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Abstract 

Background Metastases are the major cause of cancer-related morbidity and mortality. By the time cancer cells 
detach from their primary site to eventually spread to distant sites, they need to acquire the ability to survive in 
non-adherent conditions and to proliferate within a new microenvironment in spite of stressing conditions that may 
severely constrain the metastatic process. In this study, we gained insight into the molecular mechanisms allowing 
cancer cells to survive and proliferate in an anchorage-independent manner, regardless of both tumor-intrinsic vari-
ables and nutrient culture conditions.

Methods 3D spheroids derived from lung adenocarcinoma (LUAD) and breast cancer cells were cultured in either 
nutrient-rich or -restricted culture conditions. A multi-omics approach, including transcriptomics, proteomics, 
and metabolomics, was used to explore the molecular changes underlying the transition from 2 to 3D cultures. 
Small interfering RNA-mediated loss of function assays were used to validate the role of the identified differentially 
expressed genes and proteins in H460 and HCC827 LUAD as well as in MCF7 and T47D breast cancer cell lines.

Results We found that the transition from 2 to 3D cultures of H460 and MCF7 cells is associated with significant 
changes in the expression of genes and proteins involved in metabolic reprogramming. In particular, we observed 
that 3D tumor spheroid growth implies the overexpression of ALDOC and ENO2 glycolytic enzymes concomitant 
with the enhanced consumption of glucose and fructose and the enhanced production of lactate. Transfection with 
siRNA against both ALDOC and ENO2 determined a significant reduction in lactate production, viability and size of 3D 
tumor spheroids produced by H460, HCC827, MCF7, and T47D cell lines.
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Conclusions Our results show that anchorage-independent survival and growth of cancer cells are supported by 
changes in genes and proteins that drive glucose metabolism towards an enhanced lactate production. Notably, this 
finding is valid for all lung and breast cancer cell lines we have analyzed in different nutrient environmental condi-
tions. broader Validation of this mechanism in other cancer cells of different origin will be necessary to broaden the 
role of ALDOC and ENO2 to other tumor types. Future in vivo studies will be necessary to assess the role of ALDOC 
and ENO2 in cancer metastasis.
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Background
Metastasis is a multi-step process that includes the 
degradation and the detachment from the extracellu-
lar matrix (ECM) of the primary site, the invasion of 
vascular and lymphatic vessels, and the formation of 
secondary tumors in remote sites [1–3]. Among these 
events, the detachment from the ECM and the survival 
within the circulation in the absence of cell–cell and 
cell-ECM stimuli are crucial factors determining meta-
static outcome [4, 5].

ECM-independent survival is a stressful event during 
which cells suffer from loss of integrin-mediated growth 
signals, cytoskeletal reorganization, diminished nutrient 
uptake, and increased reactive oxygen species (ROS) pro-
duction [6]. The vast majority of cancer cells fail to adapt 
to these damaging events and, consequently, undergo 
various forms of cell death, such as anoikis, autophagy, 
and cell cycle arrest [5, 7]. However, a small percentage 
of cancer cells, provided with stem cell properties and 
invasion capabilities, by virtue of their powerful ability 
to adapt, to reprogram cellular energetics and signaling 
pathways, evade cell death and thus drive tumor progres-
sion [8]. To make a few examples, metastatic cancer cells 
abnormally enhance the autocrine signaling of growth 
factors, namely fibroblast growth factor (FGF) and epi-
dermal growth factor (EGF), to activate the pro-survival 
PI3K/Akt, Ras/MAPK, NF-κB, and Rho-GTPase sign-
aling pathways [9]. Moreover, metastatic cancer cells 
leave the primary site in the form of clusters instead of 
single units, and clusters have been reported to restrain 
anoikis by re-establishing cell–cell contacts [2]. Once 
in the bloodstream, tumor cells closely interact with 
activated platelets, whose release of tumor grow factor- 
beta (TGF-beta) also protects against the lack of cell-
ECM interactions present in circulation, by inducing a 
mesenchymal-like phenotype [10, 11]. The activation of 
platelets also  implies the release of fibrinogen and tis-
sue factor, which protect circulating tumor cells against 
immune clearance [12].

During the last decade, growing evidence highlighted 
that ECM detachment is tightly associated with dras-
tic cancer cell metabolic alterations, to the point that 
metabolic dependences may provide potential targets to 

restrain tumor progression. Metabolic reprogramming 
is widely recognized as a hallmark of cancer. In this 
regard, it has been demonstrated that cancer cells pref-
erentially utilize the glycolytic pathway to produce large 
amounts of lactate even in the presence of oxygen, a 
phenomenon known as the “Warburg effect”. However, 
depending on the tumor type and the nutrient environ-
mental conditions, cancer cells may rely on mitochon-
drial oxidative phosphorylation (OxPhos) or glutamine 
metabolism to sustain the malignant phenotype. On 
the other hand, both the presence and the abundance 
of nutrients within the local microenvironment may 
determine the metabolic phenotype that cancer cells 
adopt to accomplish each stage of the metastatic pro-
cess. Indeed, ECM detachment causes defective glucose 
utilization, reduces pentose phosphate pathway (PPP), 
diminishes adenosine triphosphate (ATP) produc-
tion, and increased ROS generation [13–15]. Despite 
advances in this field during the last decade, nutrient 
demands and related mechanisms that sustain the sur-
vival of cancer cells following ECM detachment have 
not been sufficiently elucidated. Moreover, whether 
these requirements are cancer type-dependent or rather 
more general phenomena are issues still insufficiently 
understood.

In this study, we used a multi-omics approach to widely 
explore the molecular mechanisms utilized for anchor-
age-independent cancer cell growth in response to a 
diverse availability of growth factors and nutrients. To 
this, we set up an in vitro experimental system based on 
the growth of 3D tumor spheroids derived from lung ade-
nocarcinoma (LUAD) and breast cancer cell lines in cus-
tomized nutrient- and growth factors-rich or -restricted 
culture media.

Methods
Cell lines and culture conditions
The human H460 and HCC827 LUAD and MCF-7 and 
T47D breast cancer cell lines were purchased from 
the America Type Culture Collection (ATCC-LGC 
Promochem, Teddington, UK). For 2D culture condi-
tions, H460, HCC827 and T47D cells were grown in 
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RPMI1640 medium (Sigma-Aldrich, St. Louis, MO, 
USA) while MCF7 were grown in Dulbecco’s Modi-
fied Eagle’s Medium (DMEM) medium (Sigma-Aldrich, 
St. Louis, MO, USA). Both media were supplemented 
with 10% fetal bovine serum (FBS) (Invitrogen, San 
Diego, CA) and 1% (v/v) penicillin and streptomycin 
(Sigma-Aldrich, St. Louis, MO, USA). All cell lines were 
maintained at 37 °C in humidified 5%  CO2 atmosphere. 
Cells were passed twice per week using trypsin, thus 
leading gentle cell detachment. Cell lines were tested 
for mycoplasma contamination and STR profiled for 
authentication.

3D tumor spheroids were grown in two differ-
ent culture conditions: i) a customized nutrient-
rich spheroid medium (3D_SM), consisting of 
DMEM/F-12 (Sigma-Aldrich, St. Louis, MO, USA) 
supplemented with 0.5% Glucose (Sigma-Aldrich, 
St. Louis, MO, USA), 2.5  mM L-Glutamine (Thermo 
Fisher Scientific, Waltham, MA, USA) [16], 2% B-27, 
5  μg/ml Heparin, 20  μg/ml Insulin (Thermo Fisher 
Scientific, Waltham, MA, USA), 20  ng/ml EGF 
(Thermo Fisher Scientific, Waltham, MA, USA), 
20 ng/ml Recombinant Human bFGF (Thermo Fisher 
Scientific, Waltham, MA, USA), 0.1% Bovine Serum 
Albumin (BSA) (Sigma-Aldrich, St. Louis, MO, USA) 
and 1% (v/v) of penicillin/streptomycin 100U/ml, as 
previously described by Lobello et  al. [17]; ii) cus-
tomized nutrient-restricted RPMI or DMEM culture 
media supplemented with only 2% FBS  (3D_FBSlow). 
Overall, the final concentrations of D-Glucose 
and L-Glutamine in each 3D culture condition are 
reported in Table 1.

Briefly, 20,000 cells/mL were resuspended in an 
appropriate amount of each medium and seeded onto 
ultra-low attachment plates (Corning Costar, MA, 
USA) to form 3D structures. After 4 days, the collected 
tumor spheroids were resuspended in appropriate vol-
ume of culture medium and counted by using Leica 
Thunder Dmi8 microscope according to the following 
formulas:

sphere concentration = sphere count ÷ counting volume (�L)

totalspherecount = sphereconcentration × totalvolume

Their diameters were measured through the internal 
image measuring feature normalized to 100 3D sphe-
roids using imaging software Zen (Leica). Data are 
reported as mean ± Standard Deviation (SD).

RNA‑seq
Total RNA was extracted using Qiazol (Qiagen, IT), puri-
fied from DNA contamination through a DNase I (Qia-
gen, IT) digestion step and further enriched by Qiagen 
RNeasy columns for gene expression profiling (Qiagen, 
IT) [18]. Quantity and integrity of the extracted RNA 
were assessed by NanoDrop Spectrophotometer (Nan-
oDrop Technologies, DE) and by Agilent 2100 Bioana-
lyzer (Agilent Technologies, CA), respectively. RNA 
libraries for sequencing were generated in triplicate using 
the same amount of RNA for each sample according to 
the Illumina TruSeq Stranded Total RNA kit with an ini-
tial ribosomal depletion step using Ribo Zero Gold (Illu-
mina, CA). The libraries were quantified by qPCR and 
sequenced in paired-end mode (2 × 75 bp) with NextSeq 
500 (Illumina, CA).

RNA‑seq bioinformatics analysis
For each sample generated by the Illumina platform, a 
pre-process step for quality control was performed to 
assess sequence data quality and to discard low-quality 
reads. Primary analysis was carried out with Nextflow nf-
core/rnaseq pipeline [19, 20]. Secondary analysis, includ-
ing differential expression analysis, functional enrichment 
and inter-comparison GO data visualization were entirely 
carried out with an in-house package, auto-GO (1), which 
makes use of the DeSeq2, Enrichr and tidyverse [21–23]. 
Differentially expressed genes (DEGs) were considered 
strongly regulated with the DESeq2 results table filtered 
via absolute  log2(Fold Change) > 1 and padj < 0.05. All the 
functional enrichment was carried out via the enrichR 
libraries “GO_Cellular_Component_2021”, “GO_Biologi-
cal_Process_202” and “KEGG_2021_Human”. Significance 
for functional cluster was set at padj < 0.1.

Protein digestion
Protein digestion was performed by filter-aided sample 
preparation (FASP) as previously described [24]. An ali-
quot of the digest (50 μL) was purified by SCX StageTips 

Table 1 Concentrations of D-Glucose and L-Glutamine of the cell culture media used for 3D conditions

3D culture condition Cell line D‑Glucose L‑Glutamine

Sphere Medium (SM) H460, HCC827, MCF7, T47D 45 mM 4.99 mM

RPMI  FBSlow H460, HCC827, T47D 25.11 mM 3.99 mM

DMEM  FBSlow MCF7 11.24 mM 2.05 mM
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[24]. Peptides were eluted from StageTips using 7 μL of 
500 mM ammonium acetate, 20% acetonitrile (v/v). The 
eluate was mixed with 45 μL of 0.5% formic acid to lower 
the organic content below 3% before nanoLC-MS/MS 
analysis. For generating the spectral library, 8 μL aliquots 
were withdrawn from each sample and pooled into a sin-
gle sample. The mix was then loaded onto two separate 
SCX StageTip fabricated by stacking two plugs of SCX 
material (Empore extraction disks, Millipore) for higher 
capacity. Stepwise elution in 8 fractions was achieved by 
adding eluents of increasing ionic strength. Eluents con-
tained 20% acetonitrile, 0.5% acetic acid (except fraction 
8) and increasing amounts of ammonium acetate: 40, 70, 
100, 150, 200, 250, 350, 500 mM. The eluates of both Sta-
geTips were combined, evaporated, resuspended in 20 μL 
of mobile phase A and analysed by nanoLC-MS/MS.

NanoLC‑MS/MS analysis
NanoLC-MS/MS analysis was performed on EASY1000 
LC system coupled to Q-Exactive “classic” mass spec-
trometer (Thermo Fisher Scientific, Waltham, MA, 
USA). Peptides were separated using an in-house made 
analytical column packed with 3 μm-C18 silica particles. 
A 2 μL aliquot was injected for each sample analysed in 
data-independent mode (DIA). The analytical system and 
nanoLC-MS/MS conditions were previously described 
[24]. Gradient elution of peptides was achieved at 300 nL/
min using a 120 min gradient (from 4% B to 28% B in 90 
min, then from 28% B to 50% B in 30 min). Mobile phase 
A consisted of 97.9% water, 2% acetonitrile, 0.1% formic 
acid, whereas mobile phase B consisted of 19.9% water, 
80% acetonitrile, and 0.1% formic acid. The nanoLC efflu-
ent was directly electrosprayed into the mass spectrome-
ter in positive ion mode (1800 V). The mass spectrometer 
operated in DIA mode, using 26 sequential acquisition 
windows covering an m/z range of 350-1200 [24]. For 
library generation, the 8 fractions obtained by StageTip 
fractionation were analysed using identical chromato-
graphic conditions and operating the mass spectrom-
eter in data-dependent mode using a TOP12 method: 
a full MS scan at resolution of 70,000, with AGC value 
at 1.0 ×  106 and m/z range of 350–1800, followed by 12 
MS/MS scans acquired at 35,000 resolutions using AGC 
value of 1.0 ×  105. Normalized collision energy was set at 
25%, isolation window was 1.6 m/z and maximum injec-
tion time was 120ms for MS/MS scans. Finally, dynamic 
exclusion was set at 20.0 s. Injected amounts were 4 μL 
for fractions 1-5 and 8 μL for fractions 6-8.

Proteomics data processing
Library generation was achieved in Spectronaut Pulsar 
(Biognosys, v.13) using default parameters [25]. MS/MS 
spectra were searched against the Uniprot human protein 

database accessed on May  20th, 2020 (74,823 sequences). 
DIA data analysis was performed on the same platform 
(Spectronaut) using default parameters. The number of 
peptides used for quantification was between 1 and 10 
(unique peptides), data filtering was based on q-value 
and no normalization factor was adopted in Spectronaut. 
Then, we used the default Spectronaut long format input 
to remove low-intensity ions and perform median nor-
malization using iq package [26]. The generated protein 
table with log2 ratios without missing values was used 
for differential protein expression analysis by limma [27]. 
Differential expressed proteins (DEPs) were selected by 
an absolute  log2 |FC|> 1 and based on a p-value ≤ 0.01. 
Finally, DEPs were intersected with DEGs resulting from 
an absolute  log2 |FC|> 1 and p-value < 0.05 filter. Pathway 
enrichment analysis was performed using GSEABase [28] 
annotations and clusterProfiler [29]. A Benjamini–Hoch-
berg FDR cutoff of 0.05 was used for the analysis.

Hydrophilic metabolites extraction and quantification
Cell metabolic profiling was conducted on H460 and 
MCF7 cells grown as 2D, as well as 3D_SM and  3D_
FBSlow tumor spheroids. A total of 9 sample (3 technical 
replicates × 3 biological replicates) for each of the 6 cul-
tures (2 in 2D and 4 in 3D) was analyzed. For the whole 
procedure HPLC-grade solvents and ultrapure Milli-Q 
water were used. Hydrophilic metabolites extraction 
was accomplished following the protocol of Yuan et  al. 
[30]. Briefly, hydrophilic metabolites were extracted 
from 1 ×  106 cells by: (i) addition of 4  ml of 80% (vol/
vol) methanol:water (cooled to − 80  °C) containing 
65  ng of Reserpine as internal standard (IS), (ii) trans-
fer of the cell lysate/methanol mixture to conical tubes 
and (iii) centrifugation at 14,000  g for 5  min at 4–8  °C 
to pellet the cell debris. (iv) The pellet was re-extracted 
with 0.5 ml of 80% (vol/vol) methanol/water and (v) the 
obtained supernatants were united and dried by Speed-
Vac without heating. Cells and cell lysates were main-
tained refrigerated on dry ice during the extraction 
procedure. Each dried extract was reconstituted in 100 
μL of methanol: water (50:50 v/v) mixture before LC–
MS/MS analysis. Five microliters of each sample were 
injected into the mass spectrometer (QTRAP® 3200 
System, Sciex), which includes an HPLC module (Exion 
LC-100 HPLC, Shimadzu) for quantification of metabo-
lites. A Luna HILIC-NH2 column, 2,6 μm, 50 × 2,1 mm 
(Phenomenex) coupled with a SecurityGuard Car-
tridge HILIC-NH2, 2,1 mm column (Phenomenex) was 
used for chromatographic separation. Mobile phase 
A was composed of 20  mM ammonium acetate, in 
water: acetonitrile, 95% (vol/vol); the pH was adjusted 
to 8 with ammonium hydroxide before the addition of 
 CH3CN; mobile phase B was 100% acetonitrile. Oven 
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temperature was 25  °C. The chromatographic gradient, 
from 85 to 2% mobile phase B in 25 min at 0.35 mL/min 
flow rate, was adapted by Bajad et  al. [31]. The eluting 
metabolites were analyzed with the mass spectrometer 
operating in positive and negative mode, using the Mul-
tiple Reaction Monitoring (MRM) approach for targeted 
profiling. Optimized electrospray ionization parameters 
were electrospray voltage of respectively 5000/-4500  V 
in positive/negative mode, temperature of 350  °C, cur-
tain gas of 30 psi, nebulizer gas (GS1) and auxiliary 
gas (GS2) of 40 and 40 psi, respectively. Dwell time for 
each MRM transition was 5 ms. Compound dependent 
parameters, i.e., Declustering Potential (DP), Entrance 
Potential (EP), Collision Cell Entrance Potential (CEP), 
Collision Energy (CE) and Collision Cell Exit Potential 
(CXP) were adapted from an internal Sciex report [32]. 
and validated on a subset of 24 commercial molecular 
standards, including all classes of target metabolites. 
The instrument was mass calibrated with a mixture of 
polypropylene glycol (PPG) standards. Quality controls 
and carry-over checks were included with each samples 
batch. Acquisition was performed by Analyst 1.6.3 soft-
ware (Sciex).

Metabolomic data processing
All statistical and correlation analyses were done using 
MetaboAnalyst 5.0 [33]. Data were normalized versus 
the IS Reserpine. Hierarchical cluster analysis was per-
formed after autoscaling of data, selecting Euclidean 
Distance as similarity measure parameter and Ward’s 
linkage as clustering algorithm. Student’s t test or one-
way ANOVA test, followed by post-hoc analyses, were 
used to compare the relative concentration of metabo-
lites respectively among two or more groups; the p-value 
significance threshold was set at 0.05.

3D cell viability assay
Cell titer-Glo 3D (Promega) was used to determine via-
bility of 3D cells plated in single wells of a 96 well ultra-
low-attachment culture plate. The assay was performed 
in triplicate according to manufacturer’s instructions. 
Samples were read on the GloMax Explorer Luminom-
eter (Promega) [34].

Scanning Electron Microscopy (SEM) analysis
Glutaraldehyde-fixed samples were rinsed with a caco-
dylate buffer and then dehydrated with an increasing eth-
anol percentage (30–90% in water for 5 min, twice 100% 
for 15 min), treated in a Critical Point Dryer (EMITECH 
K850), sputter coated with platinum-palladium (Denton 
Vacuum DESKV), and observed with Supra 40 FESEM 
(Zeiss).

ALDOC and ENO2 transient silencing
siRNA transfections were performed as previously 
described [35, 36]. For each gene we used three different 
siRNAs: siENO2 (Assay ID s4685, Assy ID 10894, Assy 
ID 121347); ALDOC (sc-270351, Santa Cruz) and (Assay 
ID 15795 and Assay ID 121526, Thermo Fisher Scientific, 
Waltham, MA, USA ). Control siRNAs were purchased 
from (Thermo Fisher Scientific, Waltham, MA, USA). 
DNA transfections were performed with Lipofectamine 
2000 (Thermo Fisher Scientific, Waltham, MA, USA) 
according to the manufacturer’s instructions.

RNA extraction, cDNA synthesis and real time PCR
RNA was harvested with TRIzol (Thermo Fisher Scien-
tific, Waltham, MA, USA) as previously described [37–
43]. Total RNA (1 μg) was digested with gDNAse Eraser 
and reverse-transcribed with PrimeScript RT reagent 
Kit, (Takara Bio Inc). The expression levels of ALDOC 
and ENO2 were analyzed by using 7500 Step One Plus 
(Applied Biosystems). The primer sequences used are: 
ALDOC forward 5-CAT TCT GGC TGC GGA TGA GTC-3, 
reverse 5-CAC ACG GTC ATC AGC ACT GAAC-3; ENO2 
forward 5-AGC CTC TAC GGG CAT CTA TGA-3, reverse: 
5-TCA GTC CCA TCC AAC TCC -3. H3 was included as 
housekeeping for normalization of real time data [44].

Intracellular glucose and lactate quantification assays
Analysis of intracellular glucose and lactate quantities 
were performed by using Glucose-Glo assay and Lactate-
Glo Assay, respectively (Promega, Madison, WI, USA). 
Briefly H460 and MCF7 cells were seeded in 6-well plates 
and then transfected with the two siRNAs specific for 
ALDOC and ENOs. After transfection, both cell lines 
were cultured in 96-well ultra-low-attachment plates. 
Analysis was performed through GloMax Explorer Lumi-
nometer (Promega). Data were normalized to cell num-
ber. Analyses were performed in triplicate and results are 
reported as mean ± SD.

Extracellular lactate quantification assays
The quantification of L-lactic acid present in the culture 
media was performed by using Emogas analyzer Gem 
5000, according to the manufacturer’s instructions. The 
amount of L-lactic acid produced by the cells in each 
sample was calculated subtracting the amount of L-lactic 
acid in the media (without cells) from the amount of lac-
tate in the media from each sample.

Statistical analysis
Data were analysed in GraphPad Prism 9. Comparison 
of more than two groups was performed using one-way 
ANOVA analysis. Student t test was used for two-groups 
comparisons. A p-value < 0.05 was considered statistically 
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significant. Integrated analysis of RNA-seq and Prot-
eomics was carried out via the novel STAR protocol pre-
sented by Yang et. al [45] which employs a mixture of 
differential analysis techniques and custom R statistical 
mining on both datasets.

Results
Design and setting of the study
This study aimed to gain insight into the molecular 
mechanisms allowing cancer cells to survive and pro-
liferate under detached conditions, regardless of both 
tumor-intrinsic variables and nutrient culture condi-
tions. To this purpose, we used 3D tumor spheroids as 
in vitro experimental models to mimic anchorage-inde-
pendent cancer cell growth as well as to mimic fluctua-
tion in nutrient and oxygen availability that cells undergo 
as tumor mass grows and expands in  vivo. 3D tumor 
spheroids derived from LUAD, and breast cancer cell 
lines were grown in two culture conditions: i) sphere 
medium (SM), which mimics an environment rich in 
major nutrients (glucose and L-glutamine) and growth 
factors (Epidermal Growth Factor, EGF, and basic Fibro-
blast Growth Factor, bFGF) and ii) RPMI or DMEM 
 FBSlow, supplemented with only 2%FBS, mimicking a 
nutrient-restricted culture condition. A wide multi-omic 
approach, based on the integration of transcriptomic, 
proteomic, and metabolomic analyses, was used to iden-
tify the common molecular changes occurring during all 
the transitions from adherent 2D to 3D cultures, regard-
less of the tumor type and nutrient culture availability. 

Small interfering RNA-mediated loss of function assays 
were used to validate the role of the identified differen-
tially expressed genes and proteins in LUAD and breast 
cancer cell lines (Fig. 1).

RNA‑seq analysis highlights that H460 and MCF7 
require the rewiring of genes involved in the metabolic 
programmes to grow in 3D culture conditions
Cancer cells grown in 3D cultures show distinct gene 
expression patterns when compared to the same paren-
tal cells grown in 2D conditions [46–48]. Indeed, dif-
ferential extracellular interactions with ECM as well as 
different nutrient availability within 3D models change 
intracellular signal transduction, culminating in the acti-
vation of a unique set of transcription factors and in sig-
nificant changes of the transcriptomic profiles [49, 50]. 
Here, we first shed light on the transcriptional reorgani-
zation associated with 3D cell growth in nutrient-rich or 
nutrient-restricted culture conditions. H460 and MCF7 
cells (1.5 ×  104/mL) were grown in non-adherent con-
ditions either in nutrient-rich sphere medium (SM) or 
in a nutrient-restricted culture medium  (FBSlow). After 
4  days, which was previously established as the optimal 
time frame to collect first generation of tumor sphe-
roids [51], we performed RNA-seq analysis of H460 and 
MCF7 grown either as a monolayer (2D) or as 3D_SM 
and 3D_  FBSlow. Overall, differential expression analysis 
(DEA) highlighted a total of 2169 DEGs when compar-
ing H460 2D vs 3D_SM and 1478 DEGs when comparing 
H460 2D vs  3D_FBSlow (Table S1, in Additional file 1). For 
MCF7 cells, 1925 DEGs emerged from the comparison 

Fig. 1 Workflow of the multi-omics integrative analysis. Biological System: H460 LUAD and MCF7 breast cancer cell lines were cultured in 2D and 
3D conditions. 3D tumor spheroids were grown either in a nutrient-rich (sphere medium, SM) or in a nutrient-restricted  (FBSlow) culture media. 
Input: a total of 6 samples (H460 2D, H460 3D_SM, H460 3D_  FBSlow, MCF7 2D, MCF7 3D_SM, MCF7 3D_  FBSlow) were characterized through 
transcriptomic, proteomic and metabolomic analyses; differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) between 
3D vs 2D samples were further analyzed by using Gene Ontology (GO). Integration: DEGs and DEPs were integrated to identify a common 
signature of DEGs and DEPs in all the 2D to 3D transitions. ALDOC and ENO2 were found up-regulated in all 3D vs 2D culture conditions. Validation: 
siRNA-mediated knock down of ALDOC and ENO2 were performed to functionally validate the effects of these two enzymes on 3D tumor 
spheroids growth. Output: ALDOC and ENO2 represent putative drivers of the metabolic reprogramming responsible for the sphere-forming ability 
of H460 and MCF7 cells
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between 2D vs 3D_SM while 2222 DEGs resulted from 
2D vs  3D_FBSlow (Table S1, in Additional file  1). Then, 
we sought to find a common transcriptional signature 
associated with 3D tumor spheroid growth, namely 
genes and processes significantly up or down regulated 
in the transition from 2 to 3D, regardless of the cell type 
and the culture media utilized. A signature of 100 genes 
was found to be commonly regulated in all the systems; 
among these, 84 genes were commonly up regulated 
while 16 were commonly down regulated in all 3D vs 2D 
conditions (Fig. 2A). Interestingly, functional enrichment 
analysis on the common DEGs highlighted that among 
the enriched biological processes, most of them (17 out 
of 20) were associated with cellular metabolism. In par-
ticular, Glycolysis/Gluconeogenesis appeared the most 

consistently enriched metabolic pathway because of the 
up regulation of 6 out of 10 glycolytic enzymes (hexoki-
nase 2, HK2; pyruvate kinase muscle isozyme, PKM; 
phophoglycerate kinase 1, PGK1; aldolase C, ALDOC; 
enolase 2, ENO2; glyceraldehyde 3-phosphate dehydro-
genase, GAPDH) and of phosphoglucomutase 1 (PGM1). 
Notably, both HK2 and PKM encode for muscle-specific 
isoenzymes involved in the regulation of two irreversible 
steps of glycolysis [52]. ALDOC and ENO2 encode for 
neuronal-specific aldolase and enolase isoforms [53, 54]. 
HK2 catalyses the first priming and irreversible reaction 
of glycolysis, the conversion of the substrate glucose into 
glucose-6-phosphate, ALDOC is the key enzyme of the 
fourth step of glycolysis, during which fructose -1,6-bis-
phosphate is converted to gylceraldehydes-3-phosphate 

Fig. 2 Transcriptomic analysis of H460 and MCF7 cell lines grown in 2D and 3D culture conditions. A Heatmap of 100 DEGs in all 3D vs 2D 
conditions of both cell lines. Color intensity is proportional to the magnitude of changes. Relative expression levels are shown in red (upregulation) 
and blue (downregulation). B GO analysis of cellular component, C biological process, and D KEGG pathway analysis of DEGs in all 3D vs 2D 
conditions of both cell lines. The dot size denotes the number of DEGs, while colors correspond to the adjusted p-value range
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(G3P) and dihydroxyacetone phosphate (DHAP). 
GAPDH, PGK1, ENO2, and PKM catalyze 4 out of the 5 
reactions of the energy-releasing phase of glycolysis [55, 
56]. PGM1 belongs to the phosphohexose mutase fam-
ily and catalyzes the transfer of phosphate between the 1 
and 6 positions of glucose; as such, it is involved in both 
the synthesis and degradation of glycogen [53, 57–59]. 
As the second most significantly affected biological pro-
cess in the 2D to 3D transition, the cellular response to 
hypoxia (HIF-1 signalling pathway) was enriched by the 
up regulation of BNIP3, BNIP3L, EGLN3, FAM162A, 
HILPDA, PGK1, RORA, NDRG1 (Fig. 2B-C) (Tables S2-3, 
in Additional files 2 and 3). In addition to the glycolytic 
enzyme PGK1, EGLN3 is a member of the 2-oxoglutarate 
(2OG)–dependent dioxygenases family responsible for 
the prolyl hydroxylation of HIF-1//2 and for the regula-
tion of cell apoptosis in response to hypoxia [60]. Simi-
larly, BNIP3, BNIP3L, and FAM162A are involved in the 
regulation of cell death in response to hypoxic conditions 
[61, 62]. In particular, the BH3-only proapoptotic genes 
BNIP3 and BNIP3L enhance autophagy and, in particu-
lar, mitophagy to overcome cell death and guarantee 
survival under hypoxic conditions [63]. N-myc down-
stream-regulated gene-1 (NDRG1) is a hypoxia induci-
ble-protein involved in the p53-mediated activation of 
the caspase cascade; furthermore, it influences the epi-
thelial to mesenchymal transition (EMT) as it is required 
for the vesicular recycling of e-cadherin and for the cad-
herins switching [64, 65]. The hypoxia-inducible and lipid 
droplet-associated protein HILPDA is known to promote 
lipid droplets formation in response to hypoxia as well as 
to autophagic flux induced by nutrient deprivation [66]. 
RORA is a hypoxia-induced member of the retinoic acid-
receptor-related orphan receptor α superfamily; unlike 
the other members of this family, RORA binds to the pro-
moter of cell cycle-related genes and N-myc, thus affect-
ing cell growth and tumorigenesis [67]. Finally, the GO 
cell component analyses highlighted that PKM, ALDOC, 
AMPD3, PGM1, EFEMP2, and RAB3A, are up-regulated 
in all 3D vs 2D culture conditions, consistently enriched 
the ficolin-1-rich granule lumen and extracellular vesicles 
(EVs) (Table S4, in Additional file  4). Together with the 
already described PKM, ALDOC and PGM1, the Aden-
osine Monophosphate Deaminase 1 (AMPD3), encod-
ing for the red blood cells (RBC)-specific member of the 
adenosine monophosphate (AMP) deaminase family, 
catalyzes the irreversible hydrolytic deamination of AMP 
to inosine monophosphate (IMP), thus it is involved in 
purine nucleotide, uric acid, and carbohydrate metabo-
lism [68]. Recent reports indicate that, in RBCs, AMPD3 
can be activated by the increased intracellular levels of 
ROS and calcium, along with decreased intracellular pH 
[69]. The exact role of AMPD3 in cancer is instead still 

unclear; however, since it controls the intracellular lev-
els of AMP, it is reasonable to hypothesize that it might 
affect AMP-activated protein kinase (AMPK). AMPK is 
largely recognized as a key energy sensor. In response 
to diverse stressors, such as glucose starvation, hypoxia, 
and oxidative damage, it activates ATP-producing path-
ways [70]. In agreement, according to several studies, 
AMPK deficiency renders cancer cells more vulnerable 
to the stresses induced by cell detachment [71]. EFEMP2 
(EGF Containing Fibulin Extracellular Matrix Protein 2) 
gene encodes for a member of fibulin glycoprotein fam-
ily, involved in the stabilization of the ECM structure; 
indeed, it is necessary for elastic fiber formation, and 
it is involved in collagen fibril assembly. So far, the role 
of EFEMP2 in tumorigenesis is found to be “context-
specific”; indeed, while in cervical cancer, ovarian can-
cer, and glioblastoma it has been associated with tumor 
progression and poor prognosis, in endometrial cancer 
it has been found to inhibit EMT, tumor invasion and 
metastasis [72]. Finally, Rab3A belongs to the small Ras-
like GTPase superfamily and functions as a key regulator 
in transporting cellular products into secretory vesicles 
and lysosomes [73]. Normally Rab3A is predominantly 
expressed in the neural system; however, it has been 
found aberrantly overexpressed in breast cancer where 
it is associated with a more malignant phenotype and 
in hepatocellular carcinoma where, instead, it inhibits 
metastasis via enhancing mitochondrial oxidative metab-
olism [74].

Overall, RNAseq data suggest that the ability of can-
cer cells to survive and grow in 3D culture conditions 
requires the rewiring of intracellular metabolic path-
ways and the control of redox homeostasis most likely in 
response to the decreased oxygen levels.

Proteomic analysis confirms that H460 and MCF7 cells 
reprogram their glucose metabolism to survive in all 3D 
culture conditions
Once identified the gene expression signature asso-
ciated with 3D tumor spheroid growth, we analyzed 
the proteomic profiles of H460, and MCF7 3D tumor 
spheroids grown either in SM or in  FBSlow conditions 
and compared them to their relative 2D cultures. By 
using an absolute  log2 |FC|> 1 and a p-value < 0.01, 
we identified a total of 534 DEPs in H460 3D_SM vs 
H460 2D, n = 413 DEPs in H460  3D_FBSlow vs H460 
2D, n = 216 DEPs in MCF7 3D_SM vs MCF7 2D, 
and n = 222 DEPs in MCF7 3D  FBSlow vs MCF7 2D 
(Table S5, in Additional file  5). Among these, 2 pro-
teins (MRPL41 and MRPL24) were down regulated 
while 7 proteins (ALDOA, ALDOC, NOL3, ENO2, 
SH3BGRL, DBI, HEBP2) were up regulated in both 
H460 and MCF7 3D vs 2D conditions (Fig.  3A). Both 
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the commonly down regulated proteins MRPL41 and 
MRPL24 are component of mitochondrial ribosomes 
(mitoribosomes) large 39S subunit and are involved 
in the synthesis of mitochondrial electrons transport 
chain (ETC) components [75, 76].  Among the com-
monly up regulated proteins, as already discussed 
above, the two isoenzymes ALDOA and ALDOC as 
well as ENO2 are glycolytic enzymes, NOL3 acts as 
apoptosis repressor, often in response to hypoxia, by 
inhibiting the release of cytochrome c from mito-
chondria [77], the Acyl-coA-binding protein DBI is a 
lipogenic factor that regulates fatty acids metabolism 
[78], the heme binding protein 2 (HEBP2) is involved 
in heme metabolism but it also enhances the outer 
and inner mitochondrial membrane permeabilization, 
especially under oxidative stress conditions [79]. The 
SH3 Domain Binding Glutamate Rich Protein Like 
(SH3BGRL) is located within the extracellular vesicles 
and as a scaffold protein it mediates many protein–
protein interactions; however, its role in cancer is still 
largely undefined [80]. In agreement, KEGG enrich-
ment analysis revealed that the common DEPs mainly 
affected metabolic and bioenergetic processes (i.e., GO 
Generation of precursor metabolites and energy, GO 
Monosaccharide biosynthetic process, GO Ribose phos-
phate metabolic process, KEGG Glycolysis and glucone-
ogenesis), exocytosis, cell adhesion processes (i.e., GO 
Cell adhesion molecule binding, GO Cadherin bind-
ing) and cellular response to oxidative stress (i.e., GO 
Cell redox homesostasis, GO regulation of response to 
oxidative stress) (Fig. 3B). Interestingly, when RNAseq 
and proteomic data were intersected, ALDOC, ENO2, 
and NOL3 emerged as significantly up regulated with 
a  log2|FC|> 1 and p-value < 0.05 in all 3D vs 2D culture 
conditions both at gene and protein levels (Fig.  3C). 
Furthermore, we employed a novel bioinformatic 
protocol, able to jointly analyze transcriptomics and 
proteomics data, to gain additional insight on the rela-
tionship among the two omic profiles [45]. The analy-
sis shows how mRNA/protein correlation levels span 
from 0.3 to 0.5 in different samples, with the H460_2D 
ranking at the top (Fig. S1, in additional file 6). These 
values are what expected in literature analysis, show-
ing that only the subgroup of highly expressed genes 

show a strong correlation with protein levels [81]. 
Interestingly, a different overview of correlation levels 
in gene clusters show how clusters differentiate from 
small hyper-concordant groups (rho > 0.8%) to non-
concordant outliers (rho < 0.2%) (Fig.  3D). It is safe 
to assume that the non-concordant outliers are more 
influenced in post-transcriptional modifications.

Collectively, proteomic data confirmed that cancer cells 
reprogram their glucose metabolic to adapt, and thus to 
survive, to the altered oxygen homeostasis caused by cel-
lular reorganization of within 3D tumor spheroids and 
that this is independent from both cell type and nutrient 
availability.

Metabolic profiling of H460 and MCF7 tumor spheroids 
indicate a shift toward a more pronounced glycolitic 
phenotype regardless of the cell culture conditions
Prompted by the information arising from RNAseq and 
proteomic analysis, we decided to investigate the meta-
bolic shift associated with changes in nutrient availability 
in non-adherent conditions. To this aim, we performed 
targeted polar metabolomic profiling of H460 and MCF7 
cells grown as 2D, as well as 3D_SM and  3D_FBSlow 
tumor spheroids. Collectively, the LC–MS platform ena-
bled us to detect 80 metabolites (Table S6, in Additional 
file 7). A total of 66 metabolites were found significantly 
altered among the three cell culture conditions (2D, 3D_
SM and  3D_FBSlow) with  log2 |FC|> 1 and a p-value < 0.01. 
We observed that, as for the transcriptomic and prot-
eomic profiles, the intracellular metabolomic profiles of 
H460 and MCF7 cells grown as 2D cultures were sub-
stantially different, as attested by the net clustering of 
samples shown in Fig.  4A. According to the literature, 
lung and breast cancer cells have different inherited 
metabo-phenotypes (metabotypes) and dependencies 
caused by the genetic background, the oncogenic evo-
lution, and the interaction with the cellular niche [82]. 
H460 are primarily glycolytic cells [83]; MCF7, instead, 
are the most oxidative among the breast cancer cells, and 
overall display high flexibility in the substrate-driven ATP 
production [84]. In this regard, our data show that both 
H460 and MCF7 in 2D culture conditions consume glu-
cose; however, the higher ratio isocitrate/citrate in MCF7 
compared to H460 suggests a higher mitochondrial 

Fig. 3 Proteomic analysis of H460 and MCF7 cell lines grown in 2D and 3D culture conditions. A Heatmap of 3DEPs in 3D vs 2D conditions of 
both cell lines. Common DEPs in all 3D vs 2D conditions are labeled with (*). Color intensity is proportional to the magnitude of changes. Relative 
expression levels are shown in red (upregulation) and blue (downregulation). B KEGG pathway analysis of DEPs in all 3D vs 2D conditions of both 
cell lines. The dot size denotes the number of DEPs, while colors correspond to the adjusted p-value range. C Dot plots showing ALDOC, ENO2, 
and NOL3 protein levels of H460 and MCF7 cell lines in 3D vs 2D conditions. D The distribution of gene-wise mRNA-protein correlations computed 
as Spearman’s Rho (x-axis). A histogram of 20 bins is shown with height of each bar proportional to the number of genes in each bin. The median 
correlation is depicted by a red vertical line

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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functionality in the breast cancer cell line than in the lung 
cancer cell line. In addition, as suggested by the higher 
amount of Ribose-5P, Xylulose-5P and Sedoheptulose-7P, 
MCF7 cells seem to promote anabolism through PPP for 
nucleotide synthesis, synthesis of serine and glycerol-3-P 
(Fig. 4A).

The amount of intracellular polar metabolites sig-
nificantly diverged along the transition from 2 to 3D 
models regardless of the cell type. Overall, we identi-
fied 66 altered metabolites; among these, 7 showed 
the same trend of variation in all 3D vs 2D cultures: 
D-Glucose monophosphate, D-Fructose monophos-
phate, D-hexose pool, UDP glucose, dIMP, L-Aspartic 
Acid and L-Serine were significantly down-regulated 
in 3D vs 2D while L-lactic acid was the only metabo-
lite up-regulated in 3D H460 and MCF7 compared to 
their relative adherent cells (Fig.  4A-B). It is impor-
tant to note that, in  FBSlow culture condition, MCF7 
produced a higher amount of L-lactic acid compared 
to H460 cells, thus further suggesting the occurrence 
of a significant shift toward a glycolytic phenotype in 
the breast cancer cell line compared to the LUAD cell 
line which instead appeared more glycolytic already 
in 2D conditions. The increased intracellular ratio 
L-lactic acid/Glucose monophosphate and D-Fructose 
monophosphate in all 3D tumor spheroids compared 
to their relative 2D cultures well agreed with the up-
regulation of the glycolytic enzymes ALDOC and 
ENO2, at both gene and protein levels (Fig. 4C; Fig. S2 
in additional file 8). To confirm the shift toward a more 
pronounced glycolytic phenotype suggested by the 
metabolomic analysis, we quantified both intracellular 
glucose and L-lactic acid in 2D and 3D conditions by 
using specific luminometric assays. Results reported in 
Fig. 4D-E show a significant intracellular accumulation 
of L-lactic acid in all 3D conditions (*p-value < 0.05, 
**p-value < 0.01, ***p-value < 0.001) accompanied by 
a slight reduction in glucose (ns = not significant). 
In line with the increase of intracellular L-lactic acid 
levels, the analysis of L-lactic acid within the culture 
media (extracellular L-lactic acid) showed a signifi-
cant release of this metabolite in H460 and MCF7 3D 
spheroids compared to their relative 2D counterparts 
(*p-value < 0.05) (Fig. 4D-E).

MCF7 show a greater ability to generate 3D tumor 
spheroids in nutrient‑restricted culture conditions 
compared to H460 cells
Gene and protein expression reorganization associated 
with 3D cell culture drive morphological and functional 
changes, such as proliferation rate and drug resistance 
[85]. Here, we observed that nutrient restriction had 
different effects on both tumor spheroids size and num-
ber depending on the cell type analyzed. Indeed, the 
 FBSlow culture condition caused an increase of H460 
tumor spheroids number compared to SM (3230 ± 221 
 (FBSlow)) vs (2450 ± 158 (SM)) (p-value < 0.05) without 
significantly affecting their diameter (163.9 ± 30.8 (SM) 
vs 158.51 ± 25.55  (FBSlow), ns). The number of tumor 
spheroids deriving from MCF7 cells was instead appar-
ently unaffected by the different culture conditions 
(1050 ± 24  (FBSlow) vs 1223 ± 320 (SM), ns), but they 
appeared increased in size when grown in the  FBSlow 
culture medium (156.99 ± 26.59 (SM) vs 180.02 ± 22.43 
 (FBSlow), p-value <  10–7) (Fig.  5A-B). Cell viability assay 
highlighted that while H460 cells suffered from nutrient-
restricted culture medium  (FBSlow) MCF7 cells, grown 
in the same culture condition, showed an enhanced cell 
viability (Fig. 5C). This difference can be attributed to the 
previously mentioned higher inherited metabolic plastic-
ity of MCF7 cells, which therefore result more adaptable 
to nutrient restrictions and, overall, less dependent on 
glucose to produce ATP.

Finally, Scanning Electron Microscopy (SEM) analy-
sis revealed that the plasma membrane ultrastructural 
features of 3D spheroids appeared morphologically dis-
tinguishable depending on culture conditions. Notably, 
both H460- and MCF7-derived spheroids cultured in 
SM showed intense plasma membrane blebbing, indi-
cating high membrane dynamics with respect to  FBSlow 
cultured counterpart. Since this activity can be related 
to microvesicles formation this aspect deserves further 
investigations. Moreover, H460-derived tumor spheroids 
grown in  FBSlow appeared more compact, provided with 
a marked roundness, suggesting a different junctional 
behaviour of SM and  FBSlow cultured samples (Fig. 5D). 
Collectively, these results suggest that both H460 and 
MCF7 cells survive to harsh nutrient culture conditions 
and generate tumor spheroids that appear more compact; 

(See figure on next page.)
Fig. 4 Metabolomic analysis of H460 and MCF7 cell lines grown in 2D and 3D culture conditions. A Heatmap of 66 significantly altered metabolites 
in H460 and MCF7 cell lines in 2D vs 3D conditions. B Dot plots showing the 7 metabolites with the same trend of variation in all 3D vs 2D cultures 
of both cell lines. C KEGG pathway enrichment analysis of glycolysis/gluconeogenesis, showing in red ALDOC and ENO2 upregulation at both gene 
and protein levels. D-E Intracellular glucose and L-lactic acid amounts measured by luminometric assays and reported as relative light units (R.L.U.); 
quantification of L-lactic acid within the culture media (extracellular) performed by emogas analysis and expressed as mmol/l in H460 2D, H460 
3D_SM, H460 3D_  FBSlow, MCF7 2D, MCF7 3D_SM, and MCF7 3D_  FBSlow. All the experiments were carried out in triplicate and results are presented 
as mean ± SD. p-value: * < 0.05, ** < 0.01, *** < 0.001. ns: not significant
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Fig. 4 (See legend on previous page.)
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besides, MCF7 appear favoured in terms of spheroids 
size and growth rate possibly because of their inherited 
metabolic plasticity.

Suppression of ALDOC and ENO2 restrains 3D tumor 
spheroids growth of H460 and MCF7 cells
To confirm the role of ALDOC and ENO2 in H460 and 
MCF7 tumor spheroids growth we performed the tran-
sient knock down of both enzymes. Data reported in 
Fig.  6A show that single knock down of ALDOC and 
ENO2 led to the evident reduction of each gene, which 
was more prominent when both genes were silenced 
together. Furthermore, we observed that ENO2 silencing 
did not affect ALDOC gene expression levels; conversely, 
ALDOC knock down significantly reduced ENO2 only in 
H460 cells regardless of the culture media conditions.

Next, we found that ALDOC and ENO2 knock down, 
either as a single entity or in combination, attenuated the 
spheroids forming ability in both cell lines regardless of 
the culture media conditions as shown by the markedly 
reduced cell viability (Fig. 6B) and tumor spheroids size (see 
images and relative histograms in Fig. 6C) (*p-value < 0.05, 
**p-value < 0.01, ***p-value < 0.001). Based on these results, 
we wondered whether H460 and MCF7 growth in non-
adherent conditions was dependent on ALDOC- and 
ENO2-mediated glucose metabolism. To this, we assessed 
the effects of transient knock down of ALDOC and ENO2 
on intracellular glucose and L-lactic acid amounts as well 
as on L-lactic acid release within culture media. As shown 
in Fig.  7A-B, knock down of ALDOC and ENO2 alone 
caused, although without reaching the statistical signifi-
cance, a reduction of both intracellular and extracellular 
L-lactic acid as well as a slight increase in glucose amounts 
in both cell lines and culture media. The only exception was 
represented by the intracellular glucose amounts which 
appeared significantly increased upon ALDOC or ENO2 
silencing alone in H460 cells regardless of the cell culture 
conditions (*p-value < 0.05, **p-value < 0.01). Silencing of 
both enzymes together, instead, led to the marked reduc-
tion of L-lactic acid production and release (*p-value < 0.05) 
in both the cell lines (Fig.  7C). Collectively, the biological 
effects observed upon ALDOC and/or ENO2 transient 
knock down are reported in Fig. S3 (additional file 9).

It is important to note that data shown in Fig.  6 and 7 
are the results of ALDOC and ENO2 silencing performed 
by using a specific siRNA for each gene. Two additional 
siRNAs (siALDOC #2/3; siENO2 #2/3) were also used to 

knock down each gene to exclude any off-targets effects 
as shown in Fig. S4 and S5 in additional files 10–11. Over-
all, these results indicate that the loss of either ALDOC or 
ENO2 significantly impairs the ability of both H460 and 
MCF7 to in terms of spheroids viability and size, regard-
less of the culture media conditions. This effect appears 
exacerbated when tumor spheroids are, in parallel, deprived 
of both enzymes. Notably, the transient knock down of 
each gene leads to the perturbation of the glycolytic flux, 
although without reaching the statistical significance in 
most of the 3D conditions. Among the two cell types, H460-
derived tumor spheroids seem more affected by the single 
knock down of ALDOC, which alone causes the significant 
down regulation of ENO2 and the significant accumulation 
of intracellular glucose amount. We hypothesize that this 
could be explained, once again, by the already discussed 
primarily glycolytic phenotype of H460 cells [83]. The gly-
colytic flux results significantly perturbed in both cell types 
upon then loss of both enzymes, as demonstrated by the sig-
nificant reduction of L-lactic acid production and release.

These results were further confirmed in additional LUAD 
(HCC827) and breast cancer (T47D) cell lines. Indeed, as 
shown in Fig. 8, the combined knock down of the two gly-
colytic enzymes significantly impaired lactate production 
and hampered the growth of HCC827 and T47D cells as 
3D tumor spheroid in non-adherent conditions.

Discussion
Cell adaptation, selection, and evolution are key pro-
cesses along all the steps of tumor initiation and progres-
sion, including the propensity of cancer cells to leave the 
primary site, migrate and establish metastases [86]. To 
leave the primary tumor, cancer cells adopt drastic tran-
scriptional and metabolic changes that jointly initiate 
the invasion-metastatic cascade and, thus, allow tumor 
cells to detach from the ECM, adopt an EMT phenotype 
and disseminate from primary lesions into the blood or 
the lymphatic vessels [87]. Then, circulating tumor cells 
adopt anti-anoikis, or anchorage-independent survival 
mechanisms, to further adapt to the severe environmen-
tal stress imposed by separation from the ECM [88–90]. 
According to the literature, oxygen, energy metabolism 
and redox homeostasis are three inextricably linked fac-
tors among which cancer cells need to strike a balance 
to survive under detached conditions [91]. Only a small 
subpopulation of persisting cancer cells leaving primary 
tumors are able to maintain an optimal balance between 

Fig. 5 Analysis of morphology and growth rate of H460- and MCF7-derived tumor spheroids. A Representative images and relative histograms 
of H460 3D_SM, H460 3D_  FBSlow, MCF7 3D_SM, and MCF7  3D_FBSlow tumor spheroids morphology, count and B diameter. C Cell viability of 
H460 3D_SM, H460  3D_FBSlow, MCF7 3D_SM, and MCF7  3D_FBSlow assessed by Cell titer-Glo 3D assay and expressed as relative light unit (RLU). D 
Representative images of H460 3D_SM, H460  3D_FBSlow, MCF7 3D_SM, and MCF7  3D_FBSlow tumor spheroids obtained by SEM. All the experiments 
were carried out in triplicate and results are presented as mean ± SD. p-value: * < 0.05, ** < 0.01. *** < 0.001. ns: not significant

(See figure on next page.)



Page 14 of 25De Vitis et al. J Exp Clin Cancer Res           (2023) 42:69 
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the competing interests arising from three factors and, 
thus, to successfully reach metastatic secondary sites.

In addition to an “imprinted” predisposition and/or the 
acquisition of random mutational hits, persisting cancer 
cells show a remarkable plasticity against the metabolic 
requirements imposed by the different microenvironments 
during the different steps of the metastatic cascade. Such 
metabolic reprogramming can be controlled both through 
the transcriptional and post-transcriptionally regulation of 
specific enzymes or through metabolite availability [92]. 
In this regard, it has been demonstrated that lactate and 
pyruvate metabolism promote the switch from a prolif-
erative to a migrating metastatic cell phenotype through 
the modulation of different signalling pathways and global 
gene expression programmes. In breast cancer cells, the 
reduction of the oxidative metabolism in favor of glycolytic 
energy production leads to the accumulation of acetyl-CoA 
and the consequent acetylation of the transcription factor 
Smad2, which is a well-known inducer of the mesenchy-
mal genes patterns [93]. In agreement, both metastatic lung 
cancer cell lines and metastases isolated from lung cancer 
mouse models show downregulated gene expression of 
proteins belonging to the ETC [94]. In breast cancer cells, 
lactate dehydrogenase (LDH) has been found to be phos-
phorylated and thus activated by HER2 and SRC, and that 
the inhibition of such phosphorylation is associated with 
decreased invasiveness [95]. Once in blood circulation, 
lactate and pyruvate also contribute to the resistance to 
the hypoxia-mediated ROS accumulation within cell clus-
ters through the stabilization of HIF1α protein [96]. Alter-
natively, glutamine metabolism is also involved in tumor 
invasion. To make an example, the overexpression of glu-
taminase 1 (GLS1), which catabolizes the conversion from 
glutamine to glutamate, is required for colorectal cancer 
cells migration and lymphnode metastasis [97]. In agree-
ment, glutamate dehydrogenase (GDH), which converts 
glutamate to α-ketoglutarate, has been identified as a prog-
nostic marker of colorectal cancer metastasis [98]. Altera-
tions in lipid metabolism is also intimately linked to tumor 
progression. For instance, the increase in monounsaturated 
fatty acids, generated by the activity of SCDs, the rate-lim-
iting enzymes in the formation of monounsaturated fatty 
acids, is associated with the acquisition of cancer stem cells 
(CSCs)-like features in ovarian and lung cancer cells lines 
[99–101]. In agreement, the increased activity of SCD1 has 
been found to promote YAP/TAZ signalling pathway thus 

enhancing melanoma CSCs aggressiveness [102]. Similarly, 
the activation of the mevalonate pathway, responsible for 
cholesterol synthesis, confers stem cell traits to breast can-
cer cells. In agreement, the inhibition of HMG-CoA reduc-
tase, the rate-limiting enzyme of the mevalonate cascade, 
resulted effective against breast cancer stem cells [103].

In this study, by using a well-integrated multi-omics 
approach, we demonstrate that the ability of H460 LUAD 
and MCF7 breast cancer cells to grow in non-adherent 
condition and to generate 3D tumor spheroids both in 
glucose-rich (3D_SM) and glucose-deprived  (3D_FBSlow) 
culture media is associated with a consistent modula-
tion of genes and proteins mainly involved in metabolic 
reprogramming towards an enhanced glycolytic pheno-
type most likely induced by a hypoxic condition. Indeed, 
we found that all the transitions from 2 to 3D cultures, 
regardless of the cancer cell type and cell culture condi-
tions, are accompanied by the significant up-regulation 
of genes encoding for 6 out of 10 glycolytic enzymes: HK2 
and ALDOC belonging to the energy-requiring phase and 
GAPDH, PGK1, ENO2, and PKM belonging to the energy-
releasing phase [104]. In agreement with transcriptomic 
data, our metabolomic analyses highlighted a significant 
consumption of glucose and a corresponding increase in 
lactate production in all 3D tumor spheroids compared 
to their relative 2D parental cells, even within glucose-
restricted culture conditions. If on the one hand, these 
results leant towards a mandatory role of the glycolytic 
cascade for the maintenance of cancer cell survival under 
detached-culture conditions, on the other hand raised the 
question of how 3D tumor spheroids enhanced their gly-
colytic phenotype in glucose-restricted conditions.

Glucose metabolism is one of the major metabolic 
pathways essential for tumor growth [105]. According to 
the “Warburg effect” concept, tumor cells enhance glyco-
lytic cascade and the LDH- mediated lactate production 
both under hypoxic and normoxic conditions [106]. War-
burg effect allows tumor cells to gain survival advantages 
in two ways: one is to increase carbon sources, which 
are used to synthesize proteins, lipids, and nucleic acids 
to meet the needs of tumor growth; the other one is to 
turn off the aerobic respiration to suppress ROS genera-
tion, thereby preventing cell death [107]. In particular 
under hypoxia conditions, cancer cells tend to enhance 
lactate production by enhancing the expression of glyco-
lytic enzymes and lactate dehydrogenase (LDH) [108]. In 

(See figure on next page.)
Fig. 6 ALDOC and ENO2 knock down reduces the sphere-forming ability of H460 and MCF7 cells. A qRT-PCR analyses of ALDOC and ENO2 in H460 
3D_SM, H460 3D_  FBSlow, MCF7 3D_SM, and MCF7 3D_  FBSlow upon ALDOC and ENO2 silencing alone or in combination. B Cell viability of H460 
3D_SM, H460  3D_FBSlow, MCF7 3D_SM, and MCF7  3D_FBSlow upon ALDOC and ENO2 silencing alone or in combination assessed by Cell titer-Glo 3D 
assay and expressed as relative light unit (R.L.U). C Representative images and relative histograms of tumor spheroids morphology and diameter of 
H460 3D_SM, H460  3D_FBSlow, MCF7 3D_SM, and MCF7  3D_FBSlow upon ALDOC and ENO2 silencing alone or in combination. All the experiments 
were carried out in triplicate and results are presented as mean ± SD. p-value: * < 0.05, ** < 0.01, *** < 0.001. ns: not significant
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this regard, our results show that in association with the 
increase in lactate production all the 2D to 3D transitions 
are accompanied by the overexpression of LDH, although 
without reaching the statistical significance (Table  S1). 
The overproduction of lactate represents a well-docu-
mented benefit for cancer cells through the acidification 
of the tumor microenvironment (TME), VEGF-mediated 
angiogenesis, increase of cancer cell motility and self-
renewal of cancer stem cells (CSCs) [108]. As such, lac-
tate is positively associated with tumor metastasis and 
recurrence [109, 110].

During hypoxic conditions, cancer cells also use other 
mechanisms to foster the conversion of pyruvate to lac-
tate. Among these, one is the inhibition of pyruvate entry 
into the TCA cycle through the PGK1-mediated phos-
phorylation of pyruvate dehydrogenase kinase 1 (PDK1), 
which in turn inhibits the pyruvate dehydrogenase com-
plex (PDC) [111]. Interestingly, PGK1 is one of the glyco-
lytic genes up regulated in all 3D vs 2D conditions. Gene 
expression analysis of 3D glioblastoma spheroids has 
shown increased expression of pyruvate dehydrogenase 
kinase 4 (PDK4) involved in the suppression of mito-
chondrial activity. In agreement, MYC, involved in mito-
chondrial energy production, was found down-regulated 
and the evaluation of TCA cycle metabolic products 
showed decreases in the levels of succinate, fumarate, 
and malate [112]. Interestingly, the same changes have 
been reported in metabolomic analysis of ovarian cancer 
cell spheroids [113].

The induction of mitochondrial autophagy (mitophagy), 
in concert with inhibition of mitochondrial biogen-
esis, represents critical adaptive mechanism to main-
tain oxygen homeostasis and prevent mitochondrial 
ROS accumulation under hypoxic conditions [114, 115]. 
Importantly, our transcriptomic and proteomic data show 
a significant alteration of genes and proteins involved 
both in mitochondria biogenesis and clearance. All the 
transitions from 2 to 3D conditions, in fact, were charac-
terized by i) the significant down regulation of MRPL41 
and MRPL24 components of mitoribosomes involved in 
the synthesis of mitochondrial electrons transport chain 
(ETC) components [75], ii) the significant up-regula-
tion of BINP3 and BNIP3L that are targets of HIF1 and 
are necessary for mitophagy [63]. BINP3/BINP3L are 
involved in mitochondrial quality control: in response to 

mitochondrial damage, they participate to the degrada-
tion of damaged proteins inside mitochondria and in the 
opening of the pores within the mitochondrial double 
membrane in order to mediate the translocation of the 
lysosomal proteins from the cytoplasm to the mitochon-
drial matrix.

As last adaptive mechanism, HIF-1 reprograms tumor 
metabolism by increasing glycogen reserves under 
hypoxia [116]. According to the literature, a decrease in 
pO2 acts as an “alarm” that prepares cancer cells to face 
subsequent nutrient depletion through the induction of 
glycogen storage. In this regard, our findings demon-
strate that the mRNA levels of the first enzyme of the 
glycogenesis PGM1 were increased in all 3D vs 2D con-
ditions, regardless of the culture media. In agreement, 
metabolomic analysis shows a significant decrease in the 
intracellular level of uridine diphosphate glucose (UDP) 
which is the first substrate for glycogen synthesis.

In addition to glucose, recent studies suggest that fruc-
tose can be preferentially metabolized by cancer cells 
under low oxygen conditions through an alternative 
catabolic pathway known as fructolysis [117]. During 
fructolysis fructose is first converted to fructose 1-phos-
phate by fructokinase and then converted to DHAP and 
G3P specifically by the aldolase isoforms ALDOB and 
ALDOC. In this regard, our results show that all 2D to 
3D transitions were associated with the significant up-
regulation of ALDOC isoenzyme at both gene and pro-
tein level concomitant with the significant reduction 
of the intracellular levels of fructose-monophosphate. 
Stemming from these observations, we could also 
hypothesize that, in non-adherent conditions, certain 
cancer cells, and above all those deprived of glucose, 
might become fructose-dependent. According to the 
literature, fructolysis show several advantages for can-
cer cells compared to glycolysis. First, fructose can be 
quickly catalyzed because fewer enzymes are involved 
in this process than in glycolysis. Fructolysis fuels gly-
colysis thus leading to a further increase in lactate pro-
duction [118]. Indeed, since fructokinase activation 
sequesters a phosphate from ATP, the consequent ATP 
and phosphate depletion enhances glycolysis by activat-
ing the glycolytic enzymes PFK and PK [119]. Further-
more, G3P generated by ALDOB and ALDOC during 
fructolysis enters to the glycolytic pathway distal to PFK 

Fig. 7 ALDOC and ENO2 knock down impairs glucose and L-lactic acid amounts in H460 and MCF7 3D tumor spheroids. A‑B Intracellular glucose 
and L-lactic acid amounts measured by luminometric assays and reported as relative light units (R.L.U.) in H460 3D_SM, H460 3D_  FBSlow, MCF7 
3D_SM and MCF7 3D_  FBSlow upon ALDOC and ENO2 silencing alone. C Quantification of L-lactic acid within the culture media (extracellular) 
performed by emogas analysis and expressed as mmol/l in H460 3D_SM, H460 3D_  FBSlow, MCF7 3D_SM and MCF7 3D_  FBSlow upon ALDOC and 
ENO2 silencing alone or in combination. All the experiments were carried out in triplicate and results are presented as mean ± SD. p-value: * < 0.05, 
** < 0.01, *** < 0.001. ns: not significant

(See figure on next page.)
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[53]. The rapid reduction of phosphate caused by the 
activation of fructokinase has been shown to activate the 
AMP deaminase (AMPD), which cleaves AMP to IMP 
[117]. The latter is used to generate acid uric, which in 
turn causes mitochondrial ROS accumulation [120]. In 
line with these data, our results show that 3D tumor 
spheroids were characterized by the up-regulation of 
AMPD3 isoform and a significant reduction of IMP 
intracellular levels. AMPD3 is involved in the activation 
of AMPK, which is largely recognized as an early energy 
sensor activated by glucose deprivation and responsi-
ble of the activation of alternative catabolic pathways to 
generate ATP [121].

Together with ALDOC, also ENO2 was found up-
regulated Interestingly, both ALDOC and ENO2 are 
neuro-specific isoforms of the relative enzymes mainly 
expressed in normal neuronal tissues [53, 54]. As such, 
their overexpression in 3D tumor spheroids derived 
from LUAD and breast cancer cell lines was somehow 
unexpected; however, it could be suggestive of a broad 
neuronal-specific gene expression reprogramming of 
cancer cells during detachment from the ECM and 3D 
tumor growth. Although still poorly defined, the litera-
ture suggests that both isoenzymes exert non-canonical 
“moonlighting” functions in carcinogenesis [122, 123]. 
Under hypoxia, HIF1a binds to the hypoxia- respon-
sive element (HRE) on the promoter region of ALDOC, 
thus causing metabolic reprogramming or aberration 
of glycolysis to promote glioblastoma and ovarian can-
cer [124]. In 2022 Maruyama R et  al. demonstrated 
that ALDOC is overexpressed in 3D tumor spheroids 
derived from colorectal cancer (CRC) cell lines and 
that its overexpression in CRC patients correlated with 
metastasis and poor prognosis [125]. ENO2 can func-
tion as on oncogene, either in neuronal malignancies or 
in other cancer types, such as lung, breast, and prostate 
cancer [126–128]. Recent evidence was provided that 
the C-term domain of ENO2, which is not necessary for 
metabolic activity, activates the MAPK/ERK signaling 
pathway and thus promotes proliferation and migra-
tion of BRAV V600E-mutated CRC cells [129]. In this 
regard, in our study, we demonstrate that the combined 

knockdown of ALDOC and ENO2 significantly reduced 
lactate production and consequently attenuated the 
sphere-forming ability of both LUAD and breast cancer 
cell lines both in nutrient-rich and nutrient-restricted 
conditions.

Finally, the integration of transcriptomic and prot-
eomic data highlighted that NOL3 was up regulated in 
all 3D vs 2D conditions both at gene and protein levels. 
NOL3 functions as a suppressor of both intrinsic and 
extrinsic apoptosis through several mechanisms, includ-
ing the blockage of death-inducing signaling complex 
(DISC) assembly, the limitation of caspase-8 for DISC-
mediated activation, and the inactivation of pro-apop-
totic BAX [130].

Conclusions
Overall, the present work shows that the integration of 
transcriptomic, proteomic, and metabolomic analyses is 
a powerful approach to unveiling in-depth global adap-
tive cellular responses and the interconnection of regu-
latory circuits involved in the ability of cancer cells to 
survive in non-adherent conditions. Indeed, our find-
ings reveal that an extensive metabolic rewiring towards 
an increased glycolytic “metabotype” and an enhanced 
lactate production is mandatory to achieve a new 
homeostasis state that favors cancer cell survival in 3D 
culture conditions. This phenomenon is accompanied 
by multiple adaptive events of both transcriptional and 
translational machineries that merge to a hypoxic-medi-
ated upregulation of anaerobic glycolytic cascade, main-
tenance of intracellular redox homeostasis, activation of 
autophagic and antiapoptotic pathways. Noteworthy, in 
all the transitions from 2 to 3D cultures, ALDOC and 
ENO2 glycolytic enzymes are upregulated both at tran-
scriptional and translational levels and interfering with 
their activity is sufficient to repress lactate production 
and to reduce sphere-forming ability of both LUAD 
and breast cancer cell lines. This result suggests that 
ALDOC and ENO2 may represent new powerful targets 
to restrain 3D tumor spheroids generation of both lung 
and breast cancer cell lines cultured in different envi-
ronmental nutrient availability.

(See figure on next page.)
Fig. 8 ALDOC and ENO2 knock down reduces the sphere-forming ability of HCC827 and T47D cells. A qRT-PCR analyses of ALDOC and ENO2 
in HCC827 3D_SM, HCC827  3D_FBSlow, T47D 3D_SM, and T47D  3D_FBSlow upon ALDOC and ENO2 silencing alone or in combination. B L-lactic 
acid production assessed in HCC827 3D_SM, HCC827  3D_FBSlow, T47D 3D_SM, and T47D  3D_FBSlow upon ALDOC and ENO2 silencing alone or in 
combination. C Cell viability of HCC827 3D_SM, HCC827  3D_FBSlow, T47D 3D_SM, and T47D  3D_FBSlow upon ALDOC and ENO2 silencing alone or in 
combination assessed by Cell titer-Glo 3D assay and expressed as relative light unit (RLU). D Representative images and relative histograms of tumor 
spheroids morphology and diameter of HCC827 3D_SM, HCC827  3D_FBSlow, T47D 3D_SM, and T47D  3D_FBSlow upon ALDOC and ENO2 silencing 
alone or in combination. All the experiments were carried out in triplicate and results are presented as mean ± SD. p-value: * < 0.05, ** < 0.01, 
*** < 0.001. ns: not significant
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