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Enhanced growth after extreme wetness
compensates for post-drought carbon loss
in dry forests

Peng Jiang"2, Hongyan Liu', Shilong Piao® !, Philippe Ciais® 3, Xiuchen Wu®>, Yi Yin® & Hongya Wang'

While many studies have reported that drought events have substantial negative legacy
effects on forest growth, it remains unclear whether wetness events conversely have positive
growth legacy effects. Here, we report pervasive and substantial growth enhancement after
extreme wetness by examining tree radial growth at 1929 forest sites, satellite-derived
vegetation greenness, and land surface model simulations. Enhanced growth after extreme
wetness lasts for 1 to 5 years and compensates for 93 £ 8% of the growth deficit after
extreme drought across global water-limited regions. Remarkable wetness-enhanced growths
are observed in dry forests and gymnosperms, whereas the enhanced growths after extreme
wetness are much smaller in wet forests and angiosperms. Limited or no enhanced growths
are simulated by the land surface models after extreme wetness. These findings provide new
evidence for improving climate-vegetation models to include the legacy effects of both
drought and wet climate extremes.

TCollege of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes, Peking University, Beijing 100871, China. 2Harvard China
Project, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA. 3 IPSL—LSCE, CEA CNRS UVSQ UPSaclay, Centre
d'Etudes Orme des Merisiers, 91191 Gif sur Yvette, France. 4 State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal
University, Beijing 100875, China. 5 Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China. 6 California Institute of Technology,
Pasadena, CA 91125, USA. Correspondence and requests for materials should be addressed to H.L. (email: Ihy@urban.pku.edu.cn)

| (2019)10:195 | https://doi.org/10.1038/s41467-018-08229-z | www.nature.com/naturecommunications 1


http://orcid.org/0000-0001-8057-2292
http://orcid.org/0000-0001-8057-2292
http://orcid.org/0000-0001-8057-2292
http://orcid.org/0000-0001-8057-2292
http://orcid.org/0000-0001-8057-2292
http://orcid.org/0000-0001-8560-4943
http://orcid.org/0000-0001-8560-4943
http://orcid.org/0000-0001-8560-4943
http://orcid.org/0000-0001-8560-4943
http://orcid.org/0000-0001-8560-4943
mailto:lhy@urban.pku.edu.cn
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

lobal warming has intensified the hydrological cycle,

causing shifting rainfall patterns (in space and time) with

more frequent extreme wet and/or dry years!~6. Extreme
wet years are predicted to increase both in frequency and
intensity!’. Changes in the regime of extreme drought®® and
extreme wetness’”8 could have profound impacts on forests?-13
and their carbon balance!* both locally and globally.

Forests cover around one-third of the global land surface, store
about half of the terrestrial carbon!® and are the dominating
contributors of terrestrial net primary production!®. Forests not
only provide ecological, economic, and esthetic services to
humankind!” but also mitigate climate warming though eva-
porative cooling!® and carbon sequestration!”. Nonetheless, the
fate of forests under climate change with increasing extremes
remains uncertain!4. Anderregg et al.!? analyzed the legacy effects
of extreme droughts on tree radial growth using tree-ring records
and models and inferred that carbon storage could decrease as a
result of extreme droughts in semi-arid forests. The counterpart
of extreme drought is extreme wetness, but how forests respond
to the latter!78 has been less studied.

Field studies have investigated the legacy effects of precipita-
tion on ecosystem functioning!®-21. Based on a synthesis of long-
term series of aboveground primary productivity across diverse
ecosystem types, it was shown that previous-year precipitation
imposed substantial legacy impacts on current-year production in
grasslands and shrubs?!. In some cases, the lagged response to
precipitation and temperature anomalies can last for
36-57 months for tree radial growth, and high-antecedent pre-
cipitation improves tree radial growth, e.g, in a Pinus edulis
(pinyon pine) forest in Colorado®’. Nonetheless, the scarcity and
relatively short duration of field experiments make it difficult to
obtain a full picture of how forests respond to extreme wetness, a
response that likely differs among regions and ecosystems. In this
study, we analyze 1929 stand-level tree-ring chronologies, con-
taining 83,107 site-years across the globe covering the period of
1948-2013, complemented by 32-year of global satellite-derived
Normalized Difference Vegetation Index (NDVI) data together
with land surface model simulations from the Coupled Model
Intercomparison Project, Phase 5 (CMIP5), to investigate the
growth response of forests after extreme wetness across the global
water-limited regions, ie., tree-ring sites and/or NDVI pixels
showing significant (p <0.05) and positive correlation with cli-
mate indices (see Methods), over the past six decades.

We investigated tree radial growth after extreme wetness and
compared the legacy effects of extreme wetness and droughts.
Extreme wetness and droughts were defined as years when cli-
mate indices related to water availability exceeded the 95th
quantile and were below the 5th quantile of their site-level dis-
tribution during the period of coverage of each data set, respec-
tively. Tree-ring width master chronologies were obtained from
the International Tree-Ring Data Bank?2. Only chronologies with
> 25 years of data within the period of 1948-2013 were selected.
We defined the legacy effects of extreme wetness and drought as
the difference between actual (ring width index) and predicted
growth (based on a linear climate-growth model, see Methods)
after extreme wetness and drought!>13, The three climate indices
to quantify the extreme droughts and extreme wetness are
Standardized Precipitation-Evapotranspiration Index (SPEI)23,
precipitation minus potential evapotranspiration (P—PET)2%2>,
and soil moisture from a model reanalysis?® (for the 0-100 cm
soil depth, all averaged over each year, see Methods). To avoid
overlapping effects of extreme wetness and drought, only isolated
extreme wetness and drought events (one event within a 5-year
window) were considered. To extend the analysis of pointwise
tree-ring time series, we also investigated NDVI changes after
extreme wetness and extreme drought using the same protocol.

NDVTI is not equal to tree radial growth but is used here as a
proxy of productivity?’. Further, we calculated effects of ante-
cedent extreme wetness on current-year wood production from
the output (wood biomass carbon per unit land area, see Meth-
ods) of six land surface models from the CMIP5. Specifically, we
aimed to answer the following questions: Whether and to what
extent tree radial growths change after extreme wetness? If tree
stems experience enhanced growth after extreme wetness, can this
growth enhancement compensate for the drought legacy effects
across the global water-limited regions? Are the observed growth
responses to extreme wetness captured by CMIP5 land surface
models?

We found that substantial enhanced radial growth after
extreme wetness lasted for 1-5 years, and mostly compensated for
the growth deficit from drought legacy effect. In detail, the
enhanced radial growths were greater in dry forests and gym-
nosperms. By contrast, no obvious positive response after extreme
wetness was captured by CMIP5 models.

Results

Substantial radial growth enhancement after extreme wetness.
We found that enhanced growth lasted 1-5 years after extreme
wetness in the tree-ring chronologies (Fig. 1). The magnitude of
enhanced tree radial growth to wetness was found to be similar
when using the SPEI (22% + 7% increase in growth above nor-
mal conditions, calculated by the difference between observed
and predicted growth with a linear model, integrated value of the
whole enhanced growth period) and P—PET (21% + 6%), but a
smaller increase (10% + 5%) was found using soil moisture. The
enhanced growth duration differed according to the choice of
climate indices, with 5 years for the SPEI, 3-5 years for the
P—PET, and 3 years for soil moisture. These results indicate that
both the duration and magnitude of enhanced growth after
extreme wetness depend upon the water availability indices used
to characterize water availability but give broadly consistent (all
enhanced growth on average) results. However, the relative
magnitude of enhanced growth after extreme wetness was
globally (across all sites in different regions) comparable to the
magnitudes of reduced growth after extreme drought for the
three water availability indices (Supplementary Table 1). The
mean compensation ratio (enhanced growth after wetness divi-
ded by reduced growth after drought) was 93 + 8%, suggesting
that, on average globally, extreme wetness has offset the negative
impacts of extreme drought when considering tree-ring growth
anomalies (not account for stand mortality, as drought-induced
mortality is generally not sampled or reported by tree-ring
records).

Growth changes caused by extreme wetness were also detected
using partial autocorrelation analysis (Supplementary Fig. 1).
Enhanced growth was consistently observed regardless of the
climate indices used (see above and Supplementary Fig. 2,
Supplementary Fig. 3) or the percentile thresholds adopted to
define extreme wet years (Supplementary Fig. 4). An additional
null linear model (i.e., randomly selected the same number years
as fake extreme wetness to calculate the growth change pattern,
see Methods) indicated that non-climatic drivers (e.g., CO,
fertilization, nutrient availability, and disturbance history) of the
positive autocorrelation in the chronologies did not significantly
influence the inferred enhanced growth (Supplementary Fig. 5).
To test whether the increasing nitrogen (N) deposition and/or
rising CO, influences our findings, we further analyzed post-
wetness and post-drought effects at three epochs (~ 20 years each
epoch) in the last 60 years. We found the tree growth recovery
from extreme events is getting faster during last six decades, but
the enhanced tree radial growth after extreme wetness all
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Fig. 1 Substantial enhanced radial growth after extreme wetness. Enhanced/reduced growth (unitless) after extreme wet/drought years was observed
across 1929 tree-ring chronologies using the SPEl a, P—PET ¢, and soil moisture (for the 0-100 cm soil depth) e. Enhanced growth across sites that were
significantly correlated with climate indices were reclassified into different mean annual precipitation bins and gymnosperm and angiosperm forest types
b, d, f. Error bars represent the 95% confidence interval around the mean from bootstrapping (n =5000 resamplings). *: tree-ring sites that were
significantly correlated with climate indices (n = 631,612,773 for the SPEI, P—PET, and soil moisture, respectively) **: all tree-ring sites (n =1929). P—PET:
precipitation minus potential evapotranspiration, SSPEI: Standardized Precipitation-Evapotranspiration Index

sufficiently compensated for the growth deficit after extreme
drought at the three epochs (Supplementary Fig. 6), suggesting
the trends of N and CO, also do not change our findings. The
magnitude of enhanced growth after extreme wet events
was negatively correlated with mean background annual
precipitation (r= —0.13, p<0.05) but not with temperature
(r=-0.03, p=0.50) nor with the intensity of the extreme
wetness (r = 0.00, p = 0.93) (Supplementary Fig. 7). These results
suggest that the enhanced growth after extreme wetness is higher
in regions with lower mean annual precipitation.

Higher enhanced radial growth observed in dry forests. The
enhanced growth after extreme wetness in dry forests (with
regional mean annual precipitation <400 mm, regardless of the
complex topography-dependent forest distribution) was sig-
nificantly higher than that in wet forests (mean annual pre-
cipitation > 800 mm) based on the SPEI (24% + 8% vs. 13% + 6%,
t=2.01, p<0.05) and P—PET (29% * 12% vs. 3% * 3%, t = 4.06,
p <0.01) (Fig. 1b, d) and slightly higher when using soil moisture
(5% 5% vs. 4% + 6%, t=0.5, p>0.1) (Fig. 1f). Reduced growth
after extreme drought was also significantly larger in dry forests
than that in wet forests (Supplementary Table 2). Enhanced

growth anomalies after extreme wetness and reduced growth
anomalies after extreme drought in dry forest ecosystems were
thus both greater in magnitude than those in wet forests, indi-
cating that trees growing in dry regions are more sensitive to
fluctuations in moisture condition (Fig. 1b, d, f). Similar results
were generated when using only precipitation instead of water
availability indices (Supplementary Fig. 8). Nevertheless, the
enhanced growth anomalies after extreme wetness were smaller
than the reduced growth anomalies after extreme drought in dry
forests for all three climate indices, and the reverse was true in the
wet forests (Fig. 1b, d, f).

Greater enhanced radial growth observed in gymnosperms.
The enhanced growth after extreme wetness was significantly
greater for gymnosperms than angiosperms (Fig. 1b, d, f). But
enhanced growth anomalies after extreme wetness were com-
parable to reduced growth anomalies after extreme drought in
gymnosperms for all three climate indices. In contrast, enhanced
growth anomalies after extreme wetness were smaller than the
reduced growth anomalies after extreme drought for angiosperms
when using SPEI and P—PET, implying adequate compensation
for gymnosperms but not for the angiosperms.
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Fig. 2 Spatial distribution of tree radial growth change after extreme climate events. Spatial pattern of Pearson's correlation coefficients between tree-ring
width and SPEIl a, P—PET b, and soil moisture ¢. Enhanced growth after extreme wetness, reduced growth after extreme drought, and compensation using
the SPEld, g, j, P—PET e, h, k, and soil moisture f, i, I, summed over the first 5 years after extreme wet/drought years, where the tree-ring chronologies are
significantly and positively correlated with the climate indices. Maps were created using Matlab R2015b. P—PET: precipitation minus potential

evapotranspiration, SPEl: Standardized Precipitation-Evapotranspiration Index

The gymnosperms in both wet and dry regions showed
substantially greater enhanced growth than that in angiosperms
(Supplementary Fig. 9), which probably was associated with their
intrinsic hydraulic or nutrient utilization characteristics. By
contrast, much smaller enhanced growth after extreme wetness
was found for the angiosperms in wet regions, and even slightly
reduced growth after extreme wetness was observed for the
angiosperms in dry regions (Supplementary Fig. 9). Sufficient
compensation was found in the gymnosperms in wet regions
(Supplementary Fig. 9). Within the gymnosperms, greater
enhanced growth was observed in Cupressaceae than in the
other main gymnosperm family, Pinaceae (Supplementary
Fig. 10). Meanwhile, the reduced growth in Cupressaceae after
extreme drought was smaller than that in Pinaceae, leading to
sufficient compensation for Cupressaceae but insufficient com-
pensation for Pinaceae.

The spatial patterns of Pearson’s correlation coefficients
between tree-ring width and the three different climate indices
were similar, with high values observed in arid or semi-arid
regions, such as mid-western North America, Inner Asia, and
southern Europe (Fig. 2a, b, ¢). The mean Pearson’s correlation
coefficient was higher between ring width index and soil
moisture (mean r=0.22) compared with those for SPEI (mean

r=0.18) and P—PET (mean r = 0.16), suggesting that tree radial
growth was more closely related to the soil moisture conditions.
Significant enhanced growth after extreme wetness was widely
observed in dry forests of the Northern Hemisphere (Fig. 2d, e,
f), where tree radial growth was strongly controlled by the soil
moisture availability (Fig. 2a, b, ¢). The most prominent
enhanced growth after extreme wetness was observed in western
North America and in Western Europe (Fig. 2d, e, f). The
enhanced growth for SPEI and P—PET was larger than that for
soil moisture, and reduced growth after extreme drought using
SPEI and P—PET was lower than that for soil moisture (Fig. 2g,
h, i); thus, the compensation for SPEI and P—PET was more
sufficient than that for soil moisture (Fig. 2j, k, 1). Growth
suppression after extreme wetness was detected in central North
America, for SPEI and P—PET (Fig. 2d, e), and in southern
North America for soil moisture (Fig. 2f). By contrast, the
strongest drought legacy effects were observed in the south-
western United States and northern Europe (Fig. 2g, h, i).
Notably, the absolute values of enhanced growth after extreme
wetness were smaller than those for reduced growth after
extreme drought in the southwestern North America for all three
climate indices, indicating insufficient compensation in this
region (Fig. 2j, k, 1).

4 | (2019)10:195 | https://doi.org/10.1038/s41467-018-08229-z | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

Soil moisture

60°N [*
30°N |

0o}
30°S |

-05 -04 -03

60°N »
30°N

0°f
30°S i

60°N |
30°N r

0%
30°S |

60°N |-
30°N

o}
30°S |

—-0.08 -0.06 —0.04 -0.02

0 002 0.04 006 0.08 0.1

Fig. 3 Spatial distribution of NDVI change after extreme climate events. Spatial pattern of Pearson’s correlation coefficients between NDVlgs and the SPEI
a, P—PET b, and soil moisture ¢. The change in greenness after extreme wetness, change in greenness after extreme drought and compensation for the
SPEl d, g, j, P—PET e, h, k, and soil moisture f, i, I, where the NDVIgs values are significantly and positively correlated with the climate indices. The pixels
with non-woody vegetation, not showing significant and positive correlation with climate indices except for a, b, ¢, or a multiyear mean NDVI value of < 0.1
were left blank. Maps were created using Matlab R2015b. P—PET: precipitation minus potential evapotranspiration, SPEI: Standardized Precipitation-

Evapotranspiration Index

Enhanced vegetation greenness after extreme wetness. The
spatial pattern of Pearson’s correlation coefficients between the
NDVIgs (mean NDVI during the growing season, see Methods)
and climate indices was similar to that of tree-ring width (Fig. 3a,
b, ¢, Supplementary Fig. 11). Among the studied pixels, 32%
pixels were significantly correlated with the soil moisture, 18%
were significantly correlated with the P—PET, and 16% were
significantly correlated with the SPEI, suggesting that the NDVIgg
is also most tightly related to soil moisture. Among the pixels
where the NDVIgg was significantly correlated with the climate
indices and experienced greenness changes after extreme drought
or wetness, the majority of pixels showed enhanced greenness
(SPEI, 70%; P—PET, 71%; soil moisture, 58%) after extreme
wetness (Fig. 3d, e, f, i). The largest enhancements of greenness
after extreme wetness were observed in dry regions (Fig. 3,
Supplementary Fig. 12), such as southern African, southwestern
North America and Australia, for both the SPEI and P—PET
(Fig. 3d, e). Reduced NDVIgg values after extreme drought were
also detected in arid and semi-arid regions (Fig. 3g, h). The
overall growth compensation of extreme wetness for extreme
drought was sufficient for both the SPEI (8% + 4% vs. —7% + 3%),

P—PET (9% 4% vs. —6% £ 3%) and soil moisture (2% + 2% vs.
—1% £2%) with prominent compensation effect in Australia,
southern South America, and southern Africa (Fig. 3).

No obvious positive response captured by CMIP5 models.
Limited or no enhanced growth after extreme wetness years
(exceeding the 95th quantile of annual forcing precipitation in
each pixel from each model) was found from the CMIP5 model
outputs (Fig. 4). The correlation coefficients (mean r=0.05)
between wood carbon content (a variable of the CMIP5 output,
see Methods) and the climate indices were much smaller than
those from tree-ring width. Some models (CanESM2, MRI-ESM1,
CMCC-CESM, CCSM4) showed slightly enhanced growth after
extreme wetness for 1-5 years (Fig. 4), but this enhanced growth
anomaly was very small (mean value < 1%) relative to that diag-
nosed from tree-ring width and NDVI series. None of the six
models from CMIP5 captured the enhanced growth after extreme
wetness (Fig. 4), indicating the possibility of lacking some
mechanisms to represent the legacy effects of extreme wetness in
the current state-of-the-art land surface models.
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intervals around the mean from bootstrapping (n = 5000 resamplings)

Discussion

Our analyses revealed substantially enhanced tree radial growth
and enhanced vegetation greenness after extreme wetness years
across the global water-limited regions (where tree chronologies
and/or NDVI pixels showing significantly positive correlation
with climate indices). Previous studies have reported that
extreme wetness has a significant impact on forest ecosystems28
and that antecedent-year precipitation has substantial legacy
effects on whole ecosystem-level carbon fluxes?®. Moreover,
models including antecedent moisture conditions explained an
additional 18-28% of the response variation compared to those
not considering antecedent effects?. However, these studies are
limited to few sites or specific ecosystems. Here, we expanded
the analysis to much larger temporal and broader spatial scales
to gain more knowledge of how different types (dry vs. wet,
gymnosperm vs. angiosperm) of forests respond to antecedent
extreme wetness.

The effects of extreme wetness have strong and pervasive
positive impacts on tree radial growth in the following several
years, especially in dry forests. This means that trees, especially in
dry environments, are particularly sensitive to extreme wetness
pulses and these pulses can largely stimulate tree radial growth.
The enhanced tree radial growth after extreme wetness in dry
forests has a potentially significant impact on long-term carbon
storage and the inter-annual variability of the terrestrial ecosys-
tem carbon cycle. A previous study estimated that the drought
legacy effect could lead to a substantial loss of carbon in semi-arid
forests'2, but our study suggests that this may be largely com-
pensated over time by the increased growth after wet years.
However, insufficient compensation, that is, negative asymmetry
between dry and wet year responses, was detected in some regions
(such as southwestern North America) and species (such as
angiosperms).

The enhanced tree radial growth after extreme wetness can at
least partly be explained by structural and/or biogeochemical
carryover effects from the antecedent year. Forest ecosystems
tend to have more leaves and roots than average owing to excess
carbon storage after extreme wetness?!, thus allowing more

6

photosynthesis and the exhaustive exploitation of resources (e.g.,
water, solar radiation, and nutrients) in the following years,
leading to enhanced growth. Another possible reason accounting
for the enhanced growth is increased nutrient availability, such as
increased nitrogen (N) availability, owing to more decomposition
by microorganisms in the years following extreme wetness in
areas where N availability depends on litter input?!, facilitating
tree radial growth. In addition, as mortality is not recorded or
measured by tree-ring records, the potential positive legacy effects
(self-thinning effects) for surrounding trees from drought-
induced mortality are not assessed in this study. Interestingly,
the intuitive explanation for the enhanced growth resulting from
soil water carryover from the previous wet year is not the major
contributor to the enhanced growth because no significant partial
autocorrelation coefficient was found in this study (partial auto-
correlation coefficient (PAC) r<0.15, p>0.1), which has also
been confirmed by other field studies!®3031. Moreover, the
waterlogging of soils damaging anaerobic conditions?!, and a
higher susceptibility of trees to pathogens?! reducing tree growth,
caused by excessive precipitation are unlikely to occur in dry
regions, as the moisture conditions typically are far from suffi-
cient, even in the years after extreme wetness.

In summary, our analyses using multiple climate indices and
different vegetation growth indices (tree-ring width and NDVI)
consistently showed that forests experienced enhanced growth
after extreme wetness, roughly compensating for carbon sink
reductions owing to drought legacy effects across the global
water-limited regions. This enhanced growth pattern was not
captured by the current CMIP5 models, suggesting the weak
ability of current land surface models to represent the lagged
effects of extreme wetness on the carbon cycle, although
increasingly observational studies have reported that previous
water conditions have substantial legacy impacts on subsequent
vegetation dynamics at local, regional, and global scales!2:19-21,29,
The findings of this study indicate that extreme wetness events
have significant and positive hysteresis impacts on forest eco-
system processes. The enhanced growth can at least be partly
explained by structural and/or biogeochemical carryover effects,
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yet studies based on manipulative experiments are needed in the
future to clarify the underlying physiological mechanisms.

Methods

Tree-ring width chronologies. In total, 1929 standard tree-ring width chron-
ologies were obtained from the International Tree-Ring Data Bank (ITRDB)
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/tree-ring)
on 1 November 2016. The ITRDB is the world’s largest public archive of tree-ring
data and is managed by the National Center for Environmental Information
(NCEI) Paleoclimatology Team and the World Data Center for Paleoclimatology.
Hundreds of research groups and dendrochronologists from all over the world
contributed generously to this data bank. The tree-ring samples were collected in
the field by using increment borer to get a cylinder of wood along the radius of a
tree by investigators. Typically, the minimum threshold is 20 trees per site to get
reliable statistical analysis, but this will vary according to the specific characteristics
(such as the strength of the climate signal) of the sites and the purpose of the
collection. Two samples were generally collected per tree to facilitate cross-
correlation and accurate dating of the annual ring. The samples are mounted and
finely sanded to allow cross-dating and measured the widths of the annual rings.
The ring widths are measured to the ~0.01 mm or 0.001 mm and recorded in
computerized data files. Then, a statistical evaluation of the cross-dating has been
conducted by using the COFECHA program?32. After that, cross-dated raw ring
width measurements are converted to site-level chronologies of standardized ring
width indices via detrending (commonly based on modified negative exponential
curve fitting or cubic smoothing spline>?) to remove low-frequency ring width
fluctuations related to increasing tree size/age or to stand dynamics by using
ARSTAN?. There are several types of standardization methods, and we collected
the site-level standard chronologies generated by each research group and assumed
that those researchers selected the most suitable standardization for their datal2.
We chose these chronologies based on three criteria: they covered at least 25 years
during 1948-2013, the basic information (e.g., species name, longitude, latitude,
elevation) was complete, and the chronologies had detrended-only files to remove
longer-term signals embedded within the raw ring width.

The species distribution and the spatial coverage of those selected chronologies are
presented in Supplementary Table 3 and Supplementary Fig. 13, respectively. We
found that the forest sites that significantly and positively correlated with water
availability indices mainly distributed (61-69% of tree-ring sites, Fig. 2, Supplementary
Fig. 13, Supplementary Fig. 14) in drylands® (Aridity index, Al = P/PET, Al <0.65,
Supplementary Fig. 14). Some sites/pixels (15-17% for tree-ring sites) with significant
and positive correlation with water availability indices were also found in humid®®
regions (AI> 1, Fig. 2, Supplementary Fig. 13, Supplementary Fig. 14), which is
probably attributable to the specific site conditions, for example, poor water holding
capacity of soil property in karst region, and seasonal drought may also have a role in
this phenomenon.

Climate indices. We used three different climate indices to examine the pattern in
growth change after extreme wetness, including the Precipitation-
Evapotranspiration SPEI?3, P—PET2425, and soil moisture for the 0-100 cm soil
depth?.

SPEI data with a spatial resolution of 0.5°, which were calculated based on
monthly precipitation and potential evapotranspiration estimated by the Penman-
Monteith equation of CRU TS 3.23%, were obtained from SPEIbase V2.4 (http://
sac.csic.es/spei/database.html). First, the difference between P and PET was
calculated for the month i using equation 1,

D; = P, — PET, (1)

where D; is a measure of water surplus or deficit. The D; values were then
accumulated to different timescales®®. The difference D, in a given month j and
year i depends upon the timescale k. For example, the aggregated difference for
month j in year i with a 12-month time-scale is calculated using equations 2-3,

12 j
Xf= > D+ > Dyifj<k (2)
I=13—k+j =1
and
. j
Xij = Z D;,ifj >k (3)

I=j—k+1

where D;,; is the difference between P and PET in the first month of year i. Finally,
the water balance was normalized into a log-logistic probability distribution to
obtain the SPEI index series®. The parameter estimation”-38 of the log-logistic
probability distribution and detailed calculation procedure for SPEI index can be
found in Vicente-Serrano et al.?®.

The timescale of SPEI spans from 1 to 48 months in the SPEIbase V2.4. As a
multiscale drought and wetness indicator, SPEI was widely used in studying the
impact of climate extremes on terrestrial ecosystems!>3. Considering that the
majority of vegetation types respond predominantly to mean annual SPEI within

timescales of 2-4 months* and that the SPEI03 (3-month timescale) was widely
used to study the relationship between vegetation dynamics and moisture
variability!3, we chose annual mean SPEI03 as one drought/wetness indicator.

Monthly precipitation and PET data with a spatial resolution of 0.5° were obtained
from the National Oceanographic and Atmospheric Administration Precipitation
Reconstruction Over Land (NOAA PREC/L)** and CRU TS 3.222°, respectively, to
calculate the index of P—PET. The precipitation data from PREC/L?4 rather than CRU
TS 3.22 was used to calculate P—PET to gain a different index from SPEI (calculated
based on precipitation and PET both from CRU). The PREC/L precipitation data sets
(covering the period of 1948-2010) were constructed using the optimal interpolation
technique applied to gauge observations from over 17,000 stations collected in the
Global Historical Climatology Network and the Climate Anomaly Monitoring System
data sets’, which can be accessed from https://www.estl.noaa.gov/psd/data/gridded/
data.precLhtml. The PET data set were calculated based on the Penman-Monteith
equation and were downloaded from the CRU (http://www.cru.uea.ac.uk/). In
addition, we obtained the other two precipitation data sets from CRU TS 3.22 and
Global Precipitation-Climatology Centre (GPCC?, https:/climatedataguide.ucar.edu/
climate-data/gpcc-global-precipitation-climatology-centre). All the three kinds of
precipitation data sets are interpolated based on global precipitation station data.

We used the soil moisture data from model simulation of the Noah Land
Surface Model#! 3.3 forced by the global meteorological forcing data set from
Princeton University*? (https://disc.gsfc.nasa.gov/datasets/). The simulation used
the common GLDAS data sets for land cover (MCD12Q1)%3, land water mask
(MOD44W)#4, soil texture®, and elevation (GTOPO30). The latest version of
simulated soil moisture (GLDAS-2.1 Noah 0.25° products) was used in this study.
The spatial resolution of the monthly soil moisture simulation is 0.25°, and we
aggregated it to 0.5° to match the other two climate indices. We also calculated soil
moisture for the 0-100 cm soil depth based on the original data.

In summary, the three wetness and drought indicators SPEI, P—PET, and soil
moisture were obtained/calculated from different data sets; thus, they can be
viewed as different and can be compared to evaluate the impacts of climate
extremes on forest ecosystems.

To make this study more comprehensive, we also analyzed the effects of
extreme events from other commonly used climate indices, including the self-
calibration Palmer Drought Severity Index*® (scPDSI, http://www.cgd.ucar.edu/
cas/catalog/climind/pdsi.html), and the land surface model-simulated soil moisture
of the Climate Prediction Center4” (CPC, http://www.cpc.ncep.noaa.gov/products/
Soilmst_Monitoring/US/Soilmst/Soilmst.shtml). Results of these analyses are
presented in supplementary materials (Supplementary Figs. 2-4). The comparison
shows that the correlation coefficients between tree radial growth and these
different climate indices exhibit similar spatial patterns (Supplementary Fig. 2),
with higher correlation coefficients in arid and semi-arid ecosystems. The
correlation coefficients between tree radial growth and SPEIO3 (with a timescale of
3 months), scPDSI, and CPC soil moisture were relatively higher than those of the
three monthly global precipitation data sets (Supplementary Fig. 2). Moreover, a
similar enhanced growth pattern after extreme wetness was observed for the
different climate indices (Supplementary Fig. 3), strengthening the robustness of
our findings.

Satellite NDVI measurements. The latest version of the biweekly NDVI data set,
which was derived from Advanced Very High Resolution Radiometer observations,
during 1982 to 2013 were obtained from the Global Inventory Modeling and
Mapping Studies (GIMMS, https://climatedataguide.ucar.edu/climate-data/ndvi-
normalized-difference-vegetation-index-3rd-generation-nasagfsc-gimms) group
(i.e., GIMMS NDVI3g). This data set has been processed to address various
deleterious effects, including calibration loss, orbital drift, sensor degradation,
intersensor differences, cloud cover, zenith angle, and volcanic aerosols*8. The
GIMMS NDVI3g data set has a spatial resolution of 0.083° (~ 8 km) and was
aggregated to a spatial resolution of 0.5° to match the climate indices. It has been
widely used to characterize land cover and to monitor spatiotemporal changes in
vegetation activity and productivity in response to climate variations and extreme
events both regionally and globally!3-2749-52, We adopted a simple maximum value
compositing (MVC) technique? (obtaining the larger 15-day MVC NDVI for each
month to produce monthly NDVI data sets) to minimize atmospheric effects and
cloud contamination effects. We calculated the annual mean growing season NDVI
for the period of 1982-2013. Following previous studies!3 1, we roughly defined
growing season as April to October for the extratropical Northern Hemisphere (23°
N-90°N), October to April for the extratropical Southern Hemisphere (23°S-90°S)
and all year for tropical region (23°S-23°N). Pixels with multiyear mean annual
NDVI values below 0.1 during 1982 to 2013 were removed from further analyses.
The growth change patterns of different ecosystems after climate extremes
differ, and a prolonged response time for deep-rooted forests was detected!? using
the NDVI3g (~ 4 years for forests, 2 years for shrubs). In this study, we adopted the
same protocol used by Wu et al.!3 to investigate greenness changes from the
NDVI3g. We grouped evergreen broadleaf forest, evergreen needle-leaf forest,
deciduous needle-leaf forest, deciduous broadleaf forest, and mixed forest as
forests; closed shrub lands, open shrub lands, woody savannas, and savannas were
categorized as shrubs. As many tree-ring sites were located in shrub areas (Fig. 2,
Supplementary Fig. 15), we also investigated the vegetation greenness changes of
shrubs (defined in this study) after extreme wetness/drought. In addition, the
woody characteristics of the shrubs also facilitated comparison with the woody
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biomass outputs from the CMIP5. The classification was based on the Moderate
Resolution Imaging Spectroradiometer land cover product MOD12Cl (http:/glct.
umd.edu/data/lc/). It identifies 17 land cover classes (nine types were used in this
study) defined by the International Geosphere-Biosphere Program scheme
(Supplementary Fig. 15).

Woody biomass in the CMIP5 models. Following a previous study!2, we obtained
the wood carbon content per unit land area, precipitation, and soil moisture from
historical runs from six land surface model outputs in the CMIP5, https://esgf-
node.llnl.gov/projects/cmip5/), multi-model ensemble archive: GFDL-ESM2G,
NorESM1-M, CanESM2, CCSM4, MRI-ESM1, and CMCC-CESM. Only one rea-
lization of each model is needed because enhanced growth should be insensitive to
the initial conditions and be presented in all realizations!2. We only used the pixels
in the model output in which the tree-ring width index was significantly and
positively correlated with the climate indices and calculated the growth change
pattern after extreme wetness using the same approach as the calculation of the tree
radial growth change pattern.

Growth change pattern. Two methods were used to quantify changes in the tree-
ring width chronologies after extreme wetness/drought: the residual value of the
observed tree-ring width minus the predicted growth after extreme wetness based
on a linear climate-growth relationship and partial autocorrelation analysis. These
two effective methods have been used in previous studies to quantify the legacy
effects of drought on forest!2, shrubs, and grass growth!3.

In the first method, we defined growth change as the difference between the
observed tree radial growth and the predicted growth, which was estimated using a
linear regression model over the entirely overlapped period between the
chronologies and different climate indices:

Ge =Go - Gp (4)

Where G, stands for the growth change pattern, G, represents the observed tree
radial growth, and G,, stands for the predicted growth estimated by the null linear
model.

The second method relied on the calculation of a PAC. The partial
autocorrelation function gives the partial correlation of a time series with its own
lagged values while conditioning the values of the time series for all shorter times.
For example, the partial autocorrelation of order 3 measures the effect (linear
dependence) of y; on y;, after removing the effect of y,;; and y;, on y;, 3

Yers = Oo¥e T 0¥y T 0¥y T € (5)

The estimate of a, will give the value of the partial autocorrelation of order 3.
Extending the regression with k additional lags, the estimate of the last term will
give the partial autocorrelation of order k.

The null model for predicting growth depends on the strength of the linear
regressions between tree radial growth and the climate indices. Given that an
uninformative null model (the regression slope does not significantly differ from
zero) would give a perfect recovery after climate extremes, we confined our analysis
to the sites/grids that showed significant and positive correlations between the
climate indices.

To test whether non-climatic drivers (e.g., CO, fertilization, nutrient availability
changes, or disturbance history) with potentially positive autocorrelation in
chronologies influence the findings of this study, we constructed a random null
model. In this random null model, we firstly randomly picked the same number of
years for each site than extreme wet years to obtain fake wet extremes. Then, we
conducted the same analysis of growth change anomalies after each selected year
and repeated this process 5000 times, and concluded to no significant growth
change. This suggests that random non-climate effects do not affect our main
conclusions (Supplementary Fig. 5). This method was successfully used in previous
studies to test random non-climate effects on tree growth!2.

Data availability
The authors declare that the source data supporting the findings of this study are
provided within the paper.
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