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Much animal learning is slow, with cumulative changes in behavior driven by reward prediction errors. When the abstract
structure of a problem is known, however, both animals and formal learning models can rapidly attach new items to their
roles within this structure, sometimes in a single trial. Frontal cortex is likely to play a key role in this process. To examine
information seeking and use in a known problem structure, we trained monkeys in an explore/exploit task, requiring the ani-
mal first to test objects for their association with reward, then, once rewarded objects were found, to reselect them on further
trials for further rewards. Many cells in the frontal cortex showed an explore/exploit preference aligned with one-shot learn-
ing in the monkeys’ behavior: the population switched from an explore state to an exploit state after a single trial of learning
but partially maintained the explore state if an error indicated that learning had failed. Binary switch from explore to exploit
was not explained by continuous changes linked to expectancy or prediction error. Explore/exploit preferences were inde-
pendent for two stages of the trial: object selection and receipt of feedback. Within an established task structure, frontal ac-
tivity may control the separate processes of explore and exploit, switching in one trial between the two.
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Significance Statement

Much animal learning is slow, with cumulative changes in behavior driven by reward prediction errors. When the abstract
structure a problem is known, however, both animals and formal learning models can rapidly attach new items to their roles
within this structure. To address transitions in neural activity during one-shot learning, we trained monkeys in an explore/
exploit task using familiar objects and a highly familiar task structure. When learning was rapid, many frontal neurons
showed a binary, one-shot switch between explore and exploit. Within an established task structure, frontal activity may con-
trol the separate operations of exploring alternative objects to establish their current role, then exploiting this knowledge for
further reward.

Introduction
Much animal learning occurs slowly, with prediction errors lead-
ing to incremental changes in the link between actions and their
outcomes (Rescorla and Wagner, 1972; Schultz et al., 1997). A

similar process of incremental change underlies powerful formal
learning models (LeCun et al., 2015; Schmidhuber, 2015).
Animals and formal models are also capable, however, of rapid,
sometimes one-shot learning. When the abstract structure or
schema of a problem is known, new items can rapidly be
attached to their roles within this structure (“variable binding”)
(Smolensky, 1990). Familiar examples include learning to learn
(Harlow, 1949), object-location binding (Behrens et al., 2018),
and meta-learning (Wang et al., 2018). One-shot variable bind-
ing is conspicuous throughout human cognition, endowing
thought and behavior with their characteristic speed, flexibility,
and compositionality (Lake et al., 2017).

Frontal cortex contributes to rapid learning. In a block of tri-
als, frontal population activity shows abrupt changes when new
task rules are adopted (Durstewitz et al., 2010; Emberly and
Seamans, 2020) or object-reward bindings must be reversed
(Bartolo and Averbeck, 2020). Frontal neurons are well known
to encode trial-unique rules, or items to be maintained in
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working memory (Fuster et al., 1982; Miller et al., 1996; Wallis et
al., 2001; Mansouri et al., 2006). Reflecting rapid learning on
each trial, this information indicates how individual decisions
should be taken within a well-learned task structure.

In pioneering studies, Procyk and colleagues (Procyk and
Goldman-Rakic, 2006; Quilodran et al., 2008; Rothe et al., 2011;
Khamassi et al., 2015; Enel et al., 2016) examined one-trial transi-
tion from unknown to known task rules in a spatial selection
task. In this task, monkeys selected different screen locations in
turn, searching for the one location associated with reward
(“explore” trials). Once reward was found, the same location
could be selected on a series of further trials (“exploit” trials) for
further rewards. Monkeys performed this task close to perfectly,
with immediate transition from explore to exploit once the
rewarded location was found. At this transition, spatial selectivity
declined in neurons of dorsolateral frontal cortex (Procyk and
Goldman-Rakic, 2006; but see Khamassi et al., 2015), and
response to feedback decreased in anterior cingulate neurons
(Quilodran et al., 2008).

To extend these findings, and to separate learning frommotor
planning, we designed a similar comparison of explore and
exploit trials in an object selection task. We examined explore/
exploit preferences during two stages of each trial, choice and
feedback. We focused on activity in lateral PFC, with comparison
data from inferior parietal cortex. A previous report of data from
this task focuses on the dynamics of object and location selectiv-
ity within each trial (Kadohisa et al., 2020). Here, separate from
object and location coding, we examine the transition from a

frontal explore to exploit state, including one-shot switches with
successful learning, and maintenance of the explore state when
learning fails.

Human brain imaging suggests that first encounters with a
new problem lead to strong activity in lateral frontal cortex and
other cognitive control regions, which rapidly decreases once the
solution is found (Konishi et al., 1998; Hampshire and Owen,
2006), sometimes accompanied by increasing activity in other
brain regions, including the basal ganglia (Ruge andWolfensteller,
2013). These results suggest rapid transfer of control from frontal
cortex to other regions with task repetition. In contrast to this, we
show bidirectional activity changes in the frontal cell population,
with some cells selectively activating for explore, shifting in one
trial to others selectively activating during exploit. These different
activity patterns, we propose, may contribute to the different com-
putations underlying learning and use of task rules.

Materials and Methods
Subjects and procedure. Data were recorded from 2 male rhesus

monkeys, across a total of 60 daily sessions. Before recordings began,
animals were trained in increasingly complex task versions, with several
months of training in the final version until proficiency was sufficient to
provide stable neurophysiological data. Recordings used a semi-chronic
microdrive system (SC-32, Gray Matter Research, 1.5 mm interelectrode
spacing), with one 32-channel array over lateral frontal cortex (Fig. 1B),
the primary focus of the current report (Monkey A: AP =33.9,
ML =20.3; Monkey B: AP=36.2, ML= 58.1), and another over parietal
cortex (Monkey A: AP=�4.6, ML=50.6; Monkey B: AP=�3.2,

Figure 1. Task overview and recording locations. A, Object selection task, 2-target version. In each session, the animal worked through a series of problems, each consisting of four cycles of
trials (top row). On each trial (bottom row), the monkey touched a single object in a visual display. For each problem, two objects were defined as targets; the monkey was rewarded for select-
ing each target once per cycle, with the cycle ending as soon as both targets had been selected. For each new problem, in the first set of trials (Cycle 1), the monkey selected one object after
another, learning which two objects (targets) were associated with reward. An example cycle consisting of five trials is illustrated in the middle row. In this row, icons for each trial indicate
stimulus display, animal’s choice, and delivery of reward or no reward. Green circles represent targets (not present on actual display). Within a cycle, revisiting a target already selected did not
bring further reward (see fourth trial in example). In each subsequent cycle (Cycles 2-4), the animal could reselect the same targets for further rewards, again avoiding revisits within a cycle.
Thus, Cycle 1 consisted of a series of 2...n trials, continued until the two targets had been found. Cycles 2-4 optimally consisted of just two trials each, one for each target. After four cycles, tar-
gets were redefined for the next problem. Alternate problems used two different 4-object sets, fixed for each animal (object sets for one animal in inset). Equivalent 1-target problems (not
illustrated) had only a single target; the first cycle ended as soon as this single target was found; and optimally, each subsequent cycle consisted of just a single trial on which this same target
was reselected. B, Recording areas in each animal. PS, Principal sulcus; AS, arcuate sulcus.

Achterberg et al. · Explore to Exploit in Monkey PFC J. Neurosci., January 12, 2022 • 42(2):276–287 • 277



ML=47.4). We did not preselect neurons for task-related responses;
instead, we advanced microelectrodes until we could isolate neuronal ac-
tivity before starting the task. The microdrive system interfaced to a mul-
tichannel data acquisition system (Cerebus System, Blackrock
Microsystems). Between recording sessions, electrodes were advance by
a minimum of 62.5mm to ensure recordings of new cells. We amplified
and filtered (300Hz to 10 kHz) the neural activity before using it for off-
line cluster separation and analysis (Offline Sorter, Plexon). Eye position
was sampled at 120Hz using an infrared eye tracking system (Applied
Science Laboratories) and stored for offline analysis. All analyses were
conducted with the Anaconda Python Distribution (Python Software
Foundation, Anaconda) using the packages NumPy (Harris et al., 2020),
pandas (McKinney, 2010), SciPy (Virtanen et al., 2020), Matplotlib
(Hunter, 2007), seaborn (Waskom, 2021), Pingouin (Vallat, 2018), stats-
models (Seabold and Perktold, 2010), IPython (Perez and Granger,
2007), and Jupyter (Kluyver et al., 2016).

At the end of the experiments, animals were deeply anesthetized with
barbiturate and then perfused through the heart with heparinized saline
followed by 10% formaldehyde in saline. The brains were removed for
histology and recording locations confirmed.

All surgeries were aseptic and conducted under general anesthesia.
The experiments were performed in accordance with the Animals
(Scientific Procedures) Act 1986 of the United Kingdom; all procedures
were licensed by a Home Office Project License obtained after review by
Oxford University’s Animal Care and Ethical Review committee, and
were in compliance with the guidelines of the European Community for
the care and use of laboratory animals (EUVD, European Union direc-
tive 86/609/EEC).

Task. In each session, the animal worked through a series of prob-
lems, each consisting of a series of trials organized into four cycles (Fig.
1A, top). Each problem was based on a set of four objects, with the
choice display for each trial containing all four of these, randomly posi-
tioned (Fig. 1A). For each new problem, one or two objects were ran-
domly defined as targets, bringing reward when touched. In a first cycle
of trials (“explore”), the monkey learned by trial and error which objects
were targets. In later cycles (“exploit”), targets could be reselected for
further rewards. Each problem, accordingly, required new object-role
bindings to be learned. For each animal, there were two sets of four
objects, fixed throughout the experiment, and used in alternate problems
in each session.

In the first cycle (Fig. 1A, middle row), the monkey sampled objects
in turn across a series of trials, searching for the rewarded target or tar-
gets. 1-target and 2-target problems were blocked, so the animal knew in
advance how many to discover (mean of 69 1-target and 67 2-target
problems per session). Once targets were found, there followed three
exploit cycles, in which animals were rewarded for reselecting the targets
discovered in Cycle 1. In 2-target problems, the animal was free to select
the two targets in each cycle in either order, but revisiting a target al-
ready selected in this cycle was not rewarded again. All cycles ended as
soon as the single target (1-target problems) or two targets (2-target
problems) had been selected. Optimally, therefore, the explore cycle con-
sisted of a random sequence of object selections, avoiding revisits, until
the single target (mean expected number of trials = 2.50) or two targets
(mean expected number of trials = 3.33) were discovered. Exploit cycles
consisted optimally of just one (1-target problems) or two (2-target
problems) trials.

Details of events on each trial are illustrated in Figure 1A (bottom).
Before the trial began, the screen showed a central white fixation point
(FP) and a surrounding display of 4 black squares (each square 5.7 -
� 5.7 deg visual angle, centered 11.4 deg from fixation). To initiate trial
events, the monkey was required to press and hold down the start key,
and to acquire and hold central fixation (window 7.6� 7.6 deg). At this
point, the FP turned red, and there was a wait period of 0.8-1.2 s, after
which the black squares were replaced by a display (choice array [CH])
of four choice objects. Following a further delay of 1.2-2.0 s, the FP
changed to cyan (GO) to indicate that a response could be made. To
indicate his choice, the animal released the start key and touched one of
the objects (touch required within 1.8 s of GO). After the touch had
been held for 0.35-0.45 s, the selected object was replaced by either a

green (correct target touch) or red (incorrect) square (feedback, FB),
which remained for 0.3 s followed by an intertrial display. If the touch
was correct, a drop of soft food was delivered 0.05-0.15 s after FB offset.
Once a trial had been initiated, it was aborted without reward if the
monkey released the start key or broke fixation before GO. The trial was
also aborted if, after an object had been touched, the touch was not
maintained until FB.

Different intertrial displays indicated transitions within a cycle,
between cycles, and between problems. For trials within a cycle, the
intertrial display was simply the white FP and surrounding black squares
(Fig. 1A), with a minimum period of 0.7-0.9 s required before the next
trial would begin. To indicate the end of a cycle, this display was pre-
ceded by a period of only the white FP, lasting 3.2-3.5 s. To indicate the
end of a problem, the screen blanked for 3.3-3.6 s.

Data analysis. To produce peristimulus time histograms (PSTHs)
(see Figs. 3, 5, 7, 8), we counted spikes in 100ms windows, starting at a
window centered at �200ms from CH or FB and then shifting in 25ms
steps to a final window centered at 475ms. Spike counts in each window
were divided by an estimate of the cell’s mean activity, defined as mean
activity across all conditions in the CH and FB ANOVAs used for cell
selection (see Results). To create the PSTH for each cell, within each
time window, we calculated unweighted mean activity across number of
targets (1, 2)� object set (1, 2)� touched location (1-4).

For all analyses, we excluded problems in which animals failed to
respond on 6 or more trials in a single cycle, suggesting poor task focus.

Results
Behavior
Behavioral data for each animal are summarized in Figure 2, sep-
arately for 1-target (left column) and 2-target (right column)
problems. As noted above, for the explore cycle, optimal per-
formance consisted of a random sequence of object selections,
avoiding revisits, until the single target (mean expected number
of trials = 2.50) or two targets (mean expected number of
trials = 3.33) were discovered. Exploit cycles consisted optimally
of just one (1-target problems) or two (2-target problems) trials.
In 1-target problems, the mean number of trials per cycle was
close to optimal (Fig. 2A, left; data in red, optimal possible per-
formance in blue), indicating rapid, generally one-trial learning.
In 2-target problems (Fig. 2A, right), performance improved
more gradually over cycles, showing slower learning. A more
detailed breakdown of response types is shown in Figure 2B. In
each cycle, the number of correct target selections (red) was by
definition one (1-target problems) or two (2-target problems).
As expected, novel nontarget selections (selection of a nontarget
not previously sampled in this cycle) were frequent in Cycle 1,
occurring in the proportions required by a random search. Rapid
discrimination between targets and nontargets is shown by the
substantial decline in nontarget selections across cycles, clearly
evident in both 1-target and 2-target problems. For each animal,
and for each problem type, ANOVA entering separate mean
data for each session showed a significant decline in nontarget
selections across cycles (all F. 22, p, 0.0001). For 1-target
problems, Tukey HSD tests showed significant differences
between Cycles 1 and 2 (p, 0.001 for each animal), between
Cycles 2 and 3 for just one animal (p= 0.64 and p=0.05, respec-
tively, for Animals A and B), and no difference between Cycles 3
and 4 (both p. 0.60). For 2-target problems, there were signifi-
cant differences between Cycles 1 and 2 and between Cycles 2
and 3 (all p, 0.001), but not between Cycles 3 and 4 (both
p. 0.3). Revisits to an object already sampled in a cycle were
infrequent throughout (Fig. 2B: aqua represents nontarget revis-
its; purple represents target revisits; impossible for 1-target
problems).
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A further analysis of Cycle 1 data (Table 1) confirms this strong
avoidance of objects already sampled. For this analysis, Cycle 1 trials
were broken down according to the number of objects already
sampled, from 0 (first trial of cycle) to 3. The table shows mean per-
centage of trials with revisit to a previously sampled object, com-
pared with expected values for a random selection. In all cases,
revisit percentage was far below the chance expectation, verified by
x 2 tests (all x 2. 2000, p, 0.0001).

Together, these data illustrate a well-estab-
lished task model, incorporating the monkey’s
knowledge of abstract task structure. Within
this model, there was rapid learning, with
strong avoidance of objects already sampled
within a cycle, including rewarded targets, and
from Cycle 2 onwards, excellent discrimination
between targets and nontargets, especially in 1-
target problems.

Prefrontal cells show preference for explore
or exploit
Across 60 task sessions, we recorded activity
from 254 cells (176 from Monkey A and 78
fromMonkey B) in a region spanning the prin-
cipal sulcus and adjacent dorsolateral and ven-
trolateral frontal convexities. Except where
otherwise specified, data were analyzed just
from correct trials (i.e., those on which a cur-
rent target object was selected).

For our first analysis, we asked whether
frontal neurons differentiate the processes of
explore, seeking new information to bind into
the problem structure versus exploit, using
known information to guide behavior. To give
the strongest measure of explore/exploit prefer-
ences, we focused initially on a comparison of
Cycles 1 and 4, combining data from the rap-
idly learned 1-target problems and the more
slowly learned 2-target problems. We analyzed
data from two trial phases (Fig. 1A, bottom
row): choice, the period following onset of the
choice array (CH), and feedback, the period
following onset of feedback (FB). To ensure
unbiased results, we adopted a cross-validated
approach. For each cell, trials were randomly
assigned to one of two datasets. The first data-
set was used for selection of cells (selection
dataset), and the second dataset was used to
validate the results (validation dataset) as
described in the following sections. The selec-
tion dataset only contained data for Cycles 1
and 4, as Cycles 2 and 3 were not used for
selection. On the selection dataset, we per-
formed ANOVA with factors cycle (1, 4) �

number of targets (1, 2) � object set (1,2)� touched location (1-
4). These ANOVAs used data from two 400ms windows, begin-
ning at onset of CH and FB, with a separate ANOVA for each
window. For each analysis window, cells with a significant
(p, 0.05) main effect of cycle were classified as “explore” (spike
rate Cycle 1. 4) or “exploit” (spike rate Cycle 1, 4). These
labels were used simply to distinguish the two groups of cells,
with no implications concerning potential functional signifi-
cance. For each explore or exploit cell, we extracted PSTHs from
the validation dataset. For a more complete view of the data,
these unbiased PSTHs extended across a longer period (�200 to
500ms from event onset). PSTHs for each cell were normalized
and then averaged across cells within each group (see Materials
and Methods). t tests across cells, again using 0-400ms windows,
were used to confirm significant cycle preference in the valida-
tion dataset.

In the selection dataset, for the CH period, the main effect of
cycle was significant in 44 cells (17.3% of total): 18 with a

Figure 2. Behavioral data. Split by animal (rows) and type of problem (columns). A, Mean number of trials per
cycle. B, Trials per cycle broken down into correct target selections (T), novel nontarget selections (selection of a non-
target not previously sampled in this cycle [NT]), repeat nontarget selections (selection of a nontarget previously
sampled in this cycle [NT revisits]), and repeat target selections (T revisits; only possible for 2-target problems).

Table 1. Successful avoidance of reselection in Cycle 1a

Already
sampled

Animal A Animal B

Expected
1-target
problems

2-target
problems

1-target
problems

2-target
problems

0 0% 0% 0% 0% 0%
1 6.4% 5.7% 2.9% 6.2% 25%
2 26.1% 24.4% 12.1% 17% 50%
3 55.5% 54.2% 40.6% 44% 75%
a Separate data for each animal: Percentage of trials with reselection of a previously sampled object, as a
function of number of objects already sampled.
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preference for Cycle 1, 26 for Cycle 4. Mean PSTHs for these
cells, calculated in the validation dataset, are shown in the upper
row of Figure 3, with explore (Cycle 1 preferring) cells in the left
panel, exploit (Cycle 4 preferring) cells on the right. t tests
on the window 0-400 ms from CH onset confirmed signifi-
cant cycle preferences in the validation data (for explore
cells, t(17) = 4.58, p, 0.001; for exploit cells, t(25) = 4.39,
p, 0.001). PSTHs suggest sustained cycle preferences that
began even before CH onset. Notably, however, cells
selected for a cycle preference during CH showed no evi-
dence of a similar preference around FB.

A similar picture is evident for cells with cycle preference at
FB (Fig. 3, bottom row). In the selection dataset, ANOVA on the
FB period showed a significant main effect of cycle in 52 cells
(20.5% of total): 15 with a preference for Cycle 1, 37 for Cycle 4.
PSTHs for the validation dataset suggest sustained cycle prefer-
ences around FB, with t tests confirming significant cycle prefer-
ences in the 0-400ms window (for explore cells, t(14) = 2.94,
p, 0.05; for exploit cells, t(36) = 6.61, p, 0.001). Again, however,
cells selected for a cycle preference during FB showed no evi-
dence of a similar preference around CH.

Explore/exploit (Cycle 1/Cycle 4) preferences were largely sta-
ble across target objects. When ANOVAs on the selection dataset
were repeated separately for each object set, now with an addi-
tional factor of object, only 9% of explore/exploit cells at CH,
and 8% of explore/exploit cells at FB, showed a significant inter-
action (p, 0.05) between cycle and object (average results for
the two stimulus sets).

These initial analyses show that substantial fractions of pre-
frontal cells differentiate the processes of explore and exploit.
Although explore/exploit preferences are seen at both CH and
FB, preferences at these two stages of a trial are unrelated, imply-
ing selectivity for the conjunction of cycle (explore/exploit) and
trial stage (CH/FB).

Temporal cross-generalization of cycle preferences
To confirm that cycle preference is stable within a task phase
(CH, FB) but not across task phases, we used a temporal cross-

generalization analysis. We again randomly assigned trials for
each cell to one of two groups (half A and half B; labels used in
Fig. 4), and for each group of trials, subtracted mean activity in
Cycle 1 from mean activity in Cycle 4. To remove effects of
touched location (1-4) and number of targets (1, 2), we used
unweighted means across these variables. For this analysis, we
used 100ms windows, four windows from onset of CH and four
from onset of FB. For each window, this produced 2 vectors of
254Cycle 4-1 differences, one for each half of the data, where
254 is the number of recorded cells. Correlations between vectors
from the two halves of the data are shown in Figure 4. Strong
correlations within CH and FB periods show that, within each
period, the preference for Cycle 1 versus Cycle 4 was stable;

Figure 3. Validation of explore/exploit effect. Mean normalized spike rate for explore (spike rate Cycle 1. Cycle 4) and exploit (spike rate Cycle 4. Cycle 1) cells, identified at CH and FB
periods. Data are cross-validated, with separate trials used to identify selective cells (selection dataset) and to construct PSTHs (validation dataset). Gray shading represents analysis windows
(CH for CH-selected cells, FB for FB-selected cells).

Figure 4. Temporal structure of explore/exploit preference. For each cell, trials were split
into two groups (half A and B), and within each group of trials, cycle preference (Cycle 4
spike rate minus Cycle 1 spike rate) was calculated in 4� 100 ms windows following onset
of CH and FB. For each time window, this produced two independent vectors of 254 cycle
preferences (one per cell). Data are correlations between half A and half B vectors.
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between periods, however, correlations close to zero show unre-
lated cycle preferences.

One-shot learning: single-cell responses
Having established that patterns of frontal activity differentiate
explore and exploit, we moved on to examine the transition
between these patterns with rapid learning. For this purpose, we
focused on the one-shot learning seen in most 1-target problems.
To mirror this rapid change in behavior, we searched for a simi-
lar one-shot change in the activity of explore/exploit cells. We
focused on the explore and exploit cells identified above, and
examined their detailed behavior during the rapid learning of 1-
target problems. Again, these analyses used just the validation
dataset from Cycles 1 and 4, along with all trials from Cycles 2
and 3.

For the main analysis, we compared activity across Cycles 1-
4. To focus on successful rapid learning, for Cycles 2-4 we
excluded the exceptional cases in which the first response of the
cycle was incorrect. Mean PSTHs for the same four groups of
cells were calculated as before. Results are shown in the solid
lines in Figure 5. Across the four cell groups, the results were
clear-cut, with activity on Cycle 2 immediately switching from
the Cycle 1 to the Cycle 4 pattern. For cells with an explore
(Cycle 1) or exploit (Cycle 4) preference at CH (Fig. 5, top row),
tests on the 400ms window following CH onset showed signifi-
cant differences between Cycle 1 and Cycle 2 (explore cells, t(17)
= 3.91, p=0.001; exploit cells, t(25) = 4.17, p=0.001), but no sig-
nificant differences between Cycles 2-4 (explore cells, F(2,34) =
0.03; exploit cells, F(2,50) = 1.08). For cells with an explore (Cycle
1) or exploit (Cycle 4) preference at FB (Fig. 5, bottom row), sim-
ilar results were obtained in the 400ms window following FB
onset. The difference between Cycles 1 and 2 approached signifi-
cance for explore cells (t(14) = 2.06, p=0.058) and was significant
for exploit cells (t(36) = 7.54, p, 0.001), while differences
between Cycles 2-4 were not significant (explore cells, F(2,28) =
2.26; exploit cells, F(2,72) = 0.25).

In a supplementary analysis, we examined correct trials in
Cycle 2 that followed at least one Cycle 2 error, a pattern suggest-
ing failed learning on Cycle 1 and continued exploration in
Cycle 2. For the two groups of explore cells, activity on these
failed-learning trials resembled activity for Cycle 1 (Fig. 5, dotted
green lines). Comparing failed-learning trials to regular Cycle 2
trials, where the first response was correct (Fig. 5, solid green
lines), showed significant differences for both groups of cells
(CH group, t(17) = 3.66, p, 0.01; FB group, t(14) = 3.19,
p, 0.01). For exploit cells, results were less clear, with no signifi-
cant difference between failed-learning and regular Cycle 2 trials
(CH group, t(25) = 1.57; FB group, t(36) = 0.79), and for FB cells, a
significant difference between failed-learning and Cycle 1 (t(36) =
2.78, p, 0.01). These data show that, if learning was not com-
plete after Cycle 1, the frontal explore state was partially pre-
served into Cycle 2.

One-shot learning: population response
Complementing the analysis of single neurons, we went on to
examine the explore/exploit transition in the population activity
of the entire cell sample of 254 PFC cells. Specifically, we aimed
to quantify the similarity of population activity across the differ-
ent cycles of learning. We constructed a linear discriminant sepa-
rating population activity in Cycles 1 and 4 (Fig. 6A), then
measured where activity in Cycles 2 and 3 (regular trials only, as
above) fell on this discriminant (Fig. 6B). In a supplementary
analysis, as before, we examined the failed-learning trials in
Cycle 2 (i.e., correct trials following at least one Cycle 2 error).

Again, the analysis was conducted separately on activity in
400ms windows following onset of CH and FB. For each win-
dow, as before, trials from Cycles 1 and 4 were randomly divided
into two groups, with one group of trials used to construct the
discriminant (train dataset), and the other to test it (test dataset).
For each neuron, activity from the train dataset was expressed as
deviation from this neuron’s mean firing rate (unweighted mean,
Cycles 1 and 4), scaled by the within-condition SD (unweighted

Figure 5. One-shot learning response of selected cells in PFC. One-target problems: mean normalized spike rates in each cycle. Cycle 1, all correct trials. Cycles 2-4, solid lines indicate correct
trials, excluding cases with preceding error in this cycle. Cycle 2, dotted line indicates correct trials preceded by Cycle 2 error. Cell selection and cross-validation (Cycles 1 and 4 only) as for
Figure 3. Gray shading represents analysis windows (CH for CH-selected cells, FB for FB-selected cells).
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mean of across-trial SDs, Cycles 1 and 4).
Thus, activity in each cycle was described
as a 254-dimensional vector of mean-cen-
tered, scaled firing rates, one per cell. We
calculated the discriminant by simply sub-
tracting the vector for Cycle 1 from the
vector for Cycle 4. Test data from Cycles 1
and 4 were then mean-centered and scaled
in the same way, using means and SDs
from the train data, and projections onto
the discriminant were obtained simply as
the dot product between vectors for these
scaled data and the discriminant. The
same procedure was used for projections
of data from Cycles 3 and 4, along with
failed-learning trials from Cycle 2.

Results are shown in Figure 6C (CH)
and Figure 6D (FB). As predicted, we
found that Cycles 2-4 form one cluster in-
dependent of Cycle 1. Also matching
results from the single-neuron analysis,
failed-learning trials from Cycle 2 were
closer to Cycle 1 than to regular Cycle 2
trials. For statistical testing, we used a per-
mutation approach comparing projections
for pairs of conditions. To compare Cycle
1 (test data) and Cycle 2, for example, for
each neuron, we selected all Cycle 1 (test)
and Cycle 2 trials, then randomized the
cycle labels before calculating mean firing
rates for these randomized data. This pro-
cedure was repeated for each neuron, pro-
jections on the original discriminant were
recalculated, and the difference between projections for Cycle 1
and Cycle 2 was obtained. This whole procedure was repeated
1000 times, giving a null distribution against which the true data
could be compared. The p value for the contrast was measured as
the proportion of (absolute) distances in the permuted data greater
than the value in the true data. In line with Figure 6C,D, projections
for Cycles 2 and 3 were significantly different from the projection
for Cycle 1 (p, 0.001 for each comparison in both CH and FB
periods). Cycles 2 and 3 did not differ from Cycle 4 (p. 0.10 for all
comparisons). For failed-learning trials in Cycle 2, projections dif-
fered significantly from both Cycle 1 (p, 0.001 for both CH and
FB) and Cycle 2 (p, 0.001 for both CH and FB) regular trials.

Expectancy and error
Slow, incremental learning is critically driven by reward predic-
tion and prediction error. In the explore cycle of our task, expect-
ancy of reward would increase over successive trials, while at
feedback there would be variable positive and negative prediction
errors. As these factors would be absent in exploit cycles, we
wondered whether differences between explore and exploit cells
might in part reflect differing sensitivity to prediction and error.
To test for this, we used activity in Cycle 1, when the outcome of
each selection was uncertain. Again, we focused on the explore
and exploit cell groups defined above; and except where noted,
trials from the selection dataset were removed from the analyses.

First, we asked how the activity of explore and exploit cells
changed over the course of Cycle 1, as more objects were
sampled and eliminated, and the expectancy of reward progres-
sively increased. For 1-target problems, we sorted correct
(rewarded) Cycle 1 trials according to whether the object selected

was the first, second, third, or fourth different object sampled in
this cycle. For this analysis, it was impossible to cross the factors
of sample order and selected object location. On the first trial of
Cycle 1, animals had very strong preferences for choosing the
object in a particular location, which we call the animal’s favored
location. Strong preference for this location meant that, for this
first trial, data were not always available for other locations. To
ensure that results were not biased by location differences, we an-
alyzed data just from trials in which the target was found in the
animal’s favored location, after sampling 0, 1, 2, or 3 other
objects on previous trials of the cycle (in any locations; note ran-
dom repositioning of objects on each trial).

Inconsistent with a progressive increase in reward expectancy,
the results (Fig. 7A) showed no significant effects of sampling
order. For cells with an explore (Cycle 1) or exploit (Cycle 4)
preference at CH (top row), ANOVAs on the 400ms window
following CH onset showed no significant effects of sampling
order (explore cells, F(3,45) = 2.21; exploit cells, F(3,69) = 0.88). For
cells with an explore (Cycle 1) or exploit (Cycle 4) preference at
FB (bottom row), similar results were obtained in the 400ms
window following FB onset (explore cells, F(3,36) = 0.97; exploit
cells, F(3,102) = 1.70). Thus, explore cells, as a group, did not show
progressively decreasing activity with increasing reward expect-
ancy, but rather a binary decrease from explore to exploit.
Complementarily, exploit cells as a group did not show progres-
sively increasing activity with increasing reward expectancy, but
rather a binary increase from explore to exploit.

Second, to examine effects of prediction error, we compared
activity on correct (target selection) and incorrect (nontarget
selection) trials, again using Cycle 1 data from 1-target problems.
To eliminate effects of serial position in the cycle, we ignored

Figure 6. One-shot learning response of PFC population. A, For each analysis window, a linear discriminant between pop-
ulation responses to Cycle 1 (C1) and Cycle 4 (C4) was calculated from a train dataset consisting of mean-centered, scaled fir-
ing rates for each neuron. The discriminant was calculated in the full 254-dimensional space based on firing rates of all
neurons, shown schematically here for just two neurons. B, Population activities from test data in Cycles 1 and 4 were pro-
jected onto the discriminant. The same procedure was followed for data from Cycle 2, Cycle 3, and Cycle 2 failed-learning tri-
als. C, Discriminant projections: CH window. First four bars, regular trials; fifth bar, Cycle 2, failed-learning trials. D,
Corresponding data for FB window.

282 • J. Neurosci., January 12, 2022 • 42(2):276–287 Achterberg et al. · Explore to Exploit in Monkey PFC



Figure 7. Expectancy and error. A–C, Cell selection and windows as Figure 3. A, One-target problems, Cycle 1: Target first, second, third, or fourth object sampled. Data just for targets in
animal’s favored location. B, One-target problems, Cycle 1: Responses on correct (target selected) and incorrect (nontarget selected) trials. Data just for targets in animal’s favored location, aver-
aged across first, second, or third object sampled in cycle. C, Cycle 1: Comparison of 1-target problems with first and second targets discovered in 2-target problems.
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data for revisits, and compared correct and incorrect trials
unweighted for serial position (average of responses separately
calculated for the first, second, and third objects sampled in the
cycle; incorrect impossible for object sampled fourth). To elimi-
nate potential confounding effects of selected location, again we
used only trials with selection of the animal’s favored location.
At both CH and FB, results suggested little mean difference
between correct and incorrect trials (Fig. 7B). For cells with an
explore (Cycle 1) or exploit (Cycle 4) preference at CH (top
row), t tests on the 400ms window following CH onset showed
no significant differences between target and nontarget trials
(explore cells, t(17) = 0.71; exploit cells, t(25) = 0.84). For cells with
an explore (Cycle 1) or exploit (Cycle 4) preference at FB (bot-
tom row), similar results were obtained in the 400ms window
following FB onset (explore cells, t(14) = 1.33; exploit cells, t(36) =
0.96). Thus, FB explore cells, as a group, did not show strong
response to positive prediction error, but rather a binary decrease
in activity from explore to exploit, while FB exploit cells, as a
group, did not show reduced activity for positive prediction error.

In the cell sample as a whole, there was frequent discrimina-
tion of corrects and errors in the FB period. ANOVA with factors
correct/error � object set � selected location, this time, includ-
ing all trials (selection and validation datasets combined),
showed that, in the whole sample of 254 cells, there were 58
(22.8%) with a main effect of correct/error: 24 preferring correct
and 34 preferring error. Of the 52 explore/exploit cells defined in
our main analysis at FB, 16 (30.8%) also showed a significant dif-
ference between corrects and errors. Thus, outcome information
was encoded in prefrontal cells, but neither explore nor exploit
cells consistently favored positive or negative outcome.

Finally, we compared target-discovery trials in 1-target prob-
lems with first and second targets discovered in 2-target prob-
lems. Again, these cases have very different reward expectancies;
for example, in a 1-target problem, the first object selected has
only a 0.25 probability of being a target, whereas for a 2-target
problem, this probability is 0.5. Again, however, results showed
very similar responses for these three types of Cycle 1 target trials
(Fig. 7C). For cells with an explore (Cycle 1) or exploit (Cycle 4)
preference at CH (top row), ANOVAs on the 400ms window
following CH onset showed no significant differences between

the three trial types (explore cells, F(2,34) = 0.21; exploit cells,
F(2,50) = 2.78). For cells with an explore (Cycle 1) or exploit
(Cycle 4) preference at FB (bottom row), similar results were
obtained in the 400ms window following FB onset (explore cells,
F(2,28) = 0.37; exploit cells, F(2,72) = 0.25).

Contrary to incremental changes in reward prediction, these
data show that explore/exploit selectivity was approximately bi-
nary, distinguishing simply an explore state, in which new infor-
mation was sought, and an exploit state, in which known
information was used.

Parietal activity
Finally, parallel analyses were conducted on a population of 170
cells recorded in inferior parietal cortex (for details, see Kadohisa
et al., 2020). For the CH period, the difference in activity between
Cycles 1 and 4, tested as before on a selection dataset, was signifi-
cant in 20 cells (11.8% of total): 5 with a preference for Cycle 1,
15 for Cycle 4. For the FB period, the difference was significant
in 32 cells (18.8%): 10 with a preference for Cycle 1, 22 for Cycle
4. In this case, testing with a validation dataset produced mixed
results, although trends in the data (Fig. 8) weakly resembled
those found in frontal cells. For explore (Cycle 1 preference) or
exploit (Cycle 4 preference) cells identified at CH (top row), t
tests on the 400ms window following CH onset showed no sig-
nificant difference between cycles for explore cells (t(4) = 0.80)
but a significant difference for exploit cells (t(14) = 3.54,
p, 0.001). For cells with an explore (Cycle 1) or exploit (Cycle
4) preference at FB (bottom row), similarly mixed results were
obtained in the 400ms window following FB onset (explore cells,
t(9) = 1.15; exploit cells, t(21) = 3.65, p, 0.01). Although these
cross-validated results were weak, direct comparisons with fron-
tal results (one ANOVA corresponding to each of the above t
tests, factors region � cycle) showed no reliable differences
between regions (region� cycle interaction, all F, 2.2).

Discussion
While learning can be slow when being done from scratch, well-
developed internal task models may be generalized to a newly
encountered situation. In this case, new stimuli can be quickly

Figure 8. Explore/exploit preference in inferior parietal cortex. Layout as in Figure 3.
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bound to their roles within the task model. We examined the
transition from novel information seeking to known information
use within a well-learned task structure.

In each new problem, monkeys learned which target objects
were rewarded when touched. At the explore (information seek-
ing) stage, objects were sampled over a series of trials until
rewards were obtained. In subsequent exploit cycles, the struc-
ture of each trial was similar, but now the monkey could base
choices on previously acquired information. The monkey’s
behavior, though not perfect, showed a clear model of task rules,
with few selections of previously sampled nontargets, and in 2-
target problems, few selections of a target already chosen in the
current cycle. For the easier, 1-target problems, learning was typ-
ically one-shot, with just a single reward in Cycle 1 sufficient to
produce consistent target selection.

Our results showed different patterns of prefrontal activity for
explore and exploit stages of each problem. For many cells, activ-
ity differentiated Cycle 1, when new information was acquired,
from later cycles when this information was used to control sub-
sequent behavior. In 1-target problems, corresponding to one-
shot learning in behavior, the switch in frontal activity was close
to binary, with little subsequent change after the first exploit trial.
When learning was not complete after the first success trial, fur-
thermore, the data showed partial preservation of the frontal
explore state. These results held both at the level of single cells
with explore/exploit preferences, and at the level of activity pat-
tern across the whole-cell population.

Learning within a known task structure calls for different
computations during initial binding of stimuli to their roles
(novel information seeking), and subsequent retrieval and use of
these bindings (known information use). For example, in deep
reinforcement learning, meta-learning of a task model
endows agents with the ability to quickly adapt their behav-
ior to match a new reward structure in an otherwise known
environment (Botvinick et al., 2020). Modeling studies have
examined how progressive learning in neural networks can
shape connectivity to implement required cognitive opera-
tions (Barak et al., 2013; Chaisangmongkon et al., 2017). In
an important set of simulations Wang et al. (2018) show
how agents can quickly switch from learning to retrieval of
novel variable bindings during prelearned task phases. Our
data show that PFC produces a discrete code for these dif-
ferent task phases.

Many signals associated with learning have previously been
studied. Neurons in various regions, including lateral frontal cor-
tex, selectively code for errors (Gehring and Knight, 2000;
Mansouri et al., 2006), the effects of expectations (Matsumoto et
al., 2003; Rouault et al., 2019), decision confidence (De Martino
et al., 2013; Boldt and Yeung, 2015), and reward prediction
errors (Tanaka et al., 2004; Kennerley et al., 2011). Consistent
with the hypothesis that those are an integral part of many learn-
ing processes, we found many prefrontal cells coding for errors.
Preference for correct versus error trials, however, was rather in-
dependent of explore/exploit preferences. Similarly, neither
explore nor exploit cells showed progressive changes in activity
with changing reward expectancy. This relative independence of
cycle preference from outcome and expectancy coding suggests
that PFC constructs an additional binary code to support the
rapid explore/exploit switch.

Rapid learning will always require an agent to have well-tuned
priors built up through experience with the environment at
hand. Before starting recording sessions, monkeys received
extensive training. During this learning, monkeys familiarized

themselves not only with the task structure but also the different
object sets, and hence built up very narrow priors to support
rapid learning. We thus studied a highly contextualized form of
learning, where monkeys only need to learn which known stimu-
lus to pair with a known process in the task (i.e., touch target
object d). In other tasks, for example when subjects need to pair
an unknown stimulus to a known task process (Harlow, 1949;
Cook and Fagot, 2009) or pair an unknown stimulus to an
unknown task process (Youssef-Shalala et al., 2014; Franklin and
Frank, 2020), broader priors/more general “meta task models”
will be needed to support learning. PFCmight use the most rapid
shift from explore to exploit when simply generalizing over stim-
uli, but fall back onto more classical continuous learning signals
with more substantial change in task conditions (Wilson et al.,
2014; Wu et al., 2018).

Although exploit trials involved repeated selection of the
same target object, the binary switch from explore to exploit is
not well described as a simple repetition effect. Beyond Cycle 2,
neither explore nor exploit cells showed further changes with
additional choice repetitions. The partially preserved explore
state following failed-learning trials in Cycle 1 also tells against a
simple repetition account.

In PFC, activity patterns for different stages of a trial can be
approximately orthogonal (Sigala et al., 2008; Kadohisa et al., 2020).
Orthogonal patterns may minimize interference between the cogni-
tive operations of successive task steps (Sigala et al., 2008). In the
present data, preferences for explore versus exploit were independ-
ent during CH and FB. Internal models for these two stages of the
task would involve different cognitive operations: for explore, novel
choice generation at CH and new learning at FB, but for exploit, re-
trieval of the previously rewarded target at CH, and confirming a
predicted success at FB. Conjunctive coding for combinations of
trial phase (CH, FB) and knowledge state (explore, exploit) may be
required to construct and direct the multiple stages of the abstract
task model (Enel et al., 2016). These results match many reports of
mixed selectivity in prefrontal cells (Mushiake et al., 2006; Rigotti et
al., 2010, 2013; Warden andMiller, 2010).

In contrast with independent explore/exploit preferences at
CH and FB, cross-temporal generalization showed rather stable
preferences within each of these trial phases (Fig. 4). Although
average PSTHs suggested some variation within each phase (Fig.
3), additional data would be needed to examine more fine-
grained temporal structure.

Prior studies examined the explore to exploit transition in a
spatial selection task (Procyk and Goldman-Rakic, 2006;
Quilodran et al., 2008; Khamassi et al., 2015). Our results extend
these findings in object selection task. In this task, we provide a
detailed characterization of the explore to exploit transition,
including one-shot switching, partial preservation of the explore
state after a failed learning trial, independent explore/exploit
coding at choice and feedback stages of the trial, and temporal
stability within each of these stages.

If frontal activity binds objects to their roles in the task, there
must be a representation of object identity. In tasks like ours, sus-
tained firing frontal patterns can carry important information in
working memory (Fuster and Alexander, 1971; Funahashi et al.,
1989; Constantinidis et al., 2018). When targets were discovered
in Cycle 1, sustained object-selective activity could have carried
this target information through to later cycles. Our previous
analyses of object selectivity, however, show that this does not
happen in our task (Kadohisa et al., 2020). Although frontal neu-
rons code object information at FB and CH, these two codes are
orthogonal, and between trials, all object information disappears.
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As successive task operations take place, object information is
newly implemented in the pattern of frontal activity.

Many studies show closely similar neural properties in lateral
prefrontal and inferior parietal cortex (Chafee and Goldman-
Rakic, 1998; Goodwin et al., 2012; Brincat et al., 2018; Meyers et
al., 2018). In the current task, prefrontal and inferior parietal
neurons show similar coding of target identity and location
(Kadohisa et al., 2020). The data suggest that, like prefrontal cells,
inferior parietal cells can also show explore/exploit preferences,
although only for some cell groups was the difference significant
in the cross-validated test.

Previous findings from both human imaging (Konishi et al.,
1998; Hampshire and Owen, 2006) and single-cell physiology
(Procyk and Goldman-Rakic, 2006; Quilodran et al., 2008) sug-
gest a reduction in frontal activity with the transition from
unknown to known task rules, or more broadly over the early tri-
als of a new task (Ruge et al., 2019). In contrast to this simple
change, we observe cells with both increased and decreased activ-
ity with the switch from explore to exploit. Both explore and
exploit preferences may be important to direct the different cog-
nitive operations of constructing and using the task model.

In one-shot learning, newly acquired information is bound to
its role within a previously learned, abstract task model. Building
on previous findings (Procyk and Goldman-Rakic, 2006;
Quilodran et al., 2008), our data show a one-shot switch of firing
rate in many prefrontal cells, matching one-shot behavioral
learning. This switch of neural activity occurs independently at
different stages of a trial, with their different cognitive require-
ments. The binary switch in frontal activity may enable one-shot
switch between cognitive operations of information seeking and
information use. More generally, such switches may allow the
high-speed adaptability that characterizes much animal and
human behavior.
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