
Using kernelized partial canonical correlation

analysis to study directly coupled side chains

and allostery in small G proteins

Laleh Soltan Ghoraie1,*, Forbes Burkowski1 and Mu Zhu2

1Department of Computer Science and 2Department of Statistics and Actuarial Science, University of Waterloo,

Waterloo, ON, Canada

*To whom correspondence should be addressed.

Abstract

Motivation: Inferring structural dependencies among a protein’s side chains helps us

understand their coupled motions. It is known that coupled fluctuations can reveal pathways of

communication used for information propagation in a molecule. Side-chain conformations are

commonly represented by multivariate angular variables, but existing partial correlation methods

that can be applied to this inference task are not capable of handling multivariate angular data.

We propose a novel method to infer direct couplings from this type of data, and show

that this method is useful for identifying functional regions and their interactions in allosteric

proteins.

Results: We developed a novel extension of canonical correlation analysis (CCA), which we call

‘kernelized partial CCA’ (or simply KPCCA), and used it to infer direct couplings between side

chains, while disentangling these couplings from indirect ones. Using the conformational informa-

tion and fluctuations of the inactive structure alone for allosteric proteins in the Ras and other Ras-

like families, our method identified allosterically important residues not only as strongly coupled

ones but also in densely connected regions of the interaction graph formed by the inferred cou-

plings. Our results were in good agreement with other empirical findings. By studying distinct

members of the Ras, Rho and Rab sub-families, we show further that KPCCA was capable of infer-

ring common allosteric characteristics in the small G protein super-family.

Availability and implementation: https://github.com/lsgh/ismb15

Contact: lsoltang@uwaterloo.ca

1 Introduction

Predicting allosteric regions in proteins and understanding their

interaction mechanisms are challenging problems in bioinformatics.

It is common to mainly identify backbone motions responsible for

the allosteric behaviour of proteins. However, recent studies have

not only highlighted the commonly neglected role of side-chain fluc-

tuations in information transmission within a molecule (DuBay

et al., 2011), but also emphasized the presence of allostery in pro-

teins with minimal backbone motions (Tsai et al., 2008). Moreover,

recent discoveries by X-ray crystallography reveal that alternate

side-chain conformations are more prevalent than previously

thought (Lang et al., 2010; van den Bedem et al., 2009). These find-

ings further accentuate the importance of a thorough study of the

role played by side-chains in allostery (DuBay et al., 2011; van den

Bedem et al., 2013).

Intrinsic networks of correlated residues are known to play an

important role in the propagation of information during an allo-

steric event. Identifying networks of directly coupled allosteric resi-

dues is thus of crucial importance for understanding the allosteric

mechanism and interaction paths in a molecule. Common correl-

ation-based analyses, however, cannot disentangle causal (or direct)

correlations from transitive (or indirect) ones (Morcos et al., 2011).

To this effect, the statistical concept of partial correlation, a condi-

tional dependence measure between two variables given all other

variables, is more appropriate for inferring direct couplings.

Existing methods based on the partial correlation such as the graph-

ical LASSO (GLASSO; Friedman et al., 2008), on the other hand,

often assume that the data are generated from a multivariate normal

distribution—although Jones et al. (2012) also applied it to binary

variables. This is a restrictive assumption for many applications
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such as the one discussed in this paper. In particular, side-chain con-

formations are commonly modelled by multidimensional angular

variables, for which the normal distribution is not a good fit.

Another challenge is how to quantify correlations between two

multidimensional random variables. Here, a useful statistical tool

is canonical correlation analysis (CCA; Hotelling, 1936). We de-

veloped a novel extension of CCA by incorporating partial correl-

ation and by using a multivariate von-Mises kernel function

(Mardia et al., 2008) to capture similarities between two multidi-

mensional angular variables.

We tested our method on a number of well-studied allosteric

proteins from the Ras, Rho and Rab sub-families of the small G pro-

tein super-family. While the sequence similarity within a sub-family

may be relatively high (50–55%), members of two different sub-

families tend to share low (�30%) sequence identity (Takai et al.,

2001). Despite the low similarity and having distinct functions, 3D

structural analysis of these proteins has revealed common character-

istics. For example, they cycle between two inter-convertible forms

(Raimondi et al., 2011; Takai et al., 2001; Wennerberg et al.,

2005)—the inactive form [bound to guanosine diphosphate (GDP)]

and the active form [bound to guanosine triphosphate (GTP)].

Furthermore, during this cycle, all of the small G proteins undergo

major conformational changes in two common regions, referred to

as Switch I and Switch II (see Fig. 1) in the literature (Grizot et al.,

2001; Milburn et al., 1990; Scheffzek et al., 1995).

Our method successfully identified the aforementioned allosteric

regions in these test cases. In each case, residues belonging to these

regions are specifically involved in the strongest couplings and are

among the highest-degree nodes in the interaction graph formed by

the inferred couplings. Furthermore, allosteric and binding sites in

these test cases are connected in the interaction graphs as well. This

means that, by studying side-chain fluctuations, our method can

infer pathways between these sites and shed light on how informa-

tion propagates between these functionally important residues.

It is worthwhile to note that we obtained our results by using in-

formation from only the inactive (GDP-bound) structure of each

allosteric protein. Most methods for studying allostery use both the

active and the inactive structures. However, in many situations, not

both structures are readily available. We think our method can pro-

vide especially valuable information in these types of situations.

2 Methods

Our method for inferring direct couplings comprises a few funda-

mental components. First, we rely on the mathematical notion of the

partial correlation to measure direct couplings (Section 2.1). Second,

we use CCA to quantify the notion of correlation (more specifically,

partial correlation) for multivariate data (Section 2.2). Third, we use

a specific kernel function—the von-Mises kernel—to measure simi-

larity between two sets of conformational variables expressed in

terms of dihedral angles (Sections 2.4, 2.5.2).

2.1 Direct coupling and partial correlation
If variable x is correlated with a set of variables z ¼ ðz1; z2; . . . ; zdÞT

and so is y, a transitive correlation requires that x be also correlated

with y. For direct couplings between residues, we are interested in

the direct correlation between x and y, not the kind of transitive cor-

relations between them. In many applications, computing direct

couplings between residues is crucial (Jones et al., 2012; Morcos

et al., 2011).

The ‘partial correlation’ between x and y is a measure of their de-

pendence after having removed the effect of z. It can be computed as

follows. First, we respectively regress both x and y onto z, that is,

we fit the following models to x and y:

x ¼ b0 þ b1z1 þ . . . þ bdzd þ ex;

y ¼ c0 þ c1z1 þ . . . þ cdzd þ ey:

Let bbj and bc j denote the estimated regression coefficients, for

j ¼ 0;1; 2; . . . ;d. Let rx and ry denote the residuals from these re-

gression models, i.e.

rx ¼ x� ðbb0 þ bb1z1 þ . . . þ bbdzdÞ;

ry ¼ y� ðbc0 þbc1z1 þ . . . þbcdzdÞ:

The partial correlation between x and y is the usual Pearson correla-

tion between rx and ry.

2.2 Canonical correlation analysis (CCA)
As indicated above, if both x and y are univariate random vari-

ables, we can use their usual Pearson correlation to measure

their marginal association, or their partial correlation to measure

their direct association. But what if both of them are multivariate

random variables? Moreover, what if they have different dimen-

sions, e.g. x ¼ ðx1; . . . ;xpÞT and y ¼ ðy1; . . . ; yqÞT for some p 6¼ q?

One way to come up with a single numeric measure of the

association between two multivariate variables x 2 Rp and y 2 Rq is

to compute the quantity,

qðx; yÞ � max
u2Rp ;v2Rq

CorrðuTx; vTyÞ; (1)

sometimes referred to as the canonical correlation coefficient be-

tween x and y. More specifically, since

CorrðuTx; vTyÞ ¼ CovðuTx; vTyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðuTxÞVarðvTyÞ

p
¼ uT

Covðx; yÞvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½uTVarðxÞu�½vTVarðyÞv�

p ;

the maximization problem in Equation (1) is equivalent to

max
u2Rp ;v2Rq

uT½Covðx; yÞ�v; (2)

Fig. 1. Superimposed 3D structures of active and inactive H-Ras. Major con-

formational changes are known to occur in the Switch I and Switch II regions

during an allosteric event
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subject to the constraints

uT½VarðxÞ�u ¼ 1 and vT½VarðyÞ�v ¼ 1: (3)

Given a dataset, fðxi; yiÞ : i ¼ 1; 2; . . . ;ng, where xi 2 Rp and yi 2 Rq,

let

X ¼

xT
1

..
.

xT
n

2664
3775

n�p

and Y ¼

yT
1

..
.

yT
n

2664
3775

n�q

be the usual data matrices, respectively stacking n samples of x and

y as row vectors. If both X and Y are centered so that each column

has mean zero, then the sample estimates of VarðxÞ, VarðyÞ and Cov

ðx; yÞ are simply

dVarðxÞ ¼ 1

n

Xn

i¼1

xix
T
i ¼

1

n
XTX;

dVarðyÞ ¼ 1

n

Xn

i¼1

yiy
T
i ¼

1

n
YTY;

dCovðx; yÞ ¼ 1

n

Xn

i¼1

xiy
T
i ¼

1

n
XTY:

Hence, the empirical estimate of the canonical correlation

coefficient given in Equation (1) can be obtained by solving the

maximization problem (2)–(3) using the three sample estimates

above, i.e.

bqðx; yÞ ¼ max
uTXTXu¼1

vTYTYv¼1

uTXTYv: (4)

The maximization problem in Equation (4) is well-known to be a

generalized eigenvalue problem (see, e.g. Shawe-Taylor et al., 2004),

and can be solved in many scientific computing platforms, including

MATLAB.

2.3 Partial CCA
If, instead, we are interested in a single numeric measure of the dir-

ect association between x and y, we can use the same idea as that of

the partial correlation (Section 2.1). That is, we can first remove the

effect of z from both of them, before computing their canonical cor-

relation coefficient. More specifically, let

Z ¼

zT
1

..
.

zT
n

2664
3775

n�d

:

We simply compute (4) using

Xˇ ¼ X� ZðZTZÞ�1ZTX and

Yˇ ¼ Y� ZðZTZÞ�1ZTY

instead of the original data matrices X and Y. We refer to the result-

ing estimate,

bqðx; yjzÞ ¼ max
uT X̌TX̌ u¼1

vT Y̌TY̌ v¼1

uTXˇ TY̌v; (5)

as the partial canonical correlation coefficient between x and y.

2.4 Kernelization of CCA and partial CCA
It is easy to see that, if we reparameterize u ¼ XTa and v ¼ YTh for

some a; h 2 Rn, the sample canonical correlation coefficient [Equa-

tion (4)] can be computed as

bqðx; yÞ ¼ max
aTXXTXXTa¼1

hTYYTYYTh¼1

aTXXTYYTh: (6)

Let KX ¼ XXT ¼

xT
1

..
.

xT
n

2664
3775 x1 . . . xn½ � ¼

xT
1x1 xT

1x2 . . . xT
1xn

xT
2x1 xT

2x2 . . . xT
2xn

..
.

..
. . .

.

..
.

xT
nx1 xT

nx2 . . . xT
nxn

26666664

37777775
be an n�n matrix whose (i, j)-th entry is equal to xT

i xj, the inner-

product between observations xi and xj, and likewise for KY . Then,

Equation (6) can be written as

bqðx; yÞ ¼ max
aTK2

X
a¼1

hTK2
Y

h¼1

aTKXKYh: (7)

This shows that CCA can easily be ‘kernelized’ (see, e.g. Shawe-

Taylor et al., 2004)—simply replace the inner-products, xT
i xj and

yT
i yj, with Kðxi; xjÞ and Kðyi; yjÞ, for some kernel function Kð�; �Þ.

When a different kernel function is used in Equation (7) other

than the usual inner-product, we will use the notation, bqKðx; yÞ, to

refer to the quantity in Equation (7). Clearly, the same argument

applies to sample estimate of the partial canonical correlation coeffi-

cient [Equation (5)] as well, that is, the quantity bqðx; yjzÞ can be ob-

tained from Equation (7), too, by simply letting KX ¼ Xˇ Xˇ T and

KY ¼ YˇY̌
T
. Similarly, when a different kernel function is used other

than the usual inner-product, we will use the notation, bqKðx; yjzÞ, to

distinguish it from bqðx; yjzÞ. Table 1 summarizes our notations.

A technical detail, which we largely have suppressed in our ex-

position here, is that, in Equation (7), it is necessary to add a regu-

larization term such as kI to both K2
X and K2

Y in the constraints to

avoid an otherwise degenerate solution.

2.5 Application of KPCCA to the study of allostery
In this article, we use Kernelized Partial CCA (or simply KPCCA) to

quantify the direct coupling between pairs of residues and study the

allosteric behaviour of proteins. Let m denote the number of resi-

dues in a given protein. For any given pair of residues 1� a;b�m,

we let

• x be the vector of p dihedral angles describing the side-chain con-

formation of residue a;
• y be the vector of q dihedral angles describing the side-chain con-

formation of residue b; and
• z be the vector of d dihedral angles describing the side-chain con-

formations of all other residues.

In general, 0�p; q�4, depending on the type of amino acids for

the two residues, whereas d is much larger. When we say that

we use KPCCA, we mean that we use the quantity, bqKðx; yjzÞ (see

Table 1), to quantify how strongly the two residues a and b are dir-

ectly coupled. We do this for all mðm� 1Þ=2 pairs of residues. In

order to compute bqKðx; yjzÞ, we need

• multiple observations for x, y and z, that is, different conform-

ations of the same protein; and

i126 L.Soltan Ghoraie et al.



• an appropriate kernel function Kð�; �Þ for measuring the similarity of

two different conformations (expressed in terms of dihedral angles).

In the next three subsections, we explain in more detail how we

addressed these specific issues.

2.5.1 Generation of a conformational ensemble

As mentioned earlier (Section 1), a recent study has highlighted the

role of side-chain fluctuations alone in information propagation

within ‘natively-folded’ proteins (DuBay et al., 2011). To conduct

such a study, one requires a heterogeneous dataset (or ensemble) of

protein structures, in which the source of diversity among the differ-

ent structures comes from alternate side-chain conformations alone,

while the backbone is held fixed. Commonly used methods for gen-

erating such datasets include Monte Carlo (MC) and molecular dy-

namics (MD). The common practice is to introduce a fluctuation or

structural change that in a real environment may be caused by heat

or other environmental factors. The introduced change can be an

amino-acid mutation or a small change in dihedral angles. The fluc-

tuation stimulates a response from the system (molecule) accord-

ingly. The simulation techniques approximate the final stabilized

structure that would be a candidate member for the ensemble of

conformations.

We applied a different (and much more efficient) approach to gen-

erate the required protein ensembles for our study, by using two state-

of-the-art and fast side-chain prediction (SCP) algorithms, namely,

SCWRL (Krivov et al., 2009) and TreePack (Xu, 2005). Although

this approach is different from the commonly used simulation meth-

ods, it follows the same principles. For each given protein of m resi-

dues, we produced an ensemble consisting of n � ½mðm� 1Þ�=2
structures, as follows. First, we randomly selected 20% of the side

chains and set each of their conformations to a randomly chosen

rotamer from the backbone-dependent rotamer library provided

by Dunbrack et al. (1993). This step introduced fluctuations to the

protein’s conformation. Then, the rest of the side chains were

packed by SCWRL or TreePack, and the final structure was added

to the ensemble. Essentially, this amounted to solving the side-

chain packing problem (a complex optimization problem known

to have many local solutions) with many different initial values in

order to create a diverse ensemble. This step simulated the re-

sponse of the system to the fluctuations introduced in the first step.

We believe using SCP methods is a reasonable and efficient alterna-

tive for data (ensemble) generation, as long as we focus on allo-

steric effects caused mainly by side-chain fluctuations alone (as

opposed to backbone movements).

2.5.2 Weighted Von-Mises kernel function

For xi;xj 2 Rp, we used the following kernel function to perform

KPCCA (see Section 2.4),

Kðxi; xjÞ ¼ wiwj

Yp
t¼1

exp jt cosðxit � xjtÞ
� �

; (8)

and likewise for yi; yj 2 Rq. This is based on the multivariate von-

Mises distribution (Mardia et al., 2008) and treating the dihedral

angles as if they were independent.

An angular random variable x 2 Rp is said to follow the multi-

variate von-Mises distribution if it has density function,

f ðx; l;j;KÞ ¼ 1

Zðj;KÞ exp jTcðxÞ þ sTðxÞK sðxÞ
2

� �
;

where

ctðxÞ � cosðxt � ltÞ and stðxÞ � sinðxt � ltÞ
for t ¼ 1; 2; . . . ; p, and Zðj;KÞ is a normalizing constant. The par-

ameter l 2 Rp describes the location, i.e. the mean (or center), and

the parameter j 2 Rp (j > 0) describes the scale, i.e. the spread (or

concentration). The parameter, K ¼ ½kst� 2 Rp�p is a matrix whose

diagonal elements are zero (Kss ¼ 0) and whose off-diagonal elem-

ents Kst capture the correlation between xs and xt. Setting Kst ¼ 0 ig-

nores the correlation between xs and xt. The multivariate von-Mises

distribution frequently has been used (e.g. Mardia et al., 2007,

2012) as an appropriate tool for modelling angular variables that

describe residue conformations in proteins.

We also introduced weights wi, wj in our kernel function

[Equation (8)]. These weights were set to be inversely proportional

to the energies of the two structures, i and j, in our ensemble

(Section 2.5.1). This allows structures with lower energies—i.e. the

ones that are more stable in our ensemble—to contribute more in-

formation to our overall procedure.

2.5.3 Choice of jt

The kernel function (8) contains p concentration parameters,

j1; . . . ; jp, one for each dihedral angle. An advantage of the von

Mises kernel is that these concentration parameters can be set to re-

flect the intrinsic nature of side-chains dihedral angles. For example,

the first two dihedral angles are known to undergo more restricted

motions, while the third and fourth have more freedom of move-

ment. Hence, we assigned higher concentration parameters to the

first two angles (j1 ¼ j2 ¼ 8) to allow less freedom in motion, and

lower concentration parameters to the 3rd and 4th angles

(j3 ¼ 4; j4 ¼ 2) to allow more freedom of movement.

The von-Mises kernel can be thought of as the Gaussian kernel

(or radial basis kernel) for angular data. To see this, notice that,

using the Taylor approximation, cosðxÞ 	 1� x2=2, we can write

exp jt cosðxit � xjtÞ
� �

	 exp jt �
jtðxit � xjtÞ2

2

" #

¼ ðejt Þexp �ðxit � xjtÞ2

2=jt

" #
:

(9)

On the other hand, the corresponding Gaussian (or radial basis)

kernel is given by

Kðxit;xjtÞ ¼ exp �ðxit � xjtÞ2

2r2
t

" #
:

Since ejt is a constant not depending on either input to the kernel

function, we can see that Equation (9) is equivalent to a Gaussian

(or radial basis) kernel with ‘standard deviation unit’

rt ¼

ffiffiffiffiffi
1

jt

s
or rt ¼

ffiffiffiffiffi
1

jt

s
� 360




2p
: (10)

Therefore, our choices of j1 ¼ j2 ¼ 8; j3 ¼ 4 and j4 ¼ 2

roughly correspond to using ‘standard deviation units’ of 20


; 30




Table 1. Summary of notations

Notation Meaning Section

q̂ðx; yÞ CCA 2.2

q̂ðx; yjzÞ Partial CCA 2.3

q̂Kðx; yÞ Kernelized CCA 2.4

q̂Kðx; yjzÞ Kernelized Partial CCA 2.4
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and 40



in the corresponding Gaussian kernel (see Table 2). A side-

chain prediction is often deemed successful if the predicted dihedral

angle is within 40



of the true angle (Krivov et al., 2009). Thus, our

choice of j4 agreed with this convention, and we used larger values

for j3;j2; j1 to permit less movement for the lower dihedral angles.

3 Results and discussion

We tested our method on a number of well-studied Ras and Ras-like

proteins (see Table 3). They have been of special interest due to their

diverse range of functions. The inactive and active structures of

many family members have been crystallized and are known.

We performed both quantitative and qualitative comparisons of

our results with those obtained by the Contact Rearrangement

Network (CRN; Daily et al., 2008) and by the GLASSO (Soltan

Ghoraie et al., 2015). For an allosteric protein, the CRN method

generates networks of allosteric pathways by calculating significant

differences in the residue-residue contact network derived from the

inactive structure and that derived from the active structure.

Therefore, it provides a direct and model-free analysis of both struc-

tures (Daily et al., 2008). The GLASSO is a relatively new statistical

method, which we have used in an earlier study to extract direct

couplings between residues, but its application required that we

work with discrete conformation variables rather than angular vari-

ables that describe the conformations more directly (more details in

Section 3.2). We implemented the KPCCA in MATLAB using the

Kernel Methods Toolbox (Vaerenbergh, 2010).

All three methods’ outputs consisted of a list of coupled residues,

each ranked by a score indicating their coupling strength. The quan-

titative comparison was performed using the receiver-operating

characteristic (ROC) curve. Treating the list of CRN results as

‘ground truths’, the Area Under the ROC Curve (AUC) is a numeric

summary of how well the ranked list produced by the KPCCA or by

the GLASSO matched against the CRN findings (see Table 3). These

AUC values show quite conclusively that KPCCA’s detection of allo-

steric couplings is significantly better than random, and that there is

a good deal of agreement between our results and those from the

CRN. This is a significant finding considering that the CRN relies

on structural information of both the inactive and the active struc-

ture of an allosteric protein, while we have analysed the dynamics of

the side chains in the inactive structure alone.

Furthermore, we evaluated our results qualitatively (see Section

3.1 below) by visualizing them as interaction graphs, and comparing

them to the interaction graphs generated by the CRNs and by the

GLASSO. The inferred couplings for each test case were visualized

as a 3D network graph superimposed onto the 3D structure of the

protein itself. All 3D molecular visualizations and graphs were pro-

duced using the StructBio package (Burkowski, 2014) for the soft-

ware, Chimera (Pettersen et al., 2004). For each coupling, nodes

were placed at the a-carbon for each of the involved residues and

edges were drawn between them. We used two different cut-offs to

threshold the top-ranked couplings when generating the interaction

graphs, and studied a small subset of these couplings in more detail.

The first threshold was equal to the number of couplings identified

by the CRN (Daily et al., 2008) for each individual test case, so that

we could make a fair comparison. The second threshold was 100 for

all test cases, and used for generating 2D graphs (Fig. 3), so that con-

nections between residues in important regions could be shown

more clearly. It should be noted that both types of cut-offs allowed

only a small subset of all the couplings (	 0.6–1%) to be shown.

From these graphs, we noticed that the top-ranked couplings often

involved allosterically crucial residues (more details in Section 3.1).

Moreover, these allosterically important residues often appeared as

high-degree nodes in the graphs; sometimes, they could be seen to

act as hubs connecting the allosteric region to other functionally im-

portant parts of the protein, such as the binding site.

Both our quantitative and qualitative results indicated that the

KPCCA outperformed the GLASSO in that it was able to capture

couplings that correspond to more significant connections in the

crucial regions of the test cases. This confirms that, to infer direct

residue-residue couplings from the same conformational data, the

KPCCA—which facilitates data modelling by continuous, multivari-

ate angular variables—is more accurate than the GLASSO. In some

cases, such as Rheb (Table 3), although we noticed a smaller AUC

value for the KPCCA (indicating that the GLASSO had slightly bet-

ter agreement with the CRN), the interaction graphs still showed

that the KPCCA identified the crucial residues more effectively (see,

e.g. Figs 4, 5 and more discussions in Section 3.2).

3.1 Small G proteins
The members of this super-family are structurally categorized into

five sub-families: Ras (Section 3.1.1), Rho (Section 3.1.2), Rab

(Section 3.1.3), Sar1/Arf and Ran. Both NMR and crystallographic

analyses have shown that members of different sub-families act as

molecular switches that cycle between on (active) and off (inactive)

states (Raimondi et al., 2011), and that they share a common top-

ology in the GDP/GTP binding domain (Takai et al., 2001). In this

section, we highlight our findings for a few representative and well-

studied members of these sub-families.

3.1.1 Ras sub-family

Members from the Ras subfamily are the primary members of the

super-family; they play a critical role in human oncogenesis

(Wennerberg et al., 2005). When activated, they regulate cell prolif-

eration and survival through gene expression (Takai et al., 2001;

Table 2. Conversion Between jt And rt [Equation (10)]

Dihedral angle rt (degrees)

(t) jt One decimal Nearest 10th

1st 8 20:3



20



2nd 8 20:3



20



3rd 4 28:6



30



4th 2 40:5



40



Table 3. Allosteric proteins from three sub-families of the small G

protein super-family with PDB (Berman et al., 2000) IDs of active

and inactive structures*

Sub PDB ID AUC against CRN

Family Protein Inactive Active KPCCA GLASSO

Ras H-Ras 4Q21 6Q21 0.796 0.776

Rap2A 1KAO 2RAP 0.693 0.677

Rheb 1XTQ 1XTS 0.699 0.711

Rho RhoA 1FTN 1A2B 0.750 0.719

Rac1 1HH4(A) 1MH1 0.672 0.594

Cdc42 1AN0 1NF3 0.681 0.675

Rab Sec4 1G16 1G17 0.676 0.683

Ypt7p 1KY3 1KY2 0.717 0.666

*Active structure: bound to GTP. Inactive structure: bound to GDP.
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Wennerberg et al., 2005). We experimented with three members of

this sub-family: H-Ras, Rap2A and Rheb (see Table 3). We used the

software, Blastp (protein–protein BLAST; http://blast.ncbi.nlm.nih.

gov/Blast.cgi), to perform pairwise sequence alignment between the

test cases. The sequences of Rap2A and Rheb respectively shared 49

and 36% amino-acid identity with H-Ras. The regions that undergo

major conformational changes in H-Ras have been identified

(Milburn et al., 1990) as Switch I (residues 30–38) and Switch II

(residues 60–73); see Figure 1. Switch II is known to be directly

involved in switching the protein from inactive to active status (Kidd

et al., 2009). Residues residing in the binding site are residues 28–

35, 12–19, 145–147 and 116–120. Using the Rosetta software for

structural prediction (Rohl et al., 2004), Kidd et al. (2009) obtained

strong correlations in Switch II and the hydrophobic core, which is

conserved in the Ras family, though they did not report connectivity

between the two Switches. The CRN for H-Ras generated using

both active and inactive structures contained 75 couplings (Fig. 2a).

The interaction graph based on the top 75 couplings inferred by the

KPCCA is shown in Figure 2(b); it clearly shows that strong cou-

plings connected the two Switches to each other and to the binding

site. In addition, the residues in these two regions are among the

highest-degree nodes in the interaction graph—e.g. the node with

maximum degree of 21 (see Table 4) in the 2D interaction graph

[Fig. 3(a), based on the top 100 couplings] is associated with residue

34 in the Switch I region.

3.1.2 Rho sub-family

The best-studied members of this sub-family are RhoA, Rac1

(Grizot et al., 2001) and Cdc42 (Table 3). Sequence alignment re-

sults from Blastp showed that RhoA, Rac1 and Cdc42 shared 30, 29

and 32% amino-acid identity with H-Ras, respectively, whereas the

amino-acid identity is higher within the sub-family, e.g. 58% be-

tween RhoA and Rac1 and 69% between Rac1 and Cdc42. Like the

Ras family, the Rho proteins also are involved as regulators in cell

cycle progression (cell polarity, movement, shape, and so on) and

gene expression (Wennerberg et al., 2005). The three aforemen-

tioned members are known to be involved in very diverse cellular

processes (Takai et al., 2001; Wennerberg et al., 2005). The CRN

for Rac1 consisted of 63 couplings (Fig. 2c). The edges were mostly

concentrated in the classic Switch regions of this super-family.

Figure 2(d) shows a 3D interaction graph based on the top 63 cou-

plings inferred from the KPCCA; this network included residues 29,

32 and 34 from Switch I as well as residues 69 and 73 from Switch

II. The set of top-ranked couplings also included residues in the C-

terminus (residues 179, 180 and 182) and those from a loop segment

(residues 106–110). These regions were also identified by the CRN.

Figure 3(c) shows a 2D interaction graph formed by the top 100

couplings from the KPCCA; we can see that it is a highly connected

Fig. 2. 3D interaction graphs of H-Ras (top), Rac1 (middle) and Sec4 (bottom),

showing the top 75, 63 and 112 couplings, respectively. These cut-offs are

chosen to be equal to the number of couplings identified by the CRN. The

couplings are mostly seen in the Switch I and Switch II regions (blue) and the

b-sheets close by Left: CRN; Right: KPCCA

Fig. 3. 2D interaction graphs of H-Ras (top), Rac1 (middle) and Sec4 (bottom),

all showing the top 100 couplings. For nodes shaded in grey, darkness is pro-

portional to node degree. For edges, thickness is proportional to coupling

strength. Residues in Switch I are coloured yellow and those in Switch II,

blue. The binding site residues (which do not overlap with Switch I) are high-

lighted in pink and the phosphate-binding loop, orange. The KPCCA (left) pro-

duced more connected networks whereas, for the GLASSO (right), the

inferred couplings are more ‘spread out’ within the molecule
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and concentrated network consisting of a single connected compo-

nent with only 15 residues (see also Table 4).

3.1.3 Rab sub-family

The Rab proteins constitute the largest sub-family in the small G

protein super-family (Garcia-Saez et al., 2006). They are involved in

the regulation of intracellular vesicular trafficking, vesicle forma-

tion, budding and fusion (McCray et al., 2009; Stein et al., 2012;

Wennerberg et al., 2005). For our experiments, we selected the in-

active structures of a few well-known members, such as Rab7, Sec4,

Ypt7p, Rab11b, Rab11a and Rab6b (PDB IDs: 1VG1, 1G16, 1KY3,

2F9L, 4LWZ and 2FE4). The PDB structures for many members of

this family are incomplete in the critical and functional regions, i.e.

the two Switches. To perform our experiments, we used the soft-

ware, MODELLER (http://toolkit.tuebingen.mpg.de/modeller), to

complete their structures (Sali et al., 1995). By comparing the active

and inactive structures, we noticed that, except for Sec4 and Ypt7p,

the others underwent a secondary structural change (from loop to

helix, or vice versa) in the Switch II region during the transition

from inactive to active form. We excluded them from the current

study, which focuses on proteins with minor backbone motions

(Tsai et al., 2008). The common amino acids shared between H-Ras

and (Sec4, Ypt7p) are about (35, 32%), respectively. The CRN for

Sec4 consisted of 112 couplings (Fig. 2e). The interaction graph

based on top-ranked couplings by the KPCCA (Figs 2e and 3e)

showed connections between the two Switches through the edges,

(47,87) and (83,56).

3.1.4 Ran and Arf/Sar1 sub-family

The Ran proteins (Partridge et al., 2009; Scheffzek et al., 1995;

Stewart et al., 1998) are best known for their involvement in nucleo-

cytoplasmic transport of macromolecules (e.g. RNAs, proteins),

whereas members of the Arf family function as regulators of vesicu-

lar transport (Takai et al., 2001; Wennerberg et al., 2005), like the

Rab proteins. Comparing the active and inactive structures of the

best studied members from these families, we noticed that they

underwent drastic conformational changes during the activation

procedure. Calculated RMSDs between the GDP- and GTP-bound

pairs for Ran (PDB IDs: 1BYU-1RRP, 1BYU-1IBR, 3GJ0-1WA5),

Arf1 (PDB ID: 1HUR-1O3Y) and Arf6 (PDB ID: 1E0S-1HFV) were

in the range of approximately 4–14 Å. Hence, these proteins do not

belong to the category characterized by ‘minor backbone motions’

(Tsai et al., 2008) and we excluded them from the current study.

3.2 KPCCA and GLASSO
We have recently applied the GLASSO to infer direct couplings be-

tween side chains (Soltan Ghoraie et al., 2015). The GLASSO is

incapable of handling multivariate angular variables. Thus, for each

structure in the ensemble (which we generated with the same pro-

cedure as what we explained in Section 2.5.1), the conformation of

each side chain (i) is matched against a set of candidate rotamers

(Ri) from the standard rotamer library (Dunbrack et al., 1993), and

encoded using a set of binary random variables, bik. More specific-

ally, for each structure ‘ in the ensemble,

b
ð‘Þ
ik ¼

1; if the conformation of residue iin structure ‘

is ‘‘closest’’ to rotamer k;

0; otherwise;

8>><>>:
for k ¼ 1;2; . . . ; jRij. Using these binary variables, a sample covari-

ance matrix S can be computed as follows. For each residue pair,

(i, j), we compute an jRij � jRjj sub-covariance matrix, Si;j, whose

entries are

Sik;jt � Covðbik; bjtÞ ¼ EðbikbjtÞ � EðbikÞEðbjtÞ;

where each expectation Eð�Þ is estimated empirically by a weighted

sample average, using weights inversely proportional to the energy

of each structure (see also Section 2.5.2). Using S as the input, the

GLASSO estimates a sparse inverse covariance matrix, H. After

removing the entropic bias (more on this below), entries in each sub-

matrix Hi;j are aggregated to form a coupling score for the residue

pair, (i, j).

3.2.1 Comparison

Based on our observations, the KPCCA has the following advan-

tages over the GLASSO:

i. It models side-chain conformations more appropriately with

continuous rather than discrete variables. As we stated above,

one main disadvantage of the GLASSO algorithm was the need

to encode side-chain conformation information using a discrete

rotamer library. By contrast, the KPCCA algorithm facilitates a

more realistic modelling approach, consistent with the intrinsic

nature of conformational data, by allowing us to use continu-

ous, multidimensional angular variables to characterize side-

chain conformations.

ii. It identifies allosteric regions more effectively. Quantitatively,

Table 3 showed that the KPCCA results agreed well with the

CRN ones, and that, in this respect, it either compared favour-

ably to the GLASSO or obtained similar results. The superiority

of the KPCCA becomes more evident from the qualitative com-

parisons based on interaction graphs. In particular, the stron-

gest couplings inferred by the KPCCA are concentrated in the

allosteric regions, whereas couplings inferred by the GLASSO

are more ‘spread out’ within the entire molecule. The GLASSO

often identified couplings between residues that may undergo

concerted motions in the inactive structure but do not necessar-

ily reside in allosteric regions. Some of these residues are located

in semi-rigid secondary structures such as helices; they may res-

ide in or close to the binding site but do not necessarily partici-

pate directly in allosteric events. This can be seen more clearly

in Figure 3, which contains 2D interaction graphs formed by

the top 100 couplings identified by each method for a few repre-

sentative test cases. For Rheb and Sec4, although it is the

GLASSO that appeared to be in better agreement with the CRN

(see Table 3, the AUC values), their respective interaction

graphs lead to the same qualitative conclusion as that in other

cases. Even for these two cases, the KPCCA can be seen to have

identified more dependencies specific to coupled motions during

Table 4. Statistical features of interaction graphs*

No. of

No. of connected Max. Node Avg. Node

Protein Method nodes components (Degree) (Degree)

H-Ras GLASSO 91 12 5 1.176

KPCCA 70 7 21 2.829

Rac1 GLASSO 97 12 7 2.062

KPCCA 15 1 14 13.333

Sec4 GLASSO 100 14 5 2.000

KPCCA 64 9 17 3.125

*Based on graphs formed by the top 100 inferred couplings.

i130 L.Soltan Ghoraie et al.

http://toolkit.tuebingen.mpg.de/modeller


allosteric events (see Fig. 4). In addition, couplings in important

functional regions also tend to emerge earlier (i.e. at higher pos-

itions) in the ranked list of the KPCCA than in that of the

GLASSO, another indication that the KPCCA is better at iden-

tifying regions crucial to function. For example, Figure 5 con-

tains 2D interaction graphs for Rheb using a cut-off

threshold<100, and shows that the KPCCA has identified

more residues in the functionally crucial regions at the top of its

ranked list than has the GLASSO.

iii. Its interaction graphs tend to show better connectivity among

functionally important regions. Another important observation

was that the GLASSO obtained significantly sparser clusters of

residues (see Fig. 3). The increased connectivity among cou-

plings inferred by the KPCCA was a notable advantage; these

connections can potentially explain the mechanism of informa-

tion propagation within the molecule. If interaction pathways

between the allosteric and/or binding sites can be discerned

using an interaction graph based on K top-ranked couplings

from the GLASSO, using top-ranked couplings from the

KPCCA it often can be done with much fewer than K couplings.

Table 4 contains various statistical features showing the overall

connectivity of the interaction graphs produced by the GLASSO

and by the KPCCA for H-Ras, Rac1 and Sec4.

iv. It is less prone to entropic bias. One drawback of using discrete

rotamers to encode conformations is that the results produced

by the GLASSO were biased towards larger amino acids that

naturally have more diverse rotamer conformations. This is

referred to as the ‘entropic bias’ in the literature (e.g. Jones

et al., 2012; Dunn et al., 2008, who also suggested techniques

for its correction). By contrast, the KPCCA does not appear to

suffer from such biases. Figure 6 shows the average number of

available rotamer conformations for residues involved in the

top 1–5, 2–6, . . . , up to the top 300–305 paired couplings, as

computed by the KPCCA and by the GLASSO for H-Ras, Rac1

and Sec4. For the GLASSO, the rankings were based on scores

after bias correction. Although no correction was introduced

for the KPCCA, its results do not show significant bias.

4 Conclusion

We have proposed a novel extension of CCA, namely KPCCA, to

quantify direct correlations between multidimensional angular data.

Existing methods for inferring direct correlations do not handle data

of this type, which are common in structural bioinformatics, where

side-chain conformations of proteins are characterized by a number

of dihedral angles. Using information about side-chain fluctuations

in the inactive structure alone, we are able to identify common,

allosterically crucial regions (e.g. Switch I and Switch II) in the Ras,

Rho and Rab sub-families of small G proteins. Residues in these

allosteric regions appear in the strongest couplings inferred by our

method and in the densest regions of the corresponding interaction

graph. Furthermore, allosteric sites and binding sites are connected

Fig. 6. X-axis: Rank order of the inferred couplings (x ¼ 1; 2; . . . ; 300). Y-axis: Average number of available rotamers for residues involved in couplings ranked at

positions x, xþ1, . . . , xþ4 for (a) H-Ras (b) Rac1 (c) Sec4. Red: GLASSO (with bias correction). Blue: KPCCA (without bias correction). The KPCCA does not show

significant bias towards residues with more rotamer alternatives; in fact, the average number of rotamers is lower for the KPCCA than for the GLASSO in general

Fig. 5. 2D interaction graphs for Rheb, using the top 47 couplings (the same

number as identified by the CRN). Residues in Switch I (33–41), Switch II (63–

79) and the phosphate-binding loop (p-loop) are coloured yellow, blue and or-

ange, respectively. The p-loop residues are connected to the Switches in the

CRN. Crucial couplings emerge at higher positions in the ranked list of the

KPCCA (a) than in that of the GLASSO (b)

Fig. 4. 2D interaction graphs for Rheb, using the top 100 couplings. Residues

in Switch I (II) are coloured yellow (blue). (a) KPCCA: The two Switch regions

are directly connected (residue 37 from Switch I with residues 73 and 77 from

Switch II); moreover, Switch I is indirectly connected to Switch II by residue

15 in the phosphate-binding loop (Yu et al., 2005). (b) GLASSO: No connec-

tion between the Switches is identified
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in these graphs, which may explain the mechanism with which allos-

tery occurs in these proteins.

Our analytic framework is modular. In principle, ensembles gener-

ated by other techniques such as MC and/or MD can be used as well.

But currently they are much less efficient. For instance, in one of our

test cases (Rap2A; PDB ID: 1KAO, 167 residues), SCWRL took about

1 second to generate a structure whereas an MC method in Rosetta,

like that described by Kaufman et al. (2010), took as much as 40 se-

conds. Hence, for an ensemble of size ½167� ð167� 1Þ�=2 	 14;000,

our current method took about 4 hours but an MC method would

have taken 160 hours, almost a full week, for a single protein!

In future studies, our proposed analytic framework can be ex-

tended to include backbone dihedral angles as well. This will allow us

to study allosteric behaviours of all protein types, even those that may

undergo drastic backbone motions. The method also can be applied

to other problems in the bioinformatics, e.g. for revealing the ‘hot

spot’ residues in protein–protein interactions by using only the fluctu-

ation information of the ‘unbound’ protein (Ozbek et al., 2013).
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