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Abstract: Occupants may complain about indoor air quality in closed spaces where the officially
approved standard methods for indoor air quality risk assessment fail to reveal the cause of the prob-
lem. This study describes a rare genus not previously detected in Finnish buildings, Acrostalagmus,
and its species A. luteoalbus as the major constituents of the mixed microbiota in the wet cork liner
from an outdoor wall. Representatives of the genus were also present in the settled dust in offices
where occupants suffered from symptoms related to the indoor air. One strain, POB8, was identified
as A. luteoalbus by ITS sequencing. The strain produced the immunosuppressive and cytotoxic
melinacidins II, III, and IV, as evidenced by mass spectrometry analysis. In addition, the classical
toxigenic species indicating water damage, mycoparasitic Trichoderma, Aspergillus section Versicolores,
Aspergillus section Circumdati, Aspergillus section Nigri, and Chaetomium spp., were detected in the
wet outdoor wall and settled dust from the problematic rooms. The offices exhibited no visible signs
of microbial growth, and the airborne load of microbial conidia was too low to explain the reported
symptoms. In conclusion, we suggest the possible migration of microbial bioactive metabolites from
the wet outdoor wall into indoor spaces as a plausible explanation for the reported complaints.

Keywords: melinacidin; Acrostalagmus luteoalbus; guttation droplets; mixed mycobiota; indoor dust;
outdoor wall; cork liner

1. Introduction

The term “microbiota” refers to the microbial community in a defined environment.
The term “microbiome” refers to the total genome of such microbiota. In buildings, the colo-
nizing microbiota and the microbiome are global and uniform compared to those outdoors,
which are local and diverse [1,2]. In urban environments in high-income countries, the ma-
jor microbial exposure by humans over their lifetime is to uniform building microbiota [3–5].
An indoor lifestyle leaves occupants at the mercy of uniform building microbiota, where mi-
crobial exposomes trapped indoors can reach higher concentrations and persist longer than
those outdoors [1,3,6–8]. Microbes including Aspergillus, Penicillium, Trichoderma, Fusarium,
Chaetomium, Streptomyces, Bacillus, and Nocardiopsis species, which produce bioreactive
metabolites such as mycotoxins [9–15], immunoreactive substances [16–18], mitochondrial
and ionophoric toxins, and fungicides and antibiotics, contribute to the building exposome
in wet buildings worldwide [19–33].
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The loss of biological diversity promotes dysbiosis, imbalances in the microbial ecosys-
tem on or within the body, and loss of tolerance to environmental microbes [34–43]. Dysbio-
sis decreases resilience against changes in environmental exposure and promotes systemic
subclinical inflammation, allergy, and asthma [44–47], symptoms also associated with
wet buildings [48–58]. The pathophysiological mechanism behind the morbidity associ-
ated with wet buildings is still an open question [59–63], but enhancement of dysbiosis,
loss of tolerance to environmental microbes, and activation of inflammasomes by expo-
sure to immunoreactive antimicrobial substances from wet, “moldy” buildings cannot be
excluded [13,35,44,51,54,56–58,64].

Recently, new indoor toxigenic fungi and their toxins have been identified using
toxicity screening of culturable indoor fungal isolates [22,65,66]. Most metabolically active
fungi found in indoor environments are detectable by cultivation [1,67]. Because fungi
digest before they ingest, their metabolites are secreted into the environment. The secreted
metabolites, including enzymes, signaling molecules, surfactants, etc., consist of much more
than conidia and hyphal fragments [68,69]. New mechanisms of secretion and emissions of
bioreactive substances into indoor air have been proposed, stressing the relevance of the
viability and metabolic state of indoor microbes [6,70–72].

Occupants may complain about the indoor air quality in closed spaces where there
are no visible signs of microbial growth and the airborne load of microbial particles is
too low to explain the reported symptoms [1,73]. This study is a continuation of earlier
studies in 2014–2020 concerning problems related to indoor air in a public building in
Finland [65,66,71,73]. The aim of this study was to develop methods for elucidating the
possible migration of secreted microbial metabolites from outer walls to offices with regard
to indoor-related health complaints.

2. Results
2.1. Building Inspection Connected to Five Problematic Rooms

Four office rooms in a public building, 131a, 131b, 335, and 145b, [73], were associated
with indoor-air-related health symptoms and abandoned by their occupants. One office
room, 146, was provided with an air cleaner. The building and a floor plan showing
the investigated rooms are described in Section 4.1. A building inspection revealed that
the outdoor wall outside the problematic rooms was damaged and that rainwater had
penetrated into the wall structure. A cork liner used as isolation inside the plinth in the
outer wall was moist and degraded by microbes. Stereomicroscopic inspection of the liner
indicated the growth of molds including Aspergillus, Chaetomium, and Trichoderma and an
unrecognized fungus, as shown in Figure 1. Mineral wool insulation inside the outer wall
was also moist and contaminated with mold. The inner surfaces of the five rooms and the
collected samples of hard boards and gypsum liners exhibited no visible water damage or
mold growth.

2.2. Diversity Tracking of Molds Cultivated from Wall Structures

The massive microbial growths cultivated on pieces of the moist cork liner (samples
1P61, 1K, 1POB) and mineral wool (sample 3MW) collected from outside the problematic
rooms are shown in Figure 2. The major fungal colony types obtained on malt extract
agar were light brown-white colonies (Figure 2A,I,J), green colonies (Figure 2B,G), green
mycoparasitic colonies (Figure 2C,D), yellow and black colonies (Figure 2E,F), and gray
yellow-green colonies (Figure 2G,H). An odd antifungal colony that presented only on
single plates is shown in Figure 2K. Figure 2L shows the major bacterial colonizer of the
cork liner cultivated on tryptic soy agar (spore-forming actinobacterium).
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Figure 1. Stereomicrographs of major fungi colonizing moist cork liner. (A,a) Aspergillus-like co-

nidiophores; (B,b) ascomata characteristic for Chaetomium-like fungi; (C,c) mycoparasitic Tricho-

derma-like colonies; and (D,d) a dominant colonizer, a fungus with straight erect repeatedly 

branched orange conidiophores, 100 × 4–4.5 μm. 
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°C. (A–C,G,H); dominant colonies from cork liner (samples 1P61,1POB,1K). (D–F) Major colonies 

from mineral wool (sample 3MW). Origin of isolates characterized/identified are marked with red 

arrows and representative strain codes. (K) Colonies of white, spore-forming actinobacteria; (L) un-

identified toxigenic and antagonistic fungicidic colony type appearing on this plate only. 

Figure 1. Stereomicrographs of major fungi colonizing moist cork liner. (A,a) Aspergillus-like conidio-
phores; (B,b) ascomata characteristic for Chaetomium-like fungi; (C,c) mycoparasitic Trichoderma-like
colonies; and (D,d) a dominant colonizer, a fungus with straight erect repeatedly branched orange
conidiophores, 100 × 4–4.5 µm.
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Figure 2. Pieces of moist cork liner and mineral wool cultivated on malt extract agar for 14 d at 22 ◦C.
(A–C,G,H); dominant colonies from cork liner (samples 1P61,1POB,1K). (D–F) Major colonies from
mineral wool (sample 3MW). Origin of isolates characterized/identified are marked with red arrows
and representative strain codes. (K) Colonies of white, spore-forming actinobacteria; (L) unidentified
toxigenic and antagonistic fungicidic colony type appearing on this plate only.

The diversity of the major fungal isolates was characterized as follows: biomass lysates
of five colonies from each plate were tested for toxic responses by two rapid screening
bioassays, boar sperm motility inhibition (BSMI) assay and inhibition of cell proliferation
(ICP), and fluorescence emission. These bioassays showed that more than 70% of the
tested colonies were toxic. Conidiophores and conidia/spores were inspected using a
phase contrast microscope. The toxigenic colonies from plates A to K (Figure 2) were
grouped into 10 morphotypes as shown in Table 1: brown-white colonies with Acrosta-
lagmus-like conidiophores (MT1), tree Aspergillus morphotypes differing in fluorescence
emission and toxic response (MT2, MT3, MT4), two Trichoderma morphotypes differing
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in conidia size (MT5, MT6), and one toxigenic Penicillium morphotype (MT7). The final
morphotype was obtained by microscopic inspection of the cork liner, representing a poten-
tially toxic ascomata-producing Chaetomium-like morphotype (MT11). The major bacterial
colonizers were spore-forming actinobacteria that were toxic in either BSMI or ICP or both
(MT8-MT10).

Representatives of morphotypes MT1 to MT7 were identified by ITS sequencing as
Acrostalagmus luteoalbus (MT1), Trichoderma atroviride (MT5), Trichoderma trixiae (MT6), and
Penicillium expansum (MT7). The isolates assigned to morphotypes MT2, MT3, and MT4
were identified as belonging to Aspergillus section Versicolores, section Circumdati, and
section Nigri, respectively, based on similarity to the reference strains SL/3, PP2, and
HAMBI-1271. The spore-forming actinobacteria were morphologically identical to each
other but were separated into three morphotypes, MT8-MT10, based on their toxic response
in the bioassays.

2.3. Cultured Settled Dust from Problematic Rooms Revealed Five Major Morphotypes

We looked for representatives of the genera colonizing the cork liner and mineral
wool, Acrostalagmus, Aspergillus, Trichoderma, Penicillium, and Chaetomium, in settled dust
collected from problematic rooms 131a, 131b, 335, and 145b, from nonproblematic rooms
134 and 223, and from room 146, where the occupant did not complain but had an air
cleaner installed. The plates containing cultured settled dust are shown in Figure 3.
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Table 1. Characterization of 38 isolates (morphotypes MT1-MT10) cultivated from pieces of cork liner and mineral wool from outdoor wall. Toxicity was measured with two bioassays,
boar sperm motility inhibition (BSMI) and inhibition of proliferation (ICP) of porcine kidney cells (PK-15).

Biomass Lysates Morphology in Microscope Origin
Sample

Morphotype Toxicity *
BSMI ICP Fluorescence/Colony Color Conidiophores Conidia

MT1 Acrostalagmus luteoalbus

Isolates: POB8 1, A1/K,
A2/K, A3/K, A4/K

− +
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Table 1. Cont.

Biomass Lysates Morphology in Microscope Origin
Sample

Morphotype Toxicity *
BSMI ICP Fluorescence/Colony Color Conidiophores Conidia

MT3 Reference strain Aspergillus westerdijkiae PP2 6
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Table 1. Cont.

Biomass Lysates Morphology in Microscope Origin
Sample

Morphotype Toxicity *
BSMI ICP Fluorescence/Colony Color Conidiophores Conidia

MT6 Trichoderma trixiae

Isolates: Th1/kg,
Th2/kg, Th4/kg,

Th5/kg 3, Th6/kg 4
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A majority (>70%) of the tested colonies in dust from the problematic rooms and room
146 showed a toxic response in the bioassays. The results in Table 2 show the toxigenic
morphotypes in settled indoor dust: isolates similar to Acrostalagmus (MT1); Aspergillus
section Versicolores (MT2), Circumdati (MT3), and Nigri (MT4); mycoparasitic isolates similar
to T. trixiae (MT5) and T. atroviride (MT6); and P. expansum (MT7) and Chaetomium isolates
(MT11). One isolate, MH52, was identified by ITS sequencing as Chaetomium globosum. The
results in Tables 1 and 2 show that the toxigenic fungal morphotypes mainly found in the
cork liner were also detected in the settled dust. Settled dust from room 146 looked similar
to the dust shown in Figure 3G, containing mainly toxigenic Chaetomium-like colonies.
Settled dust from rooms 223 and 134, located farther from the water-damaged site of the
wall, contained mainly nontoxic Rhizopus; none of the 40 tested biomass dispersals were
toxic in the bioassays, and the occurrence of toxic colonies was <5%.

2.4. Characterization of Acrostalagmus luteoalbus Strain POB8

The strains representing morphotype MT1, similar to A. luteoalbus strain POB8 shown
in Figure 4, were isolated as a major colonizer from cork liner 1P61 and 1POB and from
settled dust from room 131b.
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cultured strain in visible light. (B) Same plate exhibiting blue fluorescing exudates when excited with
UV light (insert). (C–F) Stereomicroscopic views of plate in (A): (C,D) Exudates emitted from fungal
hyphae. (E,F) Liberated vesicles.

Ethanol extracts prepared from plate-grown biomass of strains POB8, A1/K, A2/K,
A3/K, A4/K, and POB1 exhibited similar blue fluorescence to the biomass dispersal shown
in Table 1. The bioreactivity of extracts of biomass from the plate of strain POB8 shown in
Figure 4 and the five strains representing the same morphotype was tested.
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Table 2. Characterization of 37 isolates from cultivated settled dust into nine morphotypes. Bioreactivity was tested as responses to two bioassays, boar sperm motility inhibition (BSMI)
and inhibition of cell proliferation (ICP), with PK-15 cell line.

Biomass Lysates Morphology in Microscope Origin

Toxicity
Fluorescence/Colony Color

Conidiophores Conidia Room

Morphotype BSMI ICP

MT1 Acrostalagmus sp.

Isolates: POB1, PH20 − +
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Table 2. Cont.

Biomass Lysates Morphology in Microscope Origin

Toxicity Fluorescence/Colony Color Conidiophores Conidia Room

Morphotype BSMI ICP

MT5 Trichoderma sp.

Isolates: PO1, PO2, PO3, PO4, PO5 + +
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Table 2. Cont.

Biomass Lysates Morphology in Microscope Origin

Toxicity Fluorescence/Colony Color Conidiophores Conidia Room

Morphotype BSMI ICP

MT12 Rhizopus sp.

Isolates: R1, R2, R3, R4 − −

Pathogens 2021, 10, x FOR PEER REVIEW 10 of 24 

 

MT6 Trichoderma sp.  

Isolates: T351, T355, 

T337, T338, T330 
+ +  

Green 
  

335 

MT7 Penicillium expansum 

Isolates: MH6 1, P3a, P32, P33 (+) +  
Green/yellow/gray 

  

131b 

131a 

MT11 Chaetomium globosum 

Isolates: MH5, M13, M14, MH52 2 + +  
Black 

  

131b 

145b 

146 

MT12 Rhizopus sp.  

Isolates: R1, R2, R3, R4 − −  
Black 

 
 

134 

223 

+ Test with most toxic response, toxic endpoints of + < (+) < −. A colony was considered toxic in BSMI assay if ≤2.5 mg mL−1 of biomass inhibited sperm motility after 30 min (= +) on one 

day (= (+)) of exposure, and in ICP if ≤5 mg mL−1 of biomass inhibited proliferation of PK-15 cells exposed for 2 d. References: 1 [65], 2 [66]. 

Black

Pathogens 2021, 10, x FOR PEER REVIEW 10 of 24 

 

MT6 Trichoderma sp.  

Isolates: T351, T355, 

T337, T338, T330 
+ +  

Green 
  

335 

MT7 Penicillium expansum 

Isolates: MH6 1, P3a, P32, P33 (+) +  
Green/yellow/gray 

  

131b 

131a 

MT11 Chaetomium globosum 

Isolates: MH5, M13, M14, MH52 2 + +  
Black 

  

131b 

145b 

146 

MT12 Rhizopus sp.  

Isolates: R1, R2, R3, R4 − −  
Black 

 
 

134 

223 

+ Test with most toxic response, toxic endpoints of + < (+) < −. A colony was considered toxic in BSMI assay if ≤2.5 mg mL−1 of biomass inhibited sperm motility after 30 min (= +) on one 

day (= (+)) of exposure, and in ICP if ≤5 mg mL−1 of biomass inhibited proliferation of PK-15 cells exposed for 2 d. References: 1 [65], 2 [66]. 

Pathogens 2021, 10, x FOR PEER REVIEW 10 of 24 

 

MT6 Trichoderma sp.  

Isolates: T351, T355, 

T337, T338, T330 
+ +  

Green 
  

335 

MT7 Penicillium expansum 

Isolates: MH6 1, P3a, P32, P33 (+) +  
Green/yellow/gray 

  

131b 

131a 

MT11 Chaetomium globosum 

Isolates: MH5, M13, M14, MH52 2 + +  
Black 

  

131b 

145b 

146 

MT12 Rhizopus sp.  

Isolates: R1, R2, R3, R4 − −  
Black 

 
 

134 

223 

+ Test with most toxic response, toxic endpoints of + < (+) < −. A colony was considered toxic in BSMI assay if ≤2.5 mg mL−1 of biomass inhibited sperm motility after 30 min (= +) on one 

day (= (+)) of exposure, and in ICP if ≤5 mg mL−1 of biomass inhibited proliferation of PK-15 cells exposed for 2 d. References: 1 [65], 2 [66]. 

134
223

+ Test with most toxic response, toxic endpoints of + < (+) < −. A colony was considered toxic in BSMI assay if ≤2.5 mg mL−1 of biomass inhibited sperm motility after 30 min (= +) on one day (= (+)) of
exposure, and in ICP if ≤5 mg mL−1 of biomass inhibited proliferation of PK-15 cells exposed for 2 d. References: 1 [65], 2 [66].



Pathogens 2021, 10, 843 12 of 24

To reveal the diversity of the five Acrostalagmus sp. strains compared with Acrostalagmus
luteoalbus POB8 isolated from the cork liners and indoor dust, they were tested with four
complementary bioassays. The tests are described and referenced in Sections 4.4.1 and 4.4.2.
Briefly, the two BSMI assays measured sublethal toxicity as inhibition of motility in exposed
sperm cells. The spermatozoa membrane integrity disruption (SMID) assay measured
lethal toxicity as a loss of plasma membrane integrity. The ICP assay measured cytostatic
toxicity as a loss of the proliferating ability of a somatic cell line, PK-15. The results in
Table 3 enable a comparison of the EC50 concentrations for the toxicity endpoints from the
assays measuring different biological activities. A comparison of the EC50 concentrations
obtained in the four bioassays revealed a characteristic and uniform toxicity profile for
the five Acrostalagmus sp. isolates and A. luteoalbus strain POB8. For the six Acrostalagmus
strains, the toxic endpoints in terms of EC50 concentrations were similar in the three assays,
around 10 µg mL−1, indicating that the Acrostalagmus extracts, in contrast to the extracts of
reference strains, inhibited sperm motility and cell proliferation at the same concentrations
after 1 and 3 d, respectively. The low toxic endpoints in the SMID assay also indicated
a rapid lethal effect in sperm cells exposed at 37 ◦C. Briefly, the toxicity profile revealed
by the bioassays indicated that the Acrostalagmus extracts exhibited lethal and cytostatic
toxicity when exposed to cells at 37 ◦C and a motility-inhibiting effect when exposed to
cells at 22 ◦C for 1 d. None of the Acrostalagmus strains exhibited a rapid motility-inhibiting
effect after 20 min of exposure at 22 ◦C. This uniform toxicity profile of the six Acrostalagmus
sp. isolates (A1/K, A2/K, A3/K, A4/K, and POB1) and A. luteoalbus POB8 separated them
from the reference strains. This indicates that the strains may have produced the same
bioactive metabolites, strengthening the hypothetical identity of the five Acrostalagmus sp.
strains as A. luteoalbus.

Table 3. Bioreactivity of ethanol-soluble substances and liquid exudates from plate-grown biomasses of strains identified
as Acrostalagmus luteoalbus, Acrostalagmus sp., and selected reference strains. Bioreactivity was measured as toxicity in
four bioassays: boar sperm motility inhibition assay performed with motile and resting sperm cells (BSMIM, BSMIR) and
inhibition of cell proliferation (ICP) with porcine kidney cell line PK-15.

Ethanol-Extracted Dry Substances Exposure Concentrations EC50 µg mL−1

Boar sperm assays Somatic cell line
BSMIR SMIDM BSMR ICP

Exposure time and
temperature 20 min, 22 ◦C 2 h, 37 ◦C 1 d, 22 ◦C 3 d, 37 ◦C

Strain code

Acrostalagmus luteoalbus POB8 100 6 10 10
Acrostalagmus sp. Ac1/KG 100 6 10 10
Acrostalagmus sp. Ac2/kg 100 12 20 20
Acrostalagmus sp. AC3/kg 100 6 10 20
Acrostalagmus sp. AC4/kg 100 6 10 10

Acrostalagmus sp. POB1 100 12 20 10
Reference strains Ethanol extracted dry substances EC50 µg mL−1

Aspergillus versicolor SL/3 >100 >100 20 1
Chaetomium globosum MTAV 35 ND 450 3 40

Trichoderma atroviride Tri335 5 2 5 60
Liquid exudates Exposure concentration EC50 µL mL−1

Acrostalagmus luteoalbus POB8 ND ND 25 50
Reference strains Liquid exudates Exposure concentration EC50 µL mL−1

Aspergillus versicolor SL/3 ND ND >100 >100
Aspergillus westerdijkiae PP2 ND ND >100 >100
Aspergillus calidoustus MH34 ND ND >100 >100

Stachybotrys sp. HJ5 * ND ND >50 20
Penicillium expansum RCP61 * ND ND 2.5 0.04

BSMIM and BSMIR, boar sperm motility inhibition assays performed with motile and resting sperm cells; SMID, sperm membrane integrity
assay; ICP, inhibition of cell proliferation with porcine kidney cell line PK-15. * Presented in [65,66].
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Stereomicrographs of A. luteoalbus strain POB8 (Figure 4) show that the metabolically
active biomass secreted exudates and vesicles. The toxic endpoints of the liquid exudate
collected from strain POB8 exhibited a toxicity profile and blue fluorescence similar to
those of the ethanol extracts. This indicates that the blue fluorescing exudates possibly
contained the same substances as the blue fluorescing ethanol extracts. The liquid exudates
of the reference strains of genus Aspergillus exhibited no toxicity in the bioassays, whereas
exudates of the Penicillium, Stachybotrys, and Chaetomium strains secreted toxins in their
guttation droplets and/or exudates.

2.5. Compounds of Toxic A. luteoalbus POB8 Ethanol Extract Were Identified as Melinacidins II,
III, and IV

The ethanol extract of A. luteoalbus POB8 was analyzed using high-performance liquid
chromatography–electrospray ionization mass spectrometry (HPLC-ESI-MS) (Figure 5A–D).
On the HPLC-MS total ion chromatograms of the ethanol extract of A. luteoalbus, three
compounds were identified, as shown in Figure 5A. Compound 1, with a retention time of
8.5 min, had a protonated mass ion [M + H]+ at m/z 729.2, a sodiated mass ion [M + Na]+

at m/z 751.2, and a sodiated mass ion of dimer [2M + Na]+ at m/z 1479.0 (Figure 5B).
Compound 2, with a retention time of 12.2 min, had a protonated mass ion [M + H]+ at
m/z 713.2, a sodiated mass ion [M + Na]+ at m/z 735.2, and a sodiated mass ion of dimer
[2M + Na]+ at m/z 1447.0 (Figure 5C). Compound 3, with a retention time of 17.7 min,
had a protonated mass ion [M + H]+ at m/z 697.2, a sodiated mass ion [M + Na]+ at m/z
719.2, and a sodiated mass ion of dimer [2M + Na]+ at m/z 1415.0, with retention time of
17.7 min (Figure 5D). The obtained mass spectrometry data of compounds 1–3 matched the
dimeric epipolythiodioxopiperazines melinacidin IV (728 g/mol), III (712 g/mol), and II
(696 g/mol), respectively, reported earlier [74,75].
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compounds at retention times of 8.4 (1), 12.2 (2), and 17.8 min (3). (B–D) MS spectra of compounds
1, 2, and 3 had protonated mass ions at m/z 729.2, 713.2, and 697.2; sodiated mass ions at m/z 751.2,
735.2, and 719.2; and sodiated mass ions of dimers at m/z 1479.0, 1447.0, and 1415.0, respectively.
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The obtained MS/MS data of compounds 1–3 were similar to those reported for
the dimeric epipolythiodioxopiperazines [76–78]. The MS/MS spectrum fragmentation
patterns (Figure 6A) of compound 1 were identical to the reported MS/MS spectrum
of melinacidin IV [76]. Furthermore, the mass spectra and fragmentation patterns of
melinacidins IV, III, and II highly resemble each other (Figure 6A–C). According to the
obtained and reported MS and MS/MS mass spectrometry data, compounds 1, 2, and 3
of A. luteoalbus were identified as melinacidin IV, III, and II, respectively. The amounts
of melinacidin IV (230 µg mL−1), III (290 µg mL−1), and II (120 µg mL−1) in the ethanol
extract of A. luteoalbus were calculated from the total absorbance (220 nm) of the HPLC-
UV chromatograms.
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3. Discussion

This article describes the detection of cultivable toxigenic fungi in wet outdoor walls
and indoor dust in a building with indoor air quality problems. One of the species found,
melinacidin-producing Acrostalagmus luteoalbus, was detected as building-associated mold
for the first time. This study illustrated that the mixed mycobiota cultivated from the wet
wall and from settled indoor dust in problematic rooms seemed to contain the same major
fungal species and genera. This indicates a possible connection between outdoor structures
and indoor spaces (Figures 1–3, Tables 1 and 2).

Interestingly, a rare mold genus identified as Acrostalagmus, which was the major
constituent of the mixed mycobiota in the wet cork liner from the water-damaged outdoor
wall, was also present in indoor dust. One representative strain, POB8, was identified
at the species level as A. luteoalbus by ITS sequencing. This strain has been used as a
reference strain [65,66,79,80], but otherwise there are no reports of Acrostalagmus sp. strains
growing on building materials, globally or in Finland. Based on its distinct morphology
and phylogenetic distance, A. luteoalbus (basionym Sporotrichum luteoalbum) was introduced
as a generic distinction between the former sections Verticillium and Nigrescentia [81–84].
The occurrence of Verticillium in building materials and cork has been described, but no
isolates have been identified as Acrostalagmus species [10,85]. The production of immuno-
suppressive and cytotoxic melinacidin by an A. luteoalbus isolate has been shown [74,86].
The detected bioreactivity in biomass and guttation droplets indicate the possibility of a
bioreactive microbial secretome including melinacidins migrating from a wet outdoor wall
into indoor spaces.
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This study presents the mass spectrometry data characteristics of melinacidins and
shows that A. luteoalbus strain POB8 produces melinacidins II, III, and IV. Melinacidin
derivatives were previously reported from a variety of fungi including Acrostalagmus
luteoalbus (syn. A. cinnabarinus) [74,86]. Melinacidins belonging to the epipolythiodiox-
opiperazines (ETPs) are related but not identical to verticillin, chaetocin, and gliotoxin,
the best-known ETPs produced by Aspergillus fumigatus. Epipolythiodioxopiperazines
have antiproliferative, cytotoxic, immunomodulatory, antiviral, and antimicrobial activity
in vitro [77,87] and have been shown to be toxic to mammals; the LD in mice (i.p.) is
2–4 mg/kg [75,77,88–90]. The toxicity of ETPs depends on a disulfide bridge, with inacti-
vating enzymes as methyl transferases via reactions with thiol groups. They also generate
reactive oxygen species by redox cycling, inducing oxidative stress and mitochondrial
damage [88,91]. This may explain the newly observed toxicity to sperm cells. However,
this has yet to be confirmed with pure melinacidins.

Assuming that melinacidins were the only toxic substances in the ethanol extracts,
the EC50 concentration in the BMSI and ICP assays for the tested melinacidin mixture was
calculated as 0.3 to 0.6 µg mL−1. Based on a similar toxicity profile and blue fluorescence,
it is possible, but not proven, that the liquid exudates secreted from the growing biomass
of POB8 (Figure 4B) also contained melinacidins. Melinacidin concentration in the exudate,
when calculated based on the toxic response, would be around 40 to 80 µg melinacidins
per mL exudate. The hypothetically calculated melinacidin content in the biomass (wet wt)
and exudates would be around 0.8 to 2 µg and 0.4 to 0.8 µg melinacidins mg−1, respectively.
This means that similar amounts of melinacidins could migrate with the exudate as with
fungal particles.

Four other genera were found in both the wet outdoor wall and the indoor dust
from the three problematic rooms in the old wing of the building (and room 146 with
the air cleaner) close to the wet wall, but not from dust from the two more remote non-
problematic rooms. The fungi representing the genera Aspergillus, Trichoderma, Penicillium,
and Chaetomium are common constituents of mycotoxin-producing indoor mycobiota and
common colonizers of indoor building materials [1,65,66,72,79,92,93]. These fungi are also
listed as indicator species for water damage [1,94,95].

Occupants in the rooms complained about indoor air quality even though no signs
of microbial growth or water damage were detected, and the airborne load of microbial
particles (<4 CFU m−3) was too low to explain the reported symptoms. However, the
negative pressure of 3–4 Pa and a sealing repair that was performed led to the suspicion of
air leakage through the building structure [1,73]. Although microbial contamination inside
buildings does not necessarily have direct contact with the indoor air, microbial growth
within the exterior walls can affect indoor air quality. This can happen if, as a consequence
of fluctuations in wind and indoor air pressure, the infiltration airflow drifts through a
contaminated wall structure [96–100].

The occurrence of the same molds in the wet wall and indoor dust indicates pos-
sible transmission of conidia and spores into the problematic rooms and enrichment in
settled dust. Tiny, potentially antibiotic-producing spores of Streptomyces migrated from
the construction material into the indoor air [96]. In addition to conidia and fragments of
microorganisms, the substances of microbial metabolism [6,72,79], secreted in liquids in
guttation droplets and vesicles, may be trapped within building insulation and structural
elements. The fungal secretome and fungal metabolites (including proteins, peptides,
surface active substances, mycotoxins, VOCs, etc.) may be transported to interior spaces
via liquid and vapor fluxes within materials and via airflow (negative pressure) within
ventilation systems and rooms [1,96–105]. The microbial liquid metabolites, secretome, and
VOC emissions [106,107] may enhance and exceed the indoor concentrations of bioreactive
agents provided by airborne conidia and fragments [9,13,65,68,79]. Fungal protein homo-
logues of human proteins that initiate or signal tissue damage, mycotoxins, and microbial
mitochondrial toxins have all been reported to enhance and provoke inflammatory re-
sponses [103–105]. Indoor microbes may produce and emit airborne surface-active agents,
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enhancing the immunoreactivity of inhaled allergens [6,106,107]. The occupants of the
problematic rooms may have been exposed to indoor air polluted with immunoreactive
metabolites and surface-active agents from microbial species actively growing on the cork
liner and mineral wool in the wet outdoor wall. This exposure combined with a low toler-
ance to environmental microbes may have decreased their resilience and would explain the
symptoms they experienced. The noncomplaining occupant in room 146 may have been
more resilient to the exposure, or the air in the room may have been efficiently cleaned by
the air cleaner.

In conclusion, we suggest that the outdoor wall was the potential emission source
for the indoor mold contamination detected in the problematic rooms. In addition to
viable conidia, the mixed microbiota colonizing the wet outer wall possibly also emitted
immunoreactive microbial metabolites among the exudates, vesicles, and fungal fragments
into indoor air exposing the occupants of the problematic rooms. We also suggest that expo-
sure to the immunoreactive metabolites may have attenuated the immunological tolerance
to commensal and environmental microbes. There are no methods yet for measuring the
total load of airborne immunoreactive fungal metabolites in indoor air, or for measuring
decreased resilience to potentially hazardous exposure. Our proposed connection in this
study between microbial emissions from the wet outer wall and the reported complaints
concerning the indoor air quality is speculative but cannot be excluded.

4. Materials and Methods
4.1. A Public Building from the 1960s Investigated for Mold Contamination

A public building in southern Finland that was involved in indoor-air-related com-
plaints was investigated for mold contamination during 2013–2014, as described in [73].
The building consisted of two parts: an old wing built in 1957 (rooms 145b, 146, and
335) and a new wing erected in 1963 (rooms 131a, 131b, 223, and 134); it was concrete-
framed and brick-lined and had mineral wool as isolation material. The building still
contained the original construction materials, such as a cork liner in the building network
(Figures 7 and 8), and mechanical ventilation was installed in the 1970s. Ventilation was
turned off from 8:00 p.m. to 6:00 a.m. on workdays and during weekends. The floor
plan of the building, the sites of the investigated rooms, and the structure of the outer
wall are shown in Figure 1. The building underwent an indoor air survey in 2010 and
problematic rooms were abandoned. Reported symptoms included respiratory distress,
increased oxygen demand, the need for a portable oxygen cylinder, and skin symptoms
(personal communication from the occupants).

A new survey of rooms 131a and 131b early in 2013 revealed a negative pressure
of 3–4 Pa in relation to outdoor pressure, so sealing repair was performed. No elevated
concentrations of airborne microbes (<4 cfu m3) were detected, but the indoor air quality
complaints continued. Samples had been taken from the rooms by methods approved
for official use in Finland for health risk assessment of indoor air, i.e., VOC and airborne
microbes with the Andersen impactor [108,109]. The results obtained by analyzing these
samples did not indicate the causative agents for the symptoms experienced by the occu-
pants or explain their complaints.

The rooms classified as problematic remained abandoned. After renovation and
removal of the insulation material in the outer wall in 2016–2018, rooms 131a and 145b were
returned to ordinary use, whereas rooms 131b and 335 were used for equipment storage.
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Figure 7. Floor plan of the public building investigated for mold growth. Samples of settled indoor
dust and pieces of cork liner used as insulation inside plinth and mineral wool inside the outer brick
wall were collected from selected rooms. The first number (1 to 3) in the sample code indicates the
floor (first, second, third floor). Rooms 131a, 131b, and 335 were abandoned in 2010. Occupants in
room 145b complained about indoor air and reported symptoms. Occupants in room 146 did not
report symptoms until 2014 but had an air cleaner installed in the room. Rooms 134 and 223 were
nonproblematic and in ordinary use.
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Figure 8. Sampling of building materials from water-damaged outdoor wall (upper panels), and
micrographs of obtained samples (lower panels). Upper panels show (A) drilling of holes in plinth of
outer wall; (B) used tools; and (C) obtained samples of wet cork liners stored in plastic bags. Lower
panels show pieces of sampled wet cork liner with Hoechst 33342 nucleic acid stain + propidium
iodide staining microbial structures containing DNA or RNA blue and red. (D) Degraded surface
contaminated with microbes. (E,F) Growing actinobacterium and growing fungal hyphae.
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4.2. Collection of Samples and Diversity Tracking of Microbial Constituents in Building Materials
and Settled Dust

The sampling sites and the degraded cork liner colonized by microbes are shown in
Figure 7 and 8. The samples of the building network were taken by drilling with a shock
drill through the wall (Figure 8A). When the drill penetrated the concrete, the concrete dust
was removed by vacuuming. Then, a tube was fixed to the drill (Figure 8B) and pressed
into the cork liner, filling the tube with cork. The cork trapped in the tube was aseptically
removed into sterile plastic bags, as shown in Figure 8C.

Mineral wool was collected from inside the wall on the third floor (Figure 7), and pieces
of hard board, gypsum liners, and settled dust from inner surfaces 1–2 m above floor level
in the problematic rooms were collected into sterile plastic bags. The material samples were
inspected with a stereomicroscope and fluorescence microscope, using 400× magnification
(Nikon Eclipse E600, Nikon Corporation, Tokyo, Japan) with BP330-380 nm/LP400 nm
filters, and stored at −20 ◦C before cultivation. Staining with fluorescent Hoechst and
propidium iodide stains (Figure 8A–C) was described in Andersson et al. [6].

4.3. Experimental Design for Cultivation and Identification of Microbial Isolates

The methods used for cultivating the mold colonies were described in [6]. Pieces of
the material samples, about 2 mm × 2 mm × 2 mm, were rubbed on the surface of malt
extract agar plates (15 g malt extract from Sharlab, Barcelona, Spain, and 12 g of agar from
Amresco, Solon, OH, USA, in 500 mL of H2O) and on tryptic soy agar plates (Sharlab,
Barcelona, Spain). Settled dust collected on cotton swabs was streaked on malt extract agar.
Plates were incubated for 4 weeks at 22–24 ◦C.

A scheme illustrating the experimental design for tracking the diversity of major
microbial constituents in building material and dust is shown in Figure 9.
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Figure 9. Scheme illustrating experimental design for tracking diversity of major microbial con-
stituents in building materials and dust. After three weeks of incubation, colonies on primary
isolation plates (not yet single-spored) were numbered and screened for toxicity. Toxic colonies were
streaked pure, characterized, and separated into morphotypes. Representatives of morphotypes were
identified by ITS sequencing or by comparison with reference strains according to [106].

Separation of the isolates into morphotypes (MTs) was based on the toxicity profile
and morphology of conidiophores, conidia, ascomata, and ascospores obtained with a
phase-contrast microscope (400× magnification; Olympus CKX41, Tokyo, Japan) and
image recording software (cellSens® standard v. 11.0.06, 2012, Olympus Soft Imaging
Solutions GmbH, Münster, Germany) and compared to reference strains according to
Samson [110,111] as described in [65,66].
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Selected representatives of the morphotypes were identified in previous studies by ITS
or tef1α sequencing with the primer pairs ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′)/ITS4
(5′-TCCTCCGCTTATTGATATGC-3′) and EF595F (5′-CGTGACTTCATCAAGAAGATG-
3′)/EF1160R (5′-CCGATCTTGTAGACGTCCTG-3′), respectively [79].

4.4. Toxicity Assays
4.4.1. Rapid Screening Test of Single Colonies

Rapid screening tests applied directly to the primary sampling plates to measure (a)
the toxins affecting the cellular energy metabolism, mitochondria, and ion homeostasis
based on inhibition of boar spermatozoa motility (BSMI), and (b) the toxins affecting
macromolecular synthesis and cytostatic activity based on inhibition of the proliferation of
somatic cell line PK-15 (ICP) were previously described in detail [65,79]. In this study, the
colony biomass was suspended in 200 µL of ethanol and heated in a water bath to 55–60 ◦C
for 10 min. A colony was considered very toxic in the BSMI assay when <2.5 vol.% of
its biomass suspension inhibited boar sperm motility after 30 min to 1 day of exposure,
and slightly toxic if motility inhibition occurred after 3 days of exposure. A colony was
considered toxic in the in vitro ICP assay when <5 vol.% resulted in inhibition of cell
proliferation of porcine kidney (PK-15) cells after 2 days of exposure in ICP assays.

4.4.2. Toxicity Assays for Ethanol-Extracted Pure Fungal Cultures

Toxicity assays involving the ethanol extraction of lipophilic bioactive peptides and
mycotoxins [22,31,65,66,80,93] obtained from pure fungal cultures were performed using
porcine cells (sperm and somatic cell line PK-15) as indicators according to previously
described methods [79,80]. The toxic response in the bioassays was measured for the
ethanol extracts as toxic endpoints defined as EC50 concentrations, i.e., the lowest con-
centration of ethanol-soluble dry substances per mL of target cell suspension causing
an adverse (toxic) effect in 50% of exposed cells. The test procedures and calculation of
EC50 for the ethanol-dry substances and pure mycotoxins in the BSMI, SMID, and ICP
assays were described previously [79,80,112]. The BSMI assay measured sublethal toxicity
as disturbance in the mitochondrial activity, ion homeostasis, and energy supply of the
exposed sperm cells. The BSMIM and BSMIR assays measured motility after exposure of
motile and resting spermatozoa, respectively. The SMID assay measured lethal toxicity as
loss of plasma membrane integrity. The ICP assay measured cytostatic toxicity and cell
death as the loss of the proliferating ability of growing somatic cells, which may be caused
by inhibition of macromolecular synthesis and/or induction of necrotic or apoptotic cell
death [65,66,73,80].

4.5. Chemical Analysis

The biomass of A. luteoalbus strain POB8 was harvested from a malt extract agar (MEA)
plate incubated at room temperature for 10 days. The collected biomass, about 200–400 mg
wet weight of A. luteoalbus, was extracted with ethanol, and the toxic ethanolic extract
was analyzed by high-performance liquid chromatography–ion trap mass spectrometry
(HPLC-IT-MS) as described by Salo et al. [65]. HPLC–electrospray ionization ion trap
mass spectrometry analysis (ESI-IT-MS) was performed using an MSD-Trap-XCT plus ion
trap mass spectrometer equipped with an Agilent ESI source and Agilent 1100 series LC
(Agilent Technologies, Wilmington, DE, USA) in positive mode with a mass range of m/z
50–2000. ESI source parameters used for analysis were: nebulizer gas pressure, 35 psi;
drying gas flow rate, 8 L min−1; drying gas temperature, 350 ◦C; and capillary voltage,
5000 V. The column used was a SunFire C18, 2.1 × 50 mm, 2.5 µm (Waters, Milford, MA,
USA). Separation of compounds from the ethanol extract of biomass of A. luteoalbus strain
was done using an isocratic method of solution A, H2O with 0.1% (v/v) formic acid, and
B, methanol in a ratio of 40/60 (v/v), for 15 min and a gradient of 100% B for 50 min at
a flow rate of 0.2 mL min−1. Identification of compounds of the toxic ethanolic extract
was done by HPLC-IT-MS and MS/MS analysis. The amounts of identified compounds
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were calculated from total absorbance (220 nm) of the HPLC-UV chromatogram of the
A. luteoalbus POB8 ethanol-extracted biomass.
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