5-HT alterations through PET or imaging techniques (Chen 
et al., 2020; Fazio et al., 2020; Watanabe et al., 2019; Wile et al., 2017) 
could indicate the presence of compensatory mechanisms aiming at 
recovering initial DA loss (compensatory stage). If confirmed by future 
empirical works, the NES hypothesis could radically change the 
comprehension of AD and PD pathophysiology. In this way, it could be 
possible to shed light on AD and PD comorbidities and devise novel 
precision system-level diagnostic and therapeutic actions. Combining 
empirical and artificial intelligence approaches could be a way to frame 
the progression of NES. Future research, indeed, could design machine 
learning algorithms to predict the probability of developing AD or PD 
based on the analysis of the heterogeneous data collected to monitor the 
seeding and compensatory NES stages (Grassi et al., 2019; Myszczynska 
et al., 2020). 
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Mössner, R., Riederer, P., 2007. Allelic variation of a functional promoter polymorphism 
of the serotonin transporter and depression in Parkinson’s disease. Park. Relat. 
Disord. 13 (1), 62. https://doi.org/10.1016/j.parkreldis.2006.06.003. 

Moukhles, H., Bosler, O., Bolam, J.P., Vallée, A., Umbriaco, D., Geffard, M., Doucet, G., 
1997. Quantitative and morphometric data indicate precise cellular interactions 
between serotonin terminals and postsynaptic targets in rat substantia nigra. 
Neuroscience 76, 1159–1171. https://doi.org/10.1016/s0306-4522(96)00452-6. 
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Ormeño, D., Romero, F., López-Fenner, J., Avila, A., Martínez-Torres, A., Parodi, J., 
2013. Ethanol reduces amyloid aggregation in vitro and prevents toxicity in cell 
lines. Arch. Med. Res. 44, 1–7. https://doi.org/10.1016/j.arcmed.2012.12.004. 

Pagano, G., Niccolini, F., Politis, M., 2018. The serotonergic system in Parkinson’s 
patients with dyskinesia: evidence from imaging studies. J. Neural Transm. 125, 
1217–1223. 

Pamphlett, R., 2014. Uptake of environmental toxicants by the locus ceruleus: a potential 
trigger for neurodegenerative, demyelinating and psychiatric disorders. Med. 
Hypotheses 82, 97–104. https://doi.org/10.1016/j.arcmed.2012.12.004. 

Pang, S.Y.-Y., Ho, P.W.-L., Liu, H.-F., Leung, C.-T., Li, L., Chang, E.E.S., Ramsden, D.B., 
Ho, S.-L., 2019. The interplay of aging, genetics and environmental factors in the 
pathogenesis of Parkinson’s disease. Transl. Neurodegener. 8, 23. https://doi.org/ 
10.1186/s40035-019-0165-9. 

Parrón, T., Requena, M., Hernández, A.F., Alarcón, R., 2011. Association between 
environmental exposure to pesticides and neurodegenerative diseases. Toxicol. Appl. 
Pharmacol. 256, 379–385. https://doi.org/10.1016/j.taap.2011.05.006. 

Pasquini, J., Ceravolo, R., Qamhawi, Z., Lee, J.Y., Deuschl, G., Brooks, D.J., 
Bonuccelli, U., Pavese, N., 2018. Progression of tremor in early stages of Parkinson’s 
disease: a clinical and neuroimaging study. Brain: a J. Neurol. 141, 811–821. 
https://doi.org/10.1093/brain/awx376. 

Pasquini, J., Ceravolo, R., Brooks, D.J., Bonuccelli, U., Pavese, N., 2020. Progressive loss 
of raphe nuclei serotonin transporter in early Parkinson’s disease: a longitudinal I- 
FP-CIT SPECT study. Park. Relat. Disord. 77, 170–175. 

Perez-Lloret, S., Barrantes, F.J., 2016. Deficits in cholinergic neurotransmission and their 
clinical correlates in Parkinson’s disease. NPJ Parkinson’s Dis. 2, 1–12. https://doi. 
org/10.1038/npjparkd.2016.1. 

Peters, R., Poulter, R., Warner, J., Beckett, N., Burch, L., Bulpitt, C., 2008. Smoking, 
dementia and cognitive decline in the elderly, a systematic review. BMC Geriatr. 8, 
36. https://doi.org/10.1186/1471-2318-8-36. 

Pinto, T., Lanctôt, K.L., Herrmann, N., 2011. Revisiting the cholinergic hypothesis of 
behavioral and psychological symptoms in dementia of the Alzheimer’s type. Ageing 
Res. Rev. 10, 404–412. https://doi.org/10.1016/j.arr.2011.01.003. 

Politis, M., Niccolini, F., 2015. Serotonin in Parkinson’s disease. Behav. Brain Res. 277, 
136–145. https://doi.org/10.1016/j.bbr.2014.07.037. 

Polymeropoulos, M.H., 1997. Mutation in the -synuclein gene identified in families with 
parkinson’s disease. Science 276, 2045–2047. https://doi.org/10.1126/ 
science.276.5321.2045. 

Polymeropoulos, M.H., Higgins, J.J., Golbe, L.I., Johnson, W.G., Ide, S.E., Di Iorio, G., 
Sanges, G., Stenroos, E.S., Pho, L.T., Schaffer, A.A., Lazzarini, A.M., Nussbaum, R.L., 
Duvoisin, R.C., 1996. Mapping of a gene for Parkinson’s disease to chromosome 
4q21-q23. Science 274, 1197–1199. https://doi.org/10.1126/ 
science.274.5290.1197. 

Pouclet, H., Lebouvier, T., Coron, E., Des Varannes, S.B., Neunlist, M., Derkinderen, P., 
2012. A comparison between colonic submucosa and mucosa to detect Lewy 
pathology in Parkinson’s disease. Neurogastroenterol. Motil. Off. J. Eur. 
Gastrointest. Motil. Soc. 24, e202–e205. https://doi.org/10.1111/j.1365- 
2982.2012.01887.x. 

Quaranta, D., Bizzarro, A., Marra, C., Vita, M.G., Seripa, D., Pilotto, A., Sebastiani, V., 
Mecocci, P., Masullo, C., 2009. Psychotic symptoms in Alzheimer’s disease and 5- 
HTTLPR polymorphism of the serotonin transporter gene: evidence for an 
association. J. Alzheimer’s Dis.: JAD 16, 173–180. https://doi.org/10.3233/JAD- 
2009-0950. 

Rahimi, M., Akbari, M., Jamshidi, J., Tafakhori, A., Emamalizadeh, B., Darvish, H., 2017. 
Genetic analysis of SNCA gene polymorphisms in Parkinson’s disease in an Iranian 
population. Basal Ganglia 10, 4–7. https://doi.org/10.1016/j.baga.2017.08.001. 

Rajagopalan, S., Andersen, J.K., 2001. Alpha synuclein aggregation: is it the toxic gain of 
function responsible for neurodegeneration in Parkinson’s disease? Mech. Ageing 
Dev. 122, 1499–1510. https://doi.org/10.1016/s0047-6374(01)00283-4. 

Rajan, K.B., Wilson, R.S., Weuve, J., Barnes, L.L., Evans, D.A., 2015. Cognitive 
impairment 18 years before clinical diagnosis of Alzheimer disease dementia. 
Neurology 85, 898–904. https://doi.org/10.1212/WNL.0000000000001774. 

Rajput, C., Sarkar, A., Sachan, N., Rawat, N., Singh, M.P., 2021. Is gut dysbiosis an 
epicenter of Parkinson’s disease? Neurochem. Res. 46, 425–438. https://doi.org/ 
10.1007/s11064-020-03187-9. 

Rani, L., Mondal, A.C., 2021. Unravelling the role of gut microbiota in Parkinson’s 
disease progression: pathogenic and therapeutic implications. Neurosci. Res. 168, 
100–112. https://doi.org/10.1016/j.neures.2021.01.001. 

Roberts, H.L., Brown, D.R., 2015. Seeking a mechanism for the toxicity of oligomeric 
α-synuclein. Biomolecules 5, 282–305. https://doi.org/10.3390/biom5020282. 

Romano, S., Savva, G.M., Bedarf, J.R., Charles, I.G., Hildebrand, F., Narbad, A., 2021. 
Meta-analysis of the Parkinson’s disease gut microbiome suggests alterations linked 
to intestinal inflammation. npj Parkinson’s Dis. 7, 27. https://doi.org/10.1038/ 
s41531-021-00156-z. 

Rommelfanger, K.S., Weinshenker, D., Miller, G.W., 2004. Reduced MPTP toxicity in 
noradrenaline transporter knockout mice. J. Neurochem. 91, 1116–1124. https:// 
doi.org/10.1111/j.1471-4159.2004.02785.x. 

Rommelfanger, K.S., Edwards, G.L., Freeman, K.G., Liles, L.C., Miller, G.W., 
Weinshenker, D., 2007. Norepinephrine loss produces more profound motor deficits 
than MPTP treatment in mice. Proc. Natl. Acad. Sci. USA 104, 13804–13809. 
https://doi.org/10.1073/pnas.0702753104. 

Ross, G.W., Webster Ross, G., Petrovitch, H., Abbott, R.D., Tanner, C.M., Popper, J., 
Masaki, K., Launer, L., White, L.R., 2008. Association of olfactory dysfunction with 
risk for future Parkinson’s disease. Ann. Neurol. 63, 167–173. https://doi.org/ 
10.1002/ana.21291. 

Rotermund, C., Reolon, G.K., Leixner, S., Boden, C., Bilbao, A., Kahle, P.J., 2017. 
Enhanced motivation to alcohol in transgenic mice expressing human α-synuclein. 
J. Neurochem. 143, 294–305. https://doi.org/10.1111/jnc.14151. 

Rüb, U., Stratmann, K., Heinsen, H., Del Turco, D., Seidel, K., den Dunnen, W., Korf, H.- 
W., 2016. The brainstem tau cytoskeletal pathology of Alzheimer’s disease: a brief 
historical overview and description of its anatomical distribution pattern, 
evolutional features, pathogenetic and clinical relevance. Curr. Alzheimer Res. 13, 
1178–1197. https://doi.org/10.2174/1567205013666160606100509. 

Sabol, S.Z., Hu, S., Hamer, D., 1998. A functional polymorphism in the monoamine 
oxidase A gene promoter. Hum. Genet. 103, 273–279. https://doi.org/10.1007/ 
s004390050816. 

Savica, R., Rocca, W.A., Ahlskog, J.E., 2010. When does Parkinson disease start? Arch. 
Neurol. 67, 798–801. https://doi.org/10.1001/archneurol.2010.135. 

Savica, R., Boeve, B.F., Mielke, M.M., 2018. When do α-synucleinopathies start? An 
epidemiological timeline: a review. JAMA Neurol. 75, 503–509. https://doi.org/ 
10.1001/jamaneurol.2017.4243. 

Savica, R., Beach, T.G., Hentz, J.G., Sabbagh, M.N., Serrano, G.E., Sue, L.I., Dugger, B.N., 
Shill, H.A., Driver-Dunckley, E., Caviness, J.N., Mehta, S.H., Jacobson, S.A., 
Belden, C.M., Davis, K.J., Zamrini, E., Shprecher, D.R., Adler, C.H., 2019. Lewy body 
pathology in Alzheimer’s disease: a clinicopathological prospective study. Acta 
Neurol. Scand. Vol. 139 (Issue 1), 76–81. https://doi.org/10.1111/ane.13028. 

Sayre, L.M., Perry, G., Harris, P.L., Liu, Y., Schubert, K.A., Smith, M.A., 2000. In situ 
oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s 
disease: a central role for bound transition metals. J. Neurochem. 74, 270–279. 
https://doi.org/10.1046/j.1471-4159.2000.0740270.x. 

Scatton, B., Javoy-Agid, F., Rouquier, L., Dubois, B., Agid, Y., 1983. Reduction of cortical 
dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. 
Brain Res. 275, 321–328. https://doi.org/10.1016/0006-8993(83)90993-9. 

Scheltens, P., 2000. Aspects of Alzheimer’s disease. Lancet 355, 1920. https://doi.org/ 
10.1016/s0140-6736(05)73376-6. 

Schliebs, R., Arendt, T., 2011. The cholinergic system in aging and neuronal 
degeneration. Behav. Brain Res. 221, 555–563. https://doi.org/10.1016/j. 
bbr.2010.11.058. 

Schreiber, S., Vogel, J., Schwimmer, H.D., Marks, S.M., Schreiber, F., Jagust, W., 2016. 
Impact of lifestyle dimensions on brain pathology and cognition. Neurobiol. Aging 
40, 164–172. https://doi.org/10.1016/j.neurobiolaging.2016.01.012. 

D. Caligiore et al.                                                                                                                                                                                                                               

https://doi.org/10.1371/journal.pone.0137429
https://doi.org/10.1016/j.parkreldis.2006.06.003
https://doi.org/10.1016/s0306-4522(96)00452-6
https://doi.org/10.3389/fnana.2020.00026
https://doi.org/10.1016/j.neurobiolaging.2014.10.017
https://doi.org/10.1038/s41582-020-0377-8
https://doi.org/10.1016/0304-3940(95)12298-2
https://doi.org/10.1515/revneuro-2013-0004
https://doi.org/10.1515/revneuro-2013-0004
https://doi.org/10.1038/npp.2011.82
https://doi.org/10.1038/ncomms14727
https://doi.org/10.3109/03009730903573246
https://doi.org/10.3109/03009730903573246
https://doi.org/10.1038/nm.2165
https://doi.org/10.1038/nm.2165
https://doi.org/10.1038/sj.mp.4000417
https://doi.org/10.1038/sj.mp.4000417
https://doi.org/10.1016/j.expneurol.2017.04.006
https://doi.org/10.1016/j.expneurol.2017.04.006
https://doi.org/10.1016/j.arcmed.2012.12.004
http://refhub.elsevier.com/S2667-2421(22)00069-0/sbref184
http://refhub.elsevier.com/S2667-2421(22)00069-0/sbref184
http://refhub.elsevier.com/S2667-2421(22)00069-0/sbref184
https://doi.org/10.1016/j.arcmed.2012.12.004
https://doi.org/10.1186/s40035-019-0165-9
https://doi.org/10.1186/s40035-019-0165-9
https://doi.org/10.1016/j.taap.2011.05.006
https://doi.org/10.1093/brain/awx376
http://refhub.elsevier.com/S2667-2421(22)00069-0/sbref189
http://refhub.elsevier.com/S2667-2421(22)00069-0/sbref189
http://refhub.elsevier.com/S2667-2421(22)00069-0/sbref189
https://doi.org/10.1038/npjparkd.2016.1
https://doi.org/10.1038/npjparkd.2016.1
https://doi.org/10.1186/1471-2318-8-36
https://doi.org/10.1016/j.arr.2011.01.003
https://doi.org/10.1016/j.bbr.2014.07.037
https://doi.org/10.1126/science.276.5321.2045
https://doi.org/10.1126/science.276.5321.2045
https://doi.org/10.1126/science.274.5290.1197
https://doi.org/10.1126/science.274.5290.1197
https://doi.org/10.1111/j.1365-2982.2012.01887.x
https://doi.org/10.1111/j.1365-2982.2012.01887.x
https://doi.org/10.3233/JAD-2009-0950
https://doi.org/10.3233/JAD-2009-0950
https://doi.org/10.1016/j.baga.2017.08.001
https://doi.org/10.1016/s0047-6374(01)00283-4
https://doi.org/10.1212/WNL.0000000000001774
https://doi.org/10.1007/s11064-020-03187-9
https://doi.org/10.1007/s11064-020-03187-9
https://doi.org/10.1016/j.neures.2021.01.001
https://doi.org/10.3390/biom5020282
https://doi.org/10.1038/s41531-021-00156-z
https://doi.org/10.1038/s41531-021-00156-z
https://doi.org/10.1111/j.1471-4159.2004.02785.x
https://doi.org/10.1111/j.1471-4159.2004.02785.x
https://doi.org/10.1073/pnas.0702753104
https://doi.org/10.1002/ana.21291
https://doi.org/10.1002/ana.21291
https://doi.org/10.1111/jnc.14151
https://doi.org/10.2174/1567205013666160606100509
https://doi.org/10.1007/s004390050816
https://doi.org/10.1007/s004390050816
https://doi.org/10.1001/archneurol.2010.135
https://doi.org/10.1001/jamaneurol.2017.4243
https://doi.org/10.1001/jamaneurol.2017.4243
https://doi.org/10.1111/ane.13028
https://doi.org/10.1046/j.1471-4159.2000.0740270.x
https://doi.org/10.1016/0006-8993(83)90993-9
https://doi.org/10.1016/s0140-6736(05)73376-6
https://doi.org/10.1016/s0140-6736(05)73376-6
https://doi.org/10.1016/j.bbr.2010.11.058
https://doi.org/10.1016/j.bbr.2010.11.058
https://doi.org/10.1016/j.neurobiolaging.2016.01.012


IBRO Neuroscience Reports 13 (2022) 330–343

342

Seidel, K., Mahlke, J., Siswanto, S., Krüger, R., Heinsen, H., Auburger, G., Bouzrou, M., 
Grinberg, L.T., Wicht, H., Korf, H.W., den Dunnen, W., Rüb, U., 2015. The brainstem 
pathologies of Parkinson’s disease and dementia with Lewy bodies. Brain Pathol. 25, 
121–135. https://doi.org/10.1111/bpa.12168. 

Serra, L., D’Amelio, M., Esposito, S., Di Domenico, C., Koch, G., Marra, C., Bozzali, M., 
2021. Ventral tegmental area disconnection contributes two years early to correctly 
classify patients converted to Alzheimer’s disease: implications for treatment. 
J. Alzheimer’s. Dis. 82, 985–1000. https://doi.org/10.3233/JAD-210171. 

Shabbir, U., Arshad, M.S., Sameen, A., Oh, D.-H., 2021. Crosstalk between gut and brain 
in Alzheimer’s disease: the role of gut microbiota modulation strategies. Nutrients 
13, 690. https://doi.org/10.3390/nu13020690. 

Sheline, Y.I., West, T., Yarasheski, K., Swarm, R., Jasielec, M.S., Fisher, J.R., Ficker, W. 
D., Yan, P., Xiong, C., Frederiksen, C., Grzelak, M.V., Chott, R., Bateman, R.J., 
Morris, J.C., Mintun, M.A., Lee, J.M., Cirrito, J.R., 2014. An antidepressant decreases 
CSF Aβ production in healthy individuals and in transgenic AD mice. Sci. Transl. 
Med. 6, 236re4. https://doi.org/10.1126/scitranslmed.3008169. 

Shen, T., Yue, Y., He, T., Huang, C., Qu, B., Lv, W., Lai, H.-Y., 2021. The association 
between the gut microbiota and parkinson’s disease, a meta-analysis. Front. Aging 
Neurosci. 13, 40. https://doi.org/10.3389/fnagi.2021.636545. 

Shihabuddin, L.S., Brundin, P., Greenamyre, J.T., Stephenson, D., Sardi, S.P., 2018. New 
frontiers in Parkinson’s disease: from genetics to the clinic. J. Neurosci. 38, 
9375–9382. https://doi.org/10.1523/JNEUROSCI.1666-18.2018. 

Shishov, V.A., Kirovskaia, T.A., Kudrin, V.S., Oleskin, A.V., 2009. [Amine 
neuromediators, their precursors, and oxidation products in the culture of 
Escherichia coli K-12]. Prikl. Biokhimiia Mikrobiol. 45, 550–554. 

Silvetti, M., Vassena, E., Abrahamse, E., Verguts, T., 2018. Dorsal anterior cingulate- 
brainstem ensemble as a reinforcement meta-learner. PLOS Comput. Biol. 14, 
e1006370 https://doi.org/10.1371/journal.pcbi.1006370. 

Silvetti, M., Baldassarre, G., Caligiore, D., 2019. A computational hypothesis on how 
serotonin regulates catecholamines in the pathogenesis of depressive apathy. 
Multiscale Models of Brain Disorders. Springer, Cham, pp. 127–134. https://doi.org/ 
10.1007/978-3-030-18830-6_12. 

Simic, G., Stanic, G., Mladinov, M., Jovanov-Milosevic, N., Kostovic, I., Hof, P.R., 2009. 
Does Alzheimer’s disease begin in the brainstem? Neuropathol. Appl. Neurobiol. 35, 
532–554. https://doi.org/10.1111/j.1365-2990.2009.01038.x. 
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