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A B S T R A C T   

Background: In the past, dentistry heavily relied on manual image analysis and diagnostic pro-
cedures, which could be time-consuming and prone to human error. The advent of artificial in-
telligence (AI) has brought transformative potential to the field, promising enhanced accuracy 
and efficiency in various dental imaging tasks. This systematic review and meta-analysis aimed to 
comprehensively evaluate the applications of AI in dental imaging modalities, focusing on in-vitro 
studies. 
Methods: A systematic literature search was conducted, in accordance with the PRISMA guide-
lines. The following databases were systematically searched: PubMed/MEDLINE, Embase, Web of 
Science, Scopus, IEEE Xplore, Cochrane Library, CINAHL (Cumulative Index to Nursing and Allied 
Health Literature), and Google Scholar. The meta-analysis employed fixed-effects models to assess 
AI accuracy, calculating odds ratios (OR) for true positive rate (TPR), true negative rate (TNR), 
positive predictive value (PPV), and negative predictive value (NPV) with 95 % confidence in-
tervals (CI). Heterogeneity and overall effect tests were applied to ensure the reliability of the 
findings. 
Results: 9 studies were selected that encompassed various objectives, such as tooth segmentation 
and classification, caries detection, maxillofacial bone segmentation, and 3D surface model cre-
ation. AI techniques included convolutional neural networks (CNNs), deep learning algorithms, 
and AI-driven tools. Imaging parameters assessed in these studies were specific to the respective 
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dental tasks. The analysis of combined ORs indicated higher odds of accurate dental image as-
sessments, highlighting the potential for AI to improve TPR, TNR, PPV, and NPV. The studies 
collectively revealed a statistically significant overall effect in favor of AI in dental imaging 
applications. 
Conclusion: In summary, this systematic review and meta-analysis underscore the transformative 
impact of AI on dental imaging. AI has the potential to revolutionize the field by enhancing ac-
curacy, efficiency, and time savings in various dental tasks. While further research in clinical 
settings is needed to validate these findings and address study limitations, the future implications 
of integrating AI into dental practice hold great promise for advancing patient care and the field 
of dentistry.   

1. Introduction 

In recent years, artificial intelligence (AI) has made substantial inroads into various fields of medicine and healthcare, revolu-
tionizing diagnostic and treatment approaches [1]. Dentistry, as a crucial domain of healthcare, has not remained untouched by the 
transformative potential of AI [2]. AI applications in dentistry have been particularly promising, showing potential for enhancing the 
accuracy and efficiency of various dental imaging modalities. Dental imaging is fundamental for diagnosis, treatment planning, and 
monitoring of oral health conditions, and the integration of AI could significantly impact the precision and speed of these processes [3] 
(Table 1). 

The rapid advancement of artificial intelligence (AI) technology is instigating transformative changes across various domains, and 

Table 1 
Abbreviations used in this review. 
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the field of oral health is no exception [4,5]. This transformation is particularly notable due to the prevalent use of digitized imaging 
and electronic health records within dentistry, providing a fertile ground for the implementation of AI algorithms [6,7]. While this 
scientific frontier is relatively nascent, it demands prudent exploration. Human supervision remains imperative, acting as a safeguard 
against untoward consequences. However, it is pivotal to recognize and comprehensively grasp the genuine advantages that this 
technology offers within the realm of healthcare [8–10]. 

The confluence of abundant clinical dental images and the evolution of deep learning algorithms in recent years has catalyzed 
substantial enhancements in their precision and resilience, significantly bolstering their utility in diagnosing a spectrum of dental 
conditions. At the forefront of these AI-driven transformations are convolutional neural networks (CNN) [11–13], a category of deep 
learning neural networks celebrated for their exceptional accuracy and adeptness in assimilating and discerning salient features from 
images. A CNN comprises multiple strata, encompassing convolutional, pooling, and fully connected layers. Their prowess in image 
classification tasks is well-documented, transcending medical image analysis into other domains such as object detection and natural 
language processing. 

Among the innovative strategies employed is “transfer learning,” a machine learning paradigm that leverages pretrained models, 
notably CNN models. These models have already gleaned pertinent features from extensive image datasets [14–18]. Subsequently, 
these pretrained models undergo fine-tuning on a more specialized dataset tailored for a particular task. The foundation laid by these 
pretrained image models accelerates the training process for new models. Within the realm of oral health applications, two pretrained 
image architectures, GoogLeNet Inception [19] and ResNet [20], hold particular prominence. The Google Net Inception-v3 archi-
tecture, introduced in 2014, garnered acclaim for its exceptional performance across imaging-related applications. Trained on a 
comprehensive ImageNet dataset encompassing over a million images across 1000 object categories, this architecture’s original design 
incorporates 22 deep layers, enabling the extraction of diverse scale features by applying convolutional filters of varying dimensions 
within the same layers [21–24]. 

AI can analyze large volumes of data and identify patterns that may be missed by human observers-therefore, in imaging di-
agnostics, as far as the literature is concerned in this regard, AI can offer precision and speed that significantly surpass traditional 
methods [11–13]. Similarly, AI can be used to predict disease progression based on patient data, enabling more personalized and 
effective treatment plans [21–24]. In dentistry and surgical fields, AI can assist in treatment planning, such as the design of orthodontic 
treatments or surgical interventions, by creating accurate 3D models and simulating outcomes. This could lead to more precise, 
patient-specific treatments and potentially better outcomes [21–24]. Fig. 1 shows the different imaging modalities utilised across the 
healthcare and dental domains. 

This investigation seeks to rigorously examine the existing body of literature pertaining to AI applications in dental imaging, 
focusing specifically on in-vitro studies. In-vitro studies offer controlled environments for assessing AI algorithms’ performance in 
isolation, free from confounding variables often encountered in clinical settings. By exclusively considering in-vitro studies, this review 
aims to provide a highly focused and robust evaluation of AI’s potential in dental imaging across different parameters. 

Fig. 1. Different imaging modalities utilised across the healthcare and dental domains.  
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2. Materials and methods 

2.1. Review design 

The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) protocol [25] was employed in this investi-
gation. The initial step in implementing the PRISMA protocol involved a comprehensive and systematic search of the literature. 

The PECO (Population, Exposure, Comparator, Outcome) protocol for the systematic review was defined to guide the research 
question, study selection criteria, and outcome measures. 

Population (P): In this systematic review, the population of interest was defined as in-vitro studies related to dental imaging 
modalities. These studies involve artificial intelligence (AI) applications within the context of dental image analysis. The population 
included a broad spectrum of dental imaging techniques, such as cone-beam computed tomography (CBCT), panoramic radiography 
(PR), and other dental radiographic modalities (Fig. 2). 

Exposure (E): The exposure of interest was the utilisation of artificial intelligence (AI) in the analysis and interpretation of dental 
images. AI encompasses various machine learning and deep learning techniques employed for tasks such as image segmentation, 
classification, disease diagnosis, and anatomical structure detection. The review sought to explore how AI technology has been applied 
to enhance the accuracy and efficiency of dental image analysis in in-vitro settings. 

Comparator (C): In the context of in-vitro studies, the systematic review did not necessarily involve a specific comparator group, as 
the primary focus was on assessing the performance and accuracy of AI-based methods in dental imaging. However, for studies that 
provided a basis for comparison, traditional or manual methods of dental image analysis were considered as comparators to evaluate 
the added value of AI. 

Outcome (O): The primary outcomes of interest in this review encompassed a range of accuracy measures, depending on the 
specific AI applications in each study. These included metrics such as true positive rate (TPR), true negative rate (TNR), positive 
predictive value (PPV), negative predictive value (NPV), sensitivity, specificity, diagnostic accuracy, and other relevant performance 
indicators. Additionally, the review aimed to assess the time efficiency of AI-based dental image analysis, when reported. 

2.2. Database search protocol 

Eight prominent databases were searched, and MeSH (Medical Subject Headings) keywords along with Boolean operators were 
used to optimize the search strategy. Boolean operators, including “AND,” “OR,” and “NOT,” were used to combine search terms 

Fig. 2. PRISMA flowchart representation of the review’s article selection framework.  
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Table 2 
Search strings implemented across the different databases.  

Database Search String 

PubMed/ 
MEDLINE 

(“Artificial Intelligence" [MeSH] OR “Machine Learning" [MeSH] OR “Deep Learning" [MeSH] OR “Neural Networks (Computer)" [MeSH] OR 
“Computer Vision" [MeSH] OR “Image Processing, Computer-Assisted" [MeSH] OR “Pattern Recognition, Automated" [MeSH] OR “Natural 
Language Processing" [MeSH] OR “Artificial Neural Networks” OR “Machine Learning Algorithms” OR “Deep Neural Networks” OR 
“Computer-Aided Diagnosis” OR “AI” OR “ML” OR “DL”) AND (“Radiography, Dental" [MeSH] OR “Cone-Beam Computed Tomography" 
[MeSH] OR “Panoramic Radiography" [MeSH] OR “Dental Radiography" [MeSH] OR “Dental Imaging" [MeSH] OR “Dental Radiology" 
[MeSH] OR “Dental Cone Beam Computed Tomography” OR “Dental Panoramic Radiography” OR “Dental Image Analysis” OR “Radiographic 
Image Interpretation, Computer-Assisted” OR “Image-Guided Surgery” OR ″3D Imaging” OR “Radiological Imaging”) AND (“Dentistry" 
[MeSH] OR “Dental Care" [MeSH] OR “Dental Health Services" [MeSH] OR “Dental Clinics" [MeSH] OR “Oral Health" [MeSH] OR “Oral 
Medicine" [MeSH] OR “Oral Radiology" [MeSH] OR “Oral Diagnosis” OR “Oral Diseases” OR “Dental Practice” OR “Dentists”) AND (“In Vitro 
Techniques" [MeSH] OR “Laboratory Techniques and Procedures" [MeSH] OR “Laboratory Diagnosis" [MeSH] OR “Laboratory Infection" 
[MeSH] OR “In Vitro Diagnostics” OR “Laboratory Testing” OR “In Vitro Analysis” OR “In Vitro Models") 

Embase (“Artificial Intelligence" [MeSH] OR “Machine Learning" [MeSH] OR “Deep Learning" [MeSH] OR “Neural Networks (Computer)" [MeSH] OR 
“Computer Vision" [MeSH] OR “Image Processing, Computer-Assisted" [MeSH] OR “Pattern Recognition, Automated" [MeSH] OR “Natural 
Language Processing" [MeSH] OR “Artificial Neural Networks” OR “Machine Learning Algorithms” OR “Deep Neural Networks” OR 
“Computer-Aided Diagnosis” OR “AI” OR “ML” OR “DL”) AND (“Radiography, Dental" [MeSH] OR “Cone-Beam Computed Tomography" 
[MeSH] OR “Panoramic Radiography" [MeSH] OR “Dental Radiography" [MeSH] OR “Dental Imaging" [MeSH] OR “Dental Radiology" 
[MeSH] OR “Dental Cone Beam Computed Tomography” OR “Dental Panoramic Radiography” OR “Dental Image Analysis” OR “Radiographic 
Image Interpretation, Computer-Assisted” OR “Image-Guided Surgery” OR ″3D Imaging” OR “Radiological Imaging”) AND (“Dentistry" 
[MeSH] OR “Dental Care" [MeSH] OR “Dental Health Services" [MeSH] OR “Dental Clinics" [MeSH] OR “Oral Health" [MeSH] OR “Oral 
Medicine" [MeSH] OR “Oral Radiology" [MeSH] OR “Oral Diagnosis” OR “Oral Diseases” OR “Dental Practice” OR “Dentists”) AND (“In Vitro 
Techniques" [MeSH] OR “Laboratory Techniques and Procedures" [MeSH] OR “Laboratory Diagnosis" [MeSH] OR “Laboratory Infection" 
[MeSH] OR “In Vitro Diagnostics” OR “Laboratory Testing” OR “In Vitro Analysis” OR “In Vitro Models") 

Web of Science TS=(“Artificial Intelligence” OR “Machine Learning” OR “Deep Learning” OR “Neural Networks” OR “Computer Vision” OR “Image 
Processing” OR “Pattern Recognition” OR “Natural Language Processing” OR “Artificial Neural Networks” OR “Machine Learning Algorithms” 
OR “Deep Neural Networks” OR “Computer-Aided Diagnosis” OR “AI” OR “ML” OR “DL”) AND TS=(“Radiography, Dental” OR “Cone-Beam 
Computed Tomography” OR “Panoramic Radiography” OR “Dental Radiography” OR “Dental Imaging” OR “Dental Radiology” OR “Dental 
Cone Beam Computed Tomography” OR “Dental Panoramic Radiography” OR “Dental Image Analysis” OR “Radiographic Image 
Interpretation, Computer-Assisted” OR “Image-Guided Surgery” OR ″3D Imaging” OR “Radiological Imaging”) AND TS=(“Dentistry” OR 
“Dental Care” OR “Dental Health Services” OR “Dental Clinics” OR “Oral Health” OR “Oral Medicine” OR “Oral Radiology” OR “Oral 
Diagnosis” OR “Oral Diseases” OR “Dental Practice” OR “Dentists”) AND TS=(“In Vitro Techniques” OR “Laboratory Techniques and 
Procedures” OR “Laboratory Diagnosis” OR “Laboratory Infection” OR “In Vitro Diagnostics” OR “Laboratory Testing” OR “In Vitro Analysis” 
OR “In Vitro Models") 

Scopus TS=(“Artificial Intelligence” OR “Machine Learning” OR “Deep Learning” OR “Neural Networks” OR “Computer Vision” OR “Image 
Processing” OR “Pattern Recognition” OR “Natural Language Processing” OR “Artificial Neural Networks” OR “Machine Learning Algorithms” 
OR “Deep Neural Networks” OR “Computer-Aided Diagnosis” OR “AI” OR “ML” OR “DL”) AND TS=(“Radiography, Dental” OR “Cone-Beam 
Computed Tomography” OR “Panoramic Radiography” OR “Dental Radiography” OR “Dental Imaging” OR “Dental Radiology” OR “Dental 
Cone Beam Computed Tomography” OR “Dental Panoramic Radiography” OR “Dental Image Analysis” OR “Radiographic Image 
Interpretation, Computer-Assisted” OR “Image-Guided Surgery” OR ″3D Imaging” OR “Radiological Imaging”) AND TS=(“Dentistry” OR 
“Dental Care” OR “Dental Health Services” OR “Dental Clinics” OR “Oral Health” OR “Oral Medicine” OR “Oral Radiology” OR “Oral 
Diagnosis” OR “Oral Diseases” OR “Dental Practice” OR “Dentists”) AND TS=(“In Vitro Techniques” OR “Laboratory Techniques and 
Procedures” OR “Laboratory Diagnosis” OR “Laboratory Infection” OR “In Vitro Diagnostics” OR “Laboratory Testing” OR “In Vitro Analysis” 
OR “In Vitro Models") 

IEEE Xplore AI OR “Machine Learning” OR “Deep Learning” OR “Neural Networks” OR “Computer Vision” OR “Image Processing” OR “Pattern 
Recognition” OR “Natural Language Processing” OR “Artificial Neural Networks” OR “Machine Learning Algorithms” OR “Deep Neural 
Networks” OR “Computer-Aided Diagnosis” OR “ML” OR “DL” AND (“Radiography, Dental” OR “Cone-Beam Computed Tomography” OR 
“Panoramic Radiography” OR “Dental Radiography” OR “Dental Imaging” OR “Dental Radiology” OR “Dental Cone Beam Computed 
Tomography” OR “Dental Panoramic Radiography” OR “Dental Image Analysis” OR “Radiographic Image Interpretation, Computer-Assisted” 
OR “Image-Guided Surgery” OR ″3D Imaging” OR “Radiological Imaging”) AND (“Dentistry” OR “Dental Care” OR “Dental Health Services” 
OR “Dental Clinics” OR “Oral Health” OR “Oral Medicine” OR “Oral Radiology” OR “Oral Diagnosis” OR “Oral Diseases” OR “Dental Practice” 
OR “Dentists”) AND (“In Vitro Techniques” OR “Laboratory Techniques and Procedures” OR “Laboratory Diagnosis” OR “Laboratory 
Infection” OR “In Vitro Diagnostics” OR “Laboratory Testing” OR “In Vitro Analysis” OR “In Vitro Models") 

Cochrane Library AI OR “Machine Learning” OR “Deep Learning” OR “Neural Networks” OR “Computer Vision” OR “Image Processing” OR “Pattern 
Recognition” OR “Natural Language Processing” OR “Artificial Neural Networks” OR “Machine Learning Algorithms” OR “Deep Neural 
Networks” OR “Computer-Aided Diagnosis” OR “ML” OR “DL” AND (“Radiography, Dental” OR “Cone-Beam Computed Tomography” OR 
“Panoramic Radiography” OR “Dental Radiography” OR “Dental Imaging” OR “Dental Radiology” OR “Dental Cone Beam Computed 
Tomography” OR “Dental Panoramic Radiography” OR “Dental Image Analysis” OR “Radiographic Image Interpretation, Computer-Assisted” 
OR “Image-Guided Surgery” OR ″3D Imaging” OR “Radiological Imaging”) AND (“Dentistry” OR “Dental Care” OR “Dental Health Services” 
OR “Dental Clinics” OR “Oral Health” OR “Oral Medicine” OR “Oral Radiology” OR “Oral Diagnosis” OR “Oral Diseases” OR “Dental Practice” 
OR “Dentists”) AND (“In Vitro Techniques” OR “Laboratory Techniques and Procedures” OR “Laboratory Diagnosis” OR “Laboratory 
Infection” OR “In Vitro Diagnostics” OR “Laboratory Testing” OR “In Vitro Analysis” OR “In Vitro Models") 

CINAHL AI OR “Machine Learning” OR “Deep Learning” OR “Neural Networks” OR “Computer Vision” OR “Image Processing” OR “Pattern 
Recognition” OR “Natural Language Processing” OR “Artificial Neural Networks” OR “Machine Learning Algorithms” OR “Deep Neural 
Networks” OR “Computer-Aided Diagnosis” OR “ML” OR “DL” AND (“Radiography, Dental” OR “Cone-Beam Computed Tomography” OR 
“Panoramic Radiography” OR “Dental Radiography” OR “Dental Imaging” OR “Dental Radiology” OR “Dental Cone Beam Computed 
Tomography” OR “Dental Panoramic Radiography” OR “Dental Image Analysis” OR “Radiographic Image Interpretation, Computer-Assisted” 
OR “Image-Guided Surgery” OR ″3D Imaging” OR “Radiological Imaging”) AND (“Dentistry” OR “Dental Care” OR “Dental Health Services” 
OR “Dental Clinics” OR “Oral Health” OR “Oral Medicine” OR “Oral Radiology” OR “Oral Diagnosis” OR “Oral Diseases” OR “Dental Practice” 

(continued on next page) 
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effectively. The main concepts included “artificial intelligence,” “imaging modalities,” “dentistry,” and “in-vitro studies” as shown in 
Table 2. 

The search strings for each database were adapted to the specific syntax and indexing rules of that database. The inclusion of MeSH 
terms and free-text keywords ensured a comprehensive search for relevant articles. Additionally, the search strategy was piloted and 
refined through an iterative process to maximize sensitivity while maintaining specificity. 

3. Selection criteria 

3.1. Inclusion criteria  

1. Study design: In-vitro studies that explore the application of AI in dental imaging were included. This encompasses laboratory- 
based experiments and simulations. 

2. AI techniques: Studies that utilize various AI techniques such as artificial neural networks, CNN, ML, DL, and other AI method-
ologies for dental image analysis were considered.  

3. Imaging modalities: Studies involving a wide range of dental imaging modalities, including but not limited to CBCT, panoramic 
radiography, dental radiographs, and other radiological imaging techniques, were included.  

4. Dental context: Research conducted in the context of dentistry, oral health, and dental practice was incorporated. 
5. Outcome measures: Studies reporting quantitative measures of AI performance, including sensitivity, specificity, positive pre-

dictive value (PPV), negative predictive value (NPV), true-positive rate (TPR), true-negative rate (TNR), odds ratio (OR), or related 
accuracy metrics, were considered. 

3.2. Exclusion criteria 

1. Non-In vitro studies: Studies that do not fall under the category of in-vitro experiments, such as clinical trials, case reports, re-
views, and meta-analyses, were excluded.  

2. Non-AI studies: Research that does not involve AI or machine learning techniques for dental imaging analysis was not considered.  
3. Non-dental imaging: Studies focusing on imaging modalities unrelated to dentistry or oral health were excluded.  
4. Non-English studies: Publications not available in the English language were omitted due to language constraints.  
5. Insufficient data: Studies lacking essential data or performance metrics necessary for analysis were excluded. 

3.3. Variable extraction protocol 

A structured data extraction form was developed, including fields for key study characteristics, AI techniques employed, imaging 
modalities, sample size, and outcome measures (e.g., sensitivity, specificity, PPV, NPV, TPR, TNR, OR, 95 % CIs). Prior to data 
extraction, all reviewers underwent rigorous training sessions to understand the form’s components, definitions, and data extraction 
process. These training sessions aimed to standardize data extraction procedures among reviewers. Two independent reviewers sys-
tematically extracted data from selected studies, ensuring unbiased and comprehensive data collection. Reviewers assessed the quality 
of data reported in the selected studies, including checking for completeness, consistency, and accuracy of extracted information. Any 
discrepancies or disagreements between the independent reviewers were resolved through discussion and consensus. If needed, a third 
reviewer was consulted to achieve a consensus. Extracted data were synthesized, tabulated, and analyzed to address the review’s 
research questions and objectives. Forest plots were generated to represent the meta-analysis results. 

To assess the interrater reliability of data extraction, a subset of 20 % of the included studies was randomly selected, and two 
independent reviewers re-evaluated and extracted data from these studies. The interrater reliability was determined using Cohen’s 
Kappa statistic, which measures the degree of agreement between two raters beyond chance. A Kappa value of 0.81 was achieved, 
indicating substantial agreement between the reviewers. Any remaining discrepancies were resolved through discussion and 
consensus. 

Table 2 (continued ) 

Database Search String 

OR “Dentists”) AND (“In Vitro Techniques” OR “Laboratory Techniques and Procedures” OR “Laboratory Diagnosis” OR “Laboratory 
Infection” OR “In Vitro Diagnostics” OR “Laboratory Testing” OR “In Vitro Analysis” OR “In Vitro Models") 

Google Scholar AI OR “Machine Learning” OR “Deep Learning” OR “Neural Networks” OR “Computer Vision” OR “Image Processing” OR “Pattern 
Recognition” OR “Natural Language Processing” OR “Artificial Neural Networks” OR “Machine Learning Algorithms” OR “Deep Neural 
Networks” OR “Computer-Aided Diagnosis” OR “ML” OR “DL” AND (“Radiography, Dental” OR “Cone-Beam Computed Tomography” OR 
“Panoramic Radiography” OR “Dental Radiography” OR “Dental Imaging” OR “Dental Radiology” OR “Dental Cone Beam Computed 
Tomography” OR “Dental Panoramic Radiography” OR “Dental Image Analysis” OR “Radiographic Image Interpretation, Computer-Assisted” 
OR “Image-Guided Surgery” OR ″3D Imaging” OR “Radiological Imaging”) AND (“Dentistry” OR “Dental Care” OR “Dental Health Services” 
OR “Dental Clinics” OR “Oral Health” OR “Oral Medicine” OR “Oral Radiology” OR “Oral Diagnosis” OR “Oral Diseases” OR “Dental Practice” 
OR “Dentists”) AND (“In Vitro Techniques” OR “Laboratory Techniques and Procedures” OR “Laboratory Diagnosis” OR “Laboratory 
Infection” OR “In Vitro Diagnostics” OR “Laboratory Testing” OR “In Vitro Analysis” OR “In Vitro Models")  
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3.3.1. Bias assessment 
The bias assessment protocol for this systematic review, was adapted from the CONSORT (Consolidated Standards of Reporting 

Trials) tool [26], with modifications tailored to in-vitro studies. This protocol aimed to comprehensively evaluate the risk of bias 
within the selected studies and ensure the reliability of the review’s findings. In adapting the CONSORT tool for in-vitro studies, the 
focus shifted from patient-related biases to potential biases related to the experimental design and methodology employed in these 
studies as represented through Fig. 3. Specific attention was given to aspects like randomization and allocation concealment in the 
context of in-vitro experimentation, as well as blinding, which could affect the objectivity of outcome assessments. 

3.4. Statistical analysis 

The meta-analysis for this review was performed using RevMan 5 (version 5.4.1) software to assess the accuracy of AI in dental 
imaging in terms of True Positive Rate (TPR), True Negative Rate (TNR), Positive Predictive Value (PPV), and Negative Predictive 
Value (NPV). Under a Fixed Effects (FE) model with 95 % Confidence Intervals (CI), this protocol involved systematic data collection 
and extraction of relevant statistics from the included in-vitro studies, calculation of Odds Ratios (OR) for each outcome measure, 
generation of separate forest plots for TPR, TNR, PPV, and NPV, assessment of heterogeneity and potential publication bias, and 
interpretation of the results to provide a comprehensive quantitative assessment of AI accuracy in dental imaging across these critical 
dimensions. 

4. Results 

Initially, an extensive search was conducted across multiple databases, yielding a substantial number of records (n = 617). 
Simultaneously, an active process of identifying new studies was carried out through websites (n = 109) and citation searching (n =
58). Prior to the screening phase, records were meticulously reviewed, resulting in the removal of duplicate records (n = 204) and 
records marked as ineligible by automation tools (n = 108). No records were excluded for other reasons at this stage. Following these 
preparatory steps, the records screened amounted to 305. During the screening phase, these 305 records underwent rigorous 
assessment for eligibility. This meticulous scrutiny led to the exclusion of 305 records that did not meet the predetermined inclusion 
criteria. Simultaneously, reports sought for retrieval amounted to 164, while 113 reports could not be retrieved. 

In parallel, the identification of new studies via other methods led to the assessment of 159 reports for eligibility. Within this subset, 
67 literature reviews, 46 editorials, and 37 seminar articles were excluded, aligning with the study’s focus on primary research articles. 
This comprehensive curation and scrutiny culminated in the inclusion of nine in-vitro papers [27–37] in the review, which met the 
specified eligibility criteria. Table 3 presents the overview of the included in-vitro papers [19–27]. These studies collectively showcase 
the diverse applications and impressive performance of AI across different dental imaging objectives. 

Ayidh et al. [27] focused on the segmentation and classification of teeth with orthodontic brackets on CBCT images. They employed 
a Multiclass CNN-based tool, and their results, including an IoU of 0.99 and high recall and precision rates, demonstrated exceptional 
accuracy in tooth segmentation and classification, surpassing ground truth annotations. Bui et al. [28] explored the detection of caries 
using dental radiographs with a deep pre-trained model and traditional ML algorithms. The AI achieved an accuracy of 91.70 %, 
sensitivity of 90.43 %, and specificity of 92.67 %, indicating its superior performance in caries detection compared to conventional 
methods. Fontenele et al. [29] aimed to automate 3D maxillary alveolar bone segmentation on CBCT images using a CNN model. While 
their manual segmentation was highly accurate, AI provided a significant time-saving advantage, with only a slight reduction in 
accuracy. Gerhardt et al. [30] developed an AI-driven tool for the automated detection and labeling of teeth and edentulous regions on 
CBCT images. Their AI achieved near-perfect detection and labeling accuracy, showcasing its potential in streamlining such tasks. 
Nogueira et al. [31] introduced integrated CNN models for the segmentation of the maxillary complex, sinuses, and upper dentition 
from CBCT images. Their AI demonstrated superior consistency and speed in creating maxillary virtual patient models, supported by 

Fig. 3. Evaluation of bias in the selected in-vitro papers.  
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Table 3 
Characteristics pertaining to utilisation of AI across different dental imaging modalities.  

Author ID Sample 
size (n) 

Objectives Type of AI assessed Imaging 
parameters 
assessed 

AI accuracy observed (in 
terms of statistics) 

Inference assessed 

Ayidh et al. 
[27] 

215 
CBCT 
scans 

Segmentation & 
classification of teeth 
with orthodontic 
brackets on CBCT images 

Multiclass CNN- 
based tool 

NewTom CBCT 
device 

IoU: 0.99, Dice: 0.99 ± 0.02, 
recall: 99.9 %, precision: 99 % 

AI achieved exceptional 
segmentation and 
classification accuracy 
compared to ground 
truth. 

Bui et al. 
[28] 

533 
CBCT 
scans 

Detection of caries using 
dental radiographs 

Deep pre-trained 
model, SVM, KNN, 
DT, NB, RF 

Not specified Accuracy: 91.70 %, 
Sensitivity: 90.43 %, 
Specificity: 92.67 % 

AI demonstrated higher 
accuracy and specificity 
in caries detection than 
conventional methods. 

Fontenele 
et al. 
[29] 

141 
CBCT 
scans 

Automated 3D maxillary 
alveolar bone 
segmentation on CBCT 
images 

CNN model, manual 
segmentation 

Not specified Manual: 95 % HD: 0.20 ±
0.05 mm, IoU: 95 % ± 3.0, 
DSC: 97 % ± 2.0, AI: 95 % 
HD: 0.27 ± 0.03 mm, IoU: 92 
% ± 1.0, DSC: 96 % ± 1.0 

AI provided fast and 
highly accurate 
segmentation, offering a 
substantial time-saving 
advantage. 

Gerhardt 
et al. 
[30] 

175 
CBCT 
scans 

Automated detection and 
labelling of teeth and 
edentulous regions on 
CBCT images 

AI-Driven Tool 
(Virtual Patient 
Creator, Relu BV, 
Leuven, Belgium) 

Not specified Detection Accuracy: 99.7 %, 
Labelling Accuracy: 99 %, 
Segmentation Accuracy (IoU): 
0.96/0.97 

AI achieved near-perfect 
accuracy in detecting and 
labeling teeth and 
edentulous regions. 

Nogueira 
et al. 
[31] 

40 CBCT 
scans 

Integrated segmentation 
of maxillary complex, 
maxillary sinuses, and 
upper dentition from 
CBCT images 

Integrated CNN 
models 

Different 
scanning 
parameters 

Qualitative scores: 85 % 
scored 7–10, 15 % scored 3–6, 
DSC: 99.3 %, HD: 0.045 mm 

AI demonstrated superior 
consistency and speed in 
creating maxillary virtual 
patient models. 

Preda et al. 
[32] 

144 
CBCT 
scans 

Automated maxillofacial 
bone segmentation from 
CBCT images 

3D U-Net (CNN) 
model 

Two CBCT 
devices 

Time for automated 
segmentation: 39.1 s, DSC: 
92.6 %, Inter-observer DSC: 
99.7 % 

AI significantly reduced 
segmentation time while 
maintaining high 
accuracy and 
consistency. 

Shaheeen 
et al. 
[33] 

186 
CBCT 
scans 

Automatic tooth 
segmentation and 
classification from CBCT 
images 

AI framework, 3D 
U-Net 

Different 
acquisition 
settings 

Segmentation Precision: 0.98 
± 0.02, Recall: 0.83 ± 0.05, 
HD: 0.56 ± 0.38 mm 

AI achieved precise tooth 
segmentation and 
classification, 
outperforming expert 
refinement. 

Verhelst 
et al. 
[34] 

160 
CBCT 
scans 

Automatic creation of 3D 
surface models of the 
human mandible from 
CBCT images 

Layered deep 
learning algorithm 

Anonymized 
full skull CBCT 
scans 

Time for segmentation: 17s, 
IoU: 94.6 %, DSC: 94.4 %, HD: 
Not specified 

AI exhibited significantly 
faster mandible surface 
model creation with 
comparable accuracy. 

Zhu et al. 
[35] 

2278 
scans 

Diagnosis of multiple 
dental diseases on 
panoramic radiographs 
(PRs) 

BDU-Net, nnU-Net Not specified Sensitivity, Specificity, AUC: 
Vary by disease, Diagnostic 
time: Shorter than dentists 

AI demonstrated 
comparable or better 
diagnostic performance 
in multiple dental disease 
diagnoses.  

Fig. 4. Accuracy of AI in terms of TPR and TNR in assessed images.  
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high qualitative scores and precision metrics. Preda et al. [32] addressed automated maxillofacial bone segmentation from CBCT 
images using a 3D U-Net (CNN) model. AI significantly reduced segmentation time while maintaining high accuracy and inter-observer 
consistency, illustrating its potential for time-efficient and reliable segmentation. Shaheeen et al. [33] developed an AI framework for 
automatic tooth segmentation and classification from CBCT images. AI achieved precise tooth segmentation and classification, out-
performing expert refinement, as indicated by high precision and recall rates. Verhelst et al. [34] focused on the automatic creation of 
3D surface models of the human mandible from CBCT images using a layered deep learning algorithm. AI exhibited significantly faster 
mandible surface model creation with comparable accuracy, reducing the segmentation time considerably. Zhu et al. [35] investigated 
the diagnosis of multiple dental diseases on PRs using BDU-Net and nnU-Net models. Their AI demonstrated comparable or superior 
diagnostic performance to human dentists in various diseases, while also significantly reducing diagnostic time [38–42]. 

The forest plot in Fig. 4 presents the analysis of the OR to evaluate the accuracy of different AI protocols in terms of TPR and TNR 

Fig. 5. Accuracy of AI in terms of PPV and NPV in assessed images.  
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across several dental imaging studies. The forest plot presents the combined analysis of all studies in the “Total (95 % CI)" row. Here, 
the combined OR is 0.89 [0.80, 0.98]. This means that, overall, AI was associated with 11 % higher odds of accurate dental image 
assessments. The 95 % CI does not include 1, signifying a statistically significant difference in favor of the reference methods. In terms 
of heterogeneity, the Chi2 statistic is 2.30 with 8 degrees of freedom (P = 0.97), and the I2 statistic is 0 %, indicating low heterogeneity 
among the studies. The test for overall effect shows a Z score of 2.27 (P = 0.02), indicating a statistically significant overall effect in 
favor of the reference methods. 

Fig. 5 presents the forest plot displaying the OR to assess the accuracy of AI in terms of PPV and NPV across various dental imaging 
studies. The combined analysis of all studies in the “Total (95 % CI)" row reveals an overall OR of 0.87 [0.79, 0.96]. This indicates that, 
overall, AI was associated with 13 % higher odds of accuracy in PPV and NPV. The 95 % CI does not include 1, signifying a statistically 
significant difference in favor of the reference methods. In terms of heterogeneity, the Chi2 statistic is 3.28 with 8 degrees of freedom 
(P = 0.92), and the I2 statistic is 0 %, indicating low heterogeneity among the studies. The test for overall effect shows a Z score of 2.85 
(P = 0.004), indicating a statistically significant overall effect in favor of the reference methods. 

5. Discussion 

The significance of this review lies in its profound implications for the field of dental imaging. Through a comprehensive review and 
meta-analysis of in-vitro studies, this research has uncovered several key findings that have far-reaching implications for both dental 
practice and the broader domain of medical imaging. The findings have demonstrated the remarkable potential of AI applications in 
dental imaging. The findings showcase AI’s capability to achieve exceptional accuracy in tasks such as tooth segmentation, caries 
detection, and bone segmentation, surpassing the capabilities of traditional methods. This suggests that AI has the capacity to revo-
lutionize the diagnostic and treatment planning processes in dentistry. By enhancing accuracy and efficiency, AI can potentially lead to 
earlier disease detection, more precise treatment planning, and ultimately, better patient outcomes. Furthermore, this the versatility of 
AI in various aspects of dental imaging has also been elucidated. Whether it’s automating complex tasks like maxillary bone seg-
mentation, tooth labeling, or creating 3D surface models, AI consistently demonstrated its ability to reduce manual labor while 
maintaining or even improving accuracy. This not only holds promise for improving clinical workflows but also has the potential to 
lower the risk of human error in diagnosis and treatment. The meta-analysis of TPR, TNR, PPV, and NPV further underscores the 
potential of AI in dental imaging in terms of the statistically significant findings. This is of paramount importance for clinical decision- 
making and underscores AI’s potential to enhance diagnostic capabilities, thereby increasing the reliability of dental diagnoses. 

In terms of future implications, this study sets the stage for a paradigm shift in dental practice. Dentists and dental practitioners are 
likely to increasingly incorporate AI-driven tools and applications into their daily routines, thereby enhancing the accuracy and ef-
ficiency of dental diagnoses and treatment planning. The findings also emphasize the need for continued research and development in 
AI technology specifically tailored to the intricacies of dental imaging. Moreover, the study opens up opportunities for interdisciplinary 
collaboration between dentistry and computer science. Future research can explore the integration of AI with other cutting-edge 
technologies such as 3D printing and virtual reality, potentially leading to innovative solutions for dental prosthetics and surgical 
planning. 

Within the domain of dental imaging, deep learning methodologies have found versatile applications in tooth detection and 
classification, with a particular focus on CBCT and panoramic radiographs. These systems harness automated CAD outputs, signifi-
cantly expediting clinical decision-making processes and mitigating the time spent on charting within digital patient records [43,44]. 
Panoramic radiographs, a vital diagnostic tool, extend their utility beyond dental concerns to encompass the detection of systemic 
conditions like osteopenia and osteoporosis [45]. These systemic conditions have been associated with manifestations such as the 
reduction in mandibular width and erosion of the mandibular lower cortex [46,47]. Artificial intelligence, driven by studies leveraging 
MCW and mandibular cortical erosion findings from panoramic radiographs, has ventured into the realm of osteoporosis diagnosis, 
hinting at its prospective clinical application in diagnosing both osteopenia and osteoporosis [48,49]. One paper [50] contributed to 
this landscape by assessing the diagnostic prowess of a CNN-based CAD system for osteoporosis detection in panoramic radiographs. 
Their findings were promising, highlighting the potential of DCNN-based CAD systems in aiding early osteoporosis detection, similar to 
the findings of another study [51]. 

Bone age assessment, a critical task in pediatrics, has also witnessed the infusion of deep learning techniques. Dallora et al. noted 
the prevalence of automatic systems for bone age assessment, often employing region-based delineation in hand and wrist radiographs 
[52]. Deep learning models demonstrated a remarkable capacity to estimate bone age, akin to professional radiologists, thereby 
enhancing diagnostic efficiency and diminishing reading times while upholding diagnostic precision [52–55]. Shin et al. [56] extended 
these insights by assessing the clinical efficacy of a TW3-based fully automated bone age assessment system. Their methodology 
featured a VGGNet-BA CNN to classify skeletal maturity levels in ROI from hand-wrist radiographs of pediatric populations in Korea. 
This study underscored the potential utility of automated bone age assessment systems in clinical contexts, particularly for TW3-based 
assessments in children and adolescents aged 7–15 years [54–56][57,58]. 

Furthermore, the field has ventured into the domain of dental implant classification, with Sukegawa et al. spearheading an 
investigation into the deployment of deep neural networks for this purpose. Five deep CNN models were scrutinized, culminating in the 
determination that the finely tuned VGG16 model yielded the most promising outcomes for classifying dental implant systems [59,60]. 
Meanwhile, cephalometric analyses, a cornerstone of orthodontics, have also been reimagined through artificial intelligence. Earlier 
iterations of automatic cephalometric analysis systems lacked the accuracy requisite for clinical deployment [61]. Subsequent re-
finements encompassed novel algorithmic developments, effectively enhancing accuracy. In recent years, researchers have delved into 
the realm of 3D cephalometric landmark analysis, primarily leveraging CBCT images. These endeavors have highlighted the 
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heightened reliability of mid-sagittal plane landmarks in comparison to their bilateral counterparts, further elucidating the evolving 
landscape of dental imaging propelled by artificial intelligence [61–66]. 

One pertinent area of concern which arises when talking about utilisation of AI imaging modalities in real-world clinical scenario is 
the quality of the image generated. For example, in the study by Ayidh et al. [19], the quality of CBCT scans directly influences the 
segmentation and classification accuracy of orthodontic brackets. Low-quality images can lead to errors in AI’s predictions or di-
agnoses. The anatomical structure varies significantly among patients. This can pose challenges for AI models in terms of generaliz-
ability, as demonstrated in the studies by Fontenele et al. [21] and Preda et al. [24] where the AI had to perform automated 3D 
maxillary alveolar bone segmentation and maxillofacial bone segmentation respectively from CBCT images. The complexity of dental 
structures and diseases adds to the difficulty of performing accurate diagnoses. This is evident in the study by Zhu et al. [27] where the 
AI had to diagnose multiple dental diseases from panoramic radiographs. Moreover, in many cases, such as in the study by Verhelst 
et al. [26] where the AI had to create 3D surface models of the human mandible, there is a need for rapid processing of images without 
compromising accuracy. This balance can be difficult to achieve. 

Despite the valuable insights provided through this review, several limitations should be considered when interpreting its findings. 
One notable limitation is the focus on in-vitro studies. While these controlled laboratory studies offer valuable insights into the po-
tential of AI in dental imaging, they do not fully replicate the complexities of real-world clinical scenarios. Dental diagnoses and 
treatment planning often involve various confounding factors, including patient-specific variations and the dynamic nature of oral 
conditions. Therefore, the findings may not completely translate to the clinical setting, and further research involving in-vivo studies 
and clinical trials is necessary to validate the real-world applicability of AI. Another limitation pertains to the heterogeneity in the 
included studies. The studies encompassed a wide range of AI models, imaging modalities, and dental tasks, which introduced inherent 
variability. While the use of a fixed-effects model in the meta-analysis helped mitigate this issue, it may not completely account for the 
heterogeneity among studies, potentially affecting the generalizability of the results. The generalizability of the findings is further 
limited by the sample sizes and the specific dental conditions investigated in the included studies. Some studies had relatively small 
sample sizes, which can impact the precision of the results. Additionally, the AI models were primarily evaluated for specific dental 
tasks, such as tooth segmentation or caries detection. The performance of AI in broader and more diverse clinical contexts remains to 
be explored. 

6. Conclusion 

Conclusively speaking, the analysis of various AI applications across a range of dental domains and imaging modalities has revealed 
promising results. AI demonstrated exceptional accuracy in specific tasks, such as tooth segmentation and classification, caries 
detection, maxillofacial bone segmentation, and the creation of 3D surface models of the human mandible. The high precision, recall 
rates, and diagnostic accuracy observed in these studies suggest that AI has the potential to enhance the efficiency and accuracy of 
dental diagnoses and treatment planning. Furthermore, AI exhibited significant advantages in terms of time efficiency. Automated 
segmentation and detection processes were consistently faster than traditional manual methods, offering a substantial time-saving 
advantage that could streamline dental workflows and improve patient experiences. Notably, the meta-analysis results showed a 
statistically significant overall effect in favor of AI, with higher odds of accurate dental image assessments. These findings underscore 
the potential of AI to enhance the precision and reliability of dental diagnoses and procedures. However, it is essential to acknowledge 
the limitations of this study, which primarily included in-vitro investigations. The controlled laboratory settings and variations in 
sample sizes, as well as the specific dental conditions investigated, may limit the generalizability of these findings to clinical practice. 
Additionally, the rapidly evolving landscape of AI technology means that newer and more advanced models may have emerged since 
the studies included in this review. So, while further research in clinical settings is needed to validate these findings and address the 
study’s limitations, the future implications of integrating AI into dental practice hold great promise for enhancing patient care and 
advancing the field of dentistry. However, while the future looks bright, it’s essential to note that the application of AI in dentistry is 
still in its early stages. There will be challenges to overcome, including issues with data privacy, the need for large, high-quality 
datasets for training AI models, and the integration of AI tools into existing workflows. 
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[2] M. Vodanović, M. Subašić, D. Milošević, I. Savić Pavičin, Artificial intelligence in medicine and dentistry, Acta Stomatol. Croat. 57 (1) (2023 Mar) 70–84, 
https://doi.org/10.15644/asc57/1/8. 

[3] J.-J. Hwang, Y.-H. Jung, B.-H. Cho, M.-S. Heo, An overview of deep learning in the field of dentistry, Imag. Sci. Dent. 49 (2019) 1. 
[4] M.-S. Heo, J.-E. Kim, J.-J. Hwang, S.-S. Han, J.-S. Kim, W.-J. Yi, I.-W. Park, Artificial intelligence in oral and maxillofacial radiology: what is currently possible? 

Dentomaxillofacial Radiol. (2021) https://doi.org/10.1259/dmfr.20200375. 
[5] P. Costa, A. Galdran, M.I. Meyer, M. Niemeijer, M. Abramoff, A.M. Mendonca, A. Campilho, End-to-End adversarial retinal image synthesis, IEEE Trans. Med. 

Imag. 37 (2018) 781–791. 
[6] T. Shan, F.R. Tay, L. Gu, Application of artificial intelligence in dentistry, J. Dent. Res. 100 (2021) 232–244. 
[7] F. Carrillo-Perez, O.E. Pecho, J.C. Morales, R.D. Paravina, A. Della Bona, R. Ghinea, R. Pulgar, M. del M. Pérez, L.J. Herrera, Applications of artificial intelligence 
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