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Abstract
Optical and photophysical properties of 6-substituted-1,2,4-Triazine fluorescent derivative dye doped in silicate based sol–
gel, homopolymer of methyl methacrylate (PMMA), and copolymer (MMA/diethylene glycol dimethacrylate) (DEGDMA) 
were investigated. The pores of different hosts and caging of the dye were found to effect on the parameters such as molar 
absorptivity, cross sections of singlet–singlet electronic absorption and emission spectra, excited state lifetime, quantum yield 
of fluorescence. The dipole moment of electronic transition, the length of attenuation and oscillator strength of electronic 
transition from So → S1 have been calculated. The dye was pumped with different powers using  3rd harmonic Nd: YAG 
laser of 355 nm and pulse duration 8 ns, with repetition rate 10 Hz. Good photo stability for dye was attained. After 55,000 
pumping pulses of (10 mJ/pulse), the photo-stabilities were decreased to 53%, 48%, and 45% of the initial ASE of dye in 
sol gel, PMMA, and Co-polymer respectively. The dye in sol–gel matrix showed improvement of photo stability compared 
with those in organic polymeric matrices.

Keywords Optical property · Solid state laser dye · Photophysical parameters · Photostability · Silicate based sol–gel · 
Polymeric matrices

Introduction

1,2,4-triazine is an important core system and many of  
their derivatives have gained considerable attention because 
they are found in numerous natural and synthetic biologi-
cally as well as pharmacologically active compounds [1]. 

1,2,4-Triazine derivatives have been reported to possess 
a broad spectrum of biological activities including anti-
inflammatory [2] antimicrobial [3, 4], anti-HIV [5], anti-
cancer [6–8], anti haemostatic activity [9], antiviral [10], 
anti-malarial [11], anticonvulsant [8], neuro protective [12], 
antifungal [13], anti-proliferation [14]. Some 1,2,4-triazine 
derivatives have also used as kinase inhibitors [15], and 
α-glucosidase inhibitors [16]. Also fused heterocyclic sys-
tems that contain nitrogen were reported to exhibit fluores-
cent activity [17]. They are also widely applied as LEDs, 
lasers of semiconductors, probes, and fluorescent sensors. 
In the development of organic LED (OLED) technologies 
trends are focused primarily on optimizing existing devices 
and developing new emission materials [18, 19]. In recent 
years, the synthesis of new high-performance dyes and the 
implementation of new ways of incorporating the organic 
molecules into the solid matrix have resulted in significant 
advances towards the development of practical tunable solid-
state dye lasers, due to their high efficiency and they do not 
contain volatile and toxic solvents, they are non-flammable, 
nontoxic, compact in size and mechanically and thermally 
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more stable [20–23]. The sol–gel method is a method in 
which organic dye molecules are incorporated into an inor-
ganic silica host [24].  This shows some advantages, e.g. 
compactness, better manageability and highly porous, trans-
parent in Uv–visible-near IR regions. Its reaction can be 
controlled easily by chemical methods. It allows introducing 
permanent organic groups to form inorganic–organic hybrid 
materials [25] and the process takes place at low tempera-
ture [26]. In this respect we recently reported the synthesis 
of 6-Substituted-1, 2, 4-Triazine mono glucosyl fluorescent 
derivative dye and investigated their optical, photo physi-
cal and solvatochromic properties [27]. In continuation 
of this work, the present study discuss the spectral behav-
ior and photophysical parameters of 6-substituted-1,2,4-
triazine mono glucosyl fluorescent derivative dye doped 
in various solid hosts matrices including sol–gel, PMMA 
and Co-PMMA.  Although a lot of dyes are commercially 
available for laser systems, but the previous ones have a 
pointing of advantages such as larger Stokes shift magnitude 
(Δλ > 100 nm) which can minimize cross-talk between the 
excitation source and the fluorescent emission [28].

Experimental

Materials

Active triazine derivative as chromophore was recently pre-
pared and reported in described form by our lab’team [27]

Solid hosts as; silicate based sol–gel matrix and poly-
mer (using methyl methacrylate MMA and diethylene glycol 
dimethacrylate DEGDMA as monomers) were prepared as 
described in references [28] and [29, 30], respectively.

Spectral Measurements

Dye samples of concentrations ranging from 2 ×  10–5 M to 
3 ×  10–4 M were doped in transparent sol–gel, PMMA and 
(MMA / DEGDMA) Co-polymer. The electronic absorp-
tion properties of the dye samples in different solid hosts 
were studies using a Camspec M501 UV–Vis spectropho-
tometer. The emission spectra were monitored, depend upon 
exciting wavelength which represent maximum absorption, 
using JASCO-spectrofluorometer (model: PF-6300). Laser 
induced fluorescence of dye samples as function of different 
input pumping energies were carried out by  3rd harmonic 
Nd: YAG laser using homemade setup as previously reported 
[31]. The photostability of the dye was also determined [32]. 
The input energy was kept constant at (10 mJ) by pumping 
with 355 nm of 3rd harmonic Nd: YAG laser.

PhotoPhysical Parameters Calculations

Depending upon these absorption and emission spectra, 
important and significant photophysical parameters could 
be determined according to their standard equations as pre-
viously reported such as: the oscillator strength [33], the 
attenuation length Λ(�) [34], the dipole moment transition 
μ12 [34], the rate of radiative decay constant (kr) [35], the 
absorption cross-section σa [36], the quantum yield (ϕf) of a 
compound relative to a standard probe [37, 38], fluorescence 
lifetimes (τf) [39], the rate constant of intersystem crossing 
(kisc) which related to the quantum yield ϕf for (ϕf ≈1) by 
the relationship (1) [35]:

Also, the emission cross-section σe was calculated accord-
ing to ref. [40].

Results and Discussion

Photphysical Properties in Different Hosts

The UV–visible absorption and fluorescence spectra of the 
dye in sol–gel, homo-polymer PMMA and (MMA / DEG-
DMA) copolymer matrices as solid hosts are shown in 
Figs. 1 and 2. There is a minimum overlap between the dye 
absorption and emission spectra in the three solid matrices. 

(1)kisc =
(

1 − �f

)

∕�f
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This is important as far as reabsorption of emitted photons 
is concerned. Figure 1 shows that the absorption maximum 
peak of dye was 385 nm and the emission maximum peak 
was at 520 nm in sol–gel, respectively. Inset Fig. 1 shows 
that the emission of the dye of different concentrations in 
sol–gel at excitation wavelengths 385 nm. The optimum dye 
concentration was 7 ×  10–5 M in sol–gel. The dye fluores-
cence peak intensity increased till 7 ×  10–5 M then decreased 
with increasing concentrations which might be attributed 

to due molecular aggregations of dye molecules which 
absorbed the emitted photon.

Figure 2A, B shows that the absorption maximum peaks 
were at 365 and 370 nm in PMMA and (MMA/DEGDMA), 
respectively. It also shows that the emission maximum 
peaks were at 445 nm and 450 nm for the dye in PMMA 
and (MMA/DEGDMA), respectively. Inset Fig. 2A, B shows 
that the emission of the dye at different concentrations in 
in PMMA and (MMA/DEGDMA) at excitation wavelength 

Fig. 1  Normalized absorption 
spectra and the emission spectra 
of dye of 7 ×  10–5 M with 
excited wavelength 385 nm in 
sol–gel (the inset figure shows 
the dye emission intensity as 
function of different concentra-
tions)

Fig. 2  (A, B) The absorption and emission spectra of 5 ×  10–5 M dye in A) PMMA and B) (MMA/DEGDMA) Co-polymer with excited wave-
length 365 nm and 370 nm, respectively. (The inset figures focus on the dye emission intensity as function of different concentrations)

1511Journal of Fluorescence (2022) 32:1509–1516
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365 nm, and 370 nm respectively. The dye emission spectra 
with different concentrations doped in PMMA and (MMA/
DEGDMA) Co-polymer was shown in inset Fig. 2A, B. The 
dye fluorescence peak intensity increased till 5 ×  10–5 M in 
case of PMMA and 1 ×  10–4 in case of (MMA/DEGDMA) 
Co-polymer then it decreased with increasing concentra-
tions which might be attributed to molecular aggregations 
of dye molecules. Also, the optimum dye concentration was 
5 ×  10–5 M and 1 ×  10–4 M in PMMA and (MMA/DEG-
DMA) Co-polymer, respectively.

From the Figs. 1 and 2 show that the absorption maxi-
mum peaks were 385 nm, 365 nm and 370 nm in sol gel, 
PMMA and (MMA/DEGDMA), respectively, and the emis-
sion maximum peaks were 520 nm, 445 nm and 450 nm in  
sol gel, PMMA and (MMA/DEGDMA), respectively. We 
found that the nature of polymer either homo-polymer or 
copolymer has no effect on the absorption intensity of the 
dye, but it has clear effect of its absorption wavelength. 
This effect may be attributed to the nature of interaction 
between dye and DEGDMA which contains different active 
groups. Comparing the dye fluorescence peak wavelengths 
and intensities in different solid matrices showed that, the 
fluorescence emission wavelengths are higher red shifted in  
sol–gel compared to polymer matrices. This behavior indi-
cates a more relaxed excited state due to dye host interaction 
within excited state lifetime. Some important photo-physical  
parameters of the dye were calculated and summarized in  
Table  1, which demonstrate their potential for use  in 
advanced optical applications. However, the absorption 
cross-section (σa) is the ability of the molecule to absorb a 
photon of a certain polarization and wavelength. Emission 
cross-section (σe) measures the probability of the excited ion 
in a given cross sectional area to emit a photon. The attenu-
ation length (L) (called absorption length) is the distance 
into a material when the probability has dropped to1/e that 
a particle has not been absorbed.

It is noticed from photophysical parameters of dye in dif-
ferent solid hosts that excited state lifetime (τf) values in 
PMMA and in copolymer matrices are lower than those in 
sol–gel matrix. This indicates a dynamic quenching process 

in which the polymer matrices interact with the excited 
state dye molecules. This leads to shortening of τf values 
in polymer matrices compared with sol–gel. The oscilla-
tor strength value in sol–gel matrix is higher than those in 
polymer matrices. Hence, the effective number of electrons 
transferred from the ground to excited states in sol–gel is 
higher than that in polymer matrices. Fluorescence quantum 
yield (ϕf) values are lower in polymer and in copolymer 
matrices compared with those in sol–gel, indicating more 
interaction between dye molecules and polymer matrices. 
The carbonyl group in chromophore polymer matrices pos-
sesses (n, π*) electronic states that are characterized by low 
singlet—triplet splitting energies (ΔES,T) leading to triplet 
state population from singlet excited state, with subsequent 
fluorescence quenching [34]. It is known that the (T1 → Tn) 
transition is a spin- allowed one that can quench fluorescence 
by photon re-absorption. The lower energy level of (n, π*) 
states also allows for exciton trapping [34] adding to factors 
causing fluorescence quenching. Further confirmation of the 
role of polymer matrices in fluorescence quenching comes 
from the higher intersystem crossing rate constants  (kisc) 
values in polymer matrices compared with sol–gel glass.

Laser‑induced Fuorescence of 6‑substituted‑1,2, 
4‑triazines Mono Glucosyl Derivative

The spontaneous fluorescence intensities and wavelengths  
of the 6-substituted-1,2,4-triazines mono glucosyl deriva-
tive dye in sol gel, PMMA and (MMA/DEGDMA) copoly-
mer were varied after pumping with  3rd harmonic Nd:YAG  
(λ = 355 nm). Emission intensity of ASE of the dye  with con-
centrations range from 2 ×  10–5 M to 3 ×  10–4 M in PMMA,  
Co-PMMA (MMA/DEGDMA), and sol–gel with excited 
wavelength 355 nm by  3rdrd harmonic Nd: YAG pulsed laser  
at pumping power 5 mJ. We found that the concentration 
3 ×  10–4 after pumping the different concentration by 5 mJ 
is the highest emission intensity of the dye in PMMA, Co-
PMMA (MMA/DEGDMA) and sol–gel then pumping these 
concentration 3 ×  10–4 with excitation wavelength 355 nm 
by 3rd harmonic Nd:YAG pulsed laser with different 

Table 1  Photophysical parameters of the dye in different hosts; (ε) 
molecular extinction coefficient; σa and σe: cross section of absorp-
tion and emission; (Λ) the attenuation length, (τf) fluorescence 
life time, (τo) calculated fluorescence life time, μ12(D) the dipole 

moment transition, (Ef) energy yield of fluorescence, (Kr) the radia-
tive decay rate, (Kisc) the rate of intersystem crossing, (f) oscillator 
strength, φf fluorescence quantum yield, in different hosts

Sample /matrix ε
L.M−1.
Cm−1 
(104)

σa
(10–16) Cm2

σe
(10–17) Cm2

Λ (cm) τf
(ns)

τ0 
(1/kr)
(ns)

μ12
(D)

Ef Kr 
(109)

s−1

Kisc 
(109)
s−1

F φf

Solgel 1.5 0.6 2,2 0.2 0.6 0.9 3.53 0.31 1.1 0.9 1.74 0.7
PMMA 3.5 1.4 2.6 0.1 0.2 0.4 3.35 0.28 2.8 1.8 1.33 0.6
(MMA/DEGDMA) 3.5 1.3 2.4 0.1 0.2 0.4 2.96 0.23 2.6 1.6 1.02 0.5
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input pumping powers 5 mJ, 10 mJ, 20 mJ as showed in 
Fig. 3A−C.

By pumping using 355 nm  3rdrd harmonic Nd: YAG pulsed 
laser with λex = 355 nm excitation wavelength at different pow-
ers intensity 5 mJ, 10 mJ, and 20 mJ. The emission intensity of 
ASE peak wavelength of the dye in sol gel matrix (λf = 550 nm) 
showed a large red shift from that of the dye in PMMA 
(λf = 475 nm) and (MMA/DEGDMA) matrix (λf = 480 nm) 
as in Fig. 3.  Figure 3 showed the emission intensity of the 
dye in solid hosts at different input power at 5, 10 and 20 mJ. 
The increasing of the peak intensity of ASE of the dye may be 
attributed to the increasing of the number of excited molecules 
(increase the population of S1 state) which yields more emit-
ted photons. These changes in wavelengths may be due to the 
interaction of the structure of the two different dyes molecules 
with different solid matrices as shown in Fig. 3.

The photostability, as an important photochemical param-
eter, was studied by the evaluation of the output fluorescence 
as a function of number of pulses in the same position of the 
samples as outlined in Fig. 4. This study was carried out for  
the samples of the dyes which the repetition rate of 355 nm 
Nd: YAG laser with 8 ns pulse duration was kept at (10 Hz) 
and the energy was kept constant at (10 mJ/pulse). The out-
put energy gradually decreased due to the photodegradation 
progressive and thermo-degradation of the dye’s molecules. 
This decreasing occurred at a faster rate for the dyes in poly-
mer than in sol gel, and the peak ASE dropped to 53%, 48% 
and 45% of the initial ASE of the dye in sol–gel, PMMA and  
(MMA/DEGDMA) Co-PMMA, respectively, by pumping with  
355 nm  3rd harmonic Nd: YAG laser at 10 mJ with repetition 
rate of 10 Hz after 55,000 pulses. Since the mechanism of 
photodegradation occurs by the interaction molecules of the 

dye in the excited state with other species such as impurities, 
other dye molecules and singlet oxygen. Through the process 
of doping dyes into a solid medium, the photochemical path-
ways including bimolecular reactions can be suppressed by 
caging or trapping the dye within a solid host [41].

The improved photostability of the dyes within solid  
hosts has been attributed for caging and molecules immobi-
lizing of the dye, minimizing thereby excited-state interac-
tion with other species including molecular oxygen. So, the 
dye photodegradation in a solid host depends on the dye’s 
molecule nature, the host composition and structure, the host 
impurities as well as presence of molecular oxygen. Another 
possible factor that may explains the reduced rate of degra-
dation in the rigid matrices may be that the dyes molecules 
are more tightly confined within the pores of the matrix, 
limiting rotational and translational freedom. A mobile 
molecule, as in solution, will be more likely to encounter 
an oxygen molecule and undergo degradation. Less free-
dom, as defined by the restrictive pores of the matrix, may 
make the dye molecules less likely to interact with molecular 
oxygen leading to photodegradation or molecular oxygen 
fluorescence quenching [41]. The micro-viscosity environ-
ment around dye molecules in the solid matrix affects their 
photodegradation. The net photo deterioration would be 
slow if the irradiated molecules were swiftly replaced by 
fresh molecules. As a result, photo degradation in sol–gel 
samples is negligible, with the longest half-life values. On 
the other hand, photo degradation occurs at a faster pace in 
the copolymer samples. This is because dye molecules in 
polymer samples are surrounded only by polymer matrix 
with very little solvent around them, whereas dye mol-
ecules in sol–gel matrix are rapidly replenished because 

Fig. 3  (A, B): A) Emission intensities at input pumping power 5 mJ, and B) The output powers at different input pumping powers 5 mJ, 10 mJ, 20 mJ  
of the dye in PMMA, Co-PMMA(MMA/DEGDMA), and sol–gel with excited wavelength 355 nm by  3rdrd harmonic Nd:YAG pulsed laser
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sol–gel samples contain ethylene glycol, which may aid in 
the mobility of the embedded dye molecules, resulting in 
minimal photodegradation and the longest half-life values.

Conclusion

The optical absorption and emission properties of  2- 
(acetoxymethyl)-6-(1,2,4-triazinylaminodihydroquinazolinyl) 
tetrahydropyran dye  have been studied in different solid hosts 
such as sol–gel, PMMA and DEGDMA copolymer. Their 
respective spectroscopic and photophysical parameters meet 
the best requirements for a good laser dye such as high molar 
absorption coefficients at the wavelength of the pump laser, 
broad spectral region of fluorescence and high fluorescence 
quantum yield, short fluorescence decay time, large Stokes' 
shift, little overlap of the fluorescence and triplet absorption 
spectral regions, photochemical stability. Pumping the sam-
ples using  3rd harmonic Nd: YAG laser (λex = 355 nm) showed 
different emission wavelength of ASE peak. It was nearly in 
sol gel matrix (λf = 550 nm), in PMMA (λf = 475 nm) and 
(MMA/DEGDMA) copolymer (λf = 480 nm). The nature of 
solid host has significant effect on spectroscopic properties of 
dye. The new dye exhibited good photostability. It decreased 
to 53%, 48% and 45% of the initial ASE of the dye in sol–gel, 
PMMA and DEGDMA copolymer, respectively, after pump-
ing with 355 nm  3rd harmonic Nd: YAG laser of 8 ns pulse 
duration, with a repetition rate (10 Hz). The energy was kept 
constant at (10 mJ/pulse) after 55,000 pulses.
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