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Purpose: The delivery of transgenes into human induced pluripotent stem cell (hiPSC)-derived 

cardiomyocytes (hiPSC-CMs) represents an important tool in cardiac regeneration with potential 

for clinical applications. Gene transfection is more difficult, however, for hiPSCs and hiPSC-CMs 

than for somatic cells. Despite improvements in transfection and transduction, the efficiency, 

cytotoxicity, safety, and cost of these methods remain unsatisfactory. The objective of this study is 

to examine gene transfection in hiPSCs and hiPSC-CMs using magnetic nanoparticles (NPs).

Methods: Magnetic NPs are unique transfection reagents that form complexes with nucleic 

acids by ionic interaction. The particles, loaded with nucleic acids, can be guided by a magnetic 

field to allow their concentration onto the surface of the cell membrane. Subsequent uptake of 

the loaded particles by the cells allows for high efficiency transfection of the cells with nucleic 

acids. We developed a new method using magnetic NPs to transfect hiPSCs and hiPSC-CMs. 

HiPSCs and hiPSC-CMs were cultured and analyzed using confocal microscopy, flow cytometry, 

and patch clamp recordings to quantify the transfection efficiency and cellular function.

Results: We compared the transfection efficiency of hiPSCs with that of human embryonic 

kidney (HEK 293) cells. We observed that the average efficiency in hiPSCs was 43%±2% com-

pared to 62%±4% in HEK 293 cells. Further analysis of the transfected hiPSCs showed that the 

differentiation of hiPSCs to hiPSC-CMs was not altered by NPs. Finally, robust transfection of 

hiPSC-CMs with an efficiency of 18%±2% was obtained.

Conclusion: The difficult-to-transfect hiPSCs and hiPSC-CMs were efficiently transfected 

using magnetic NPs. Our study offers a novel approach for transfection of hiPSCs and hiPSC-

CMs without the need for viral vector generation.

Keywords: human induced pluripotent stem cell-derived cardiomyocytes, therapy, pluripo-

tency, efficiency

Introduction
Human induced pluripotent stem cells (hiPSCs) are human somatic cells that are geneti-

cally reprogrammed into an embryonic-like, pluripotent state capable of differentiating 

into all three germ layers. Since the original description of induced pluripotent stem 

cells (iPSCs),1 the field has greatly expanded.2–4 The hiPSC technology has the poten-

tial to revolutionize regenerative and precision medicine by providing differentiated 

cells for cell-based therapy, disease modeling, drug testing, and high-throughput drug 

discovery in a patient-specific manner.

A large number of studies have refined the techniques for efficient directed- 

differentiation of hiPSCs into cardiomyocytes.5 In addition, multiple studies have 

provided evidence for the application of hiPSC-derived cardiomyocytes (hiPSC-CMs) 
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in cardiac transplantation in animal models.6 One of the main 

advantages of utilizing hiPSC-CMs, as opposed to undif-

ferentiated hiPSCs, is the elimination of the risk of teratoma 

formation. Moreover, hiPSC-CMs serve as an unlimited 

source of committed human cardiomyocytes.

Genetic modification of hiPSCs represents an essential 

tool for the study of hiPSCs. Expression of different markers 

is required in cell-based therapy applications of hiPSCs 

and hiPSC-CMs. With the advent of genome editing using 

CRISPR-Cas9 technology,7 it has become increasingly fea-

sible to correct disease-causing mutations in patient-specific 

hiPSCs, in order to create isogenic lines for disease modeling 

or potential therapeutics. However, there are significant 

technical challenges for the transfection of hiPSCs and 

hiPSC-CMs, since these cells are known to be difficult to 

transfect.8–10 Although multiple methods of genetic modi-

fications exist (ie, nucleofection, lipofectamine-mediated 

transfection, and viral-based transduction), their efficiency, 

cytotoxicity, safety, and cost remain unsatisfactory.8 Increas-

ingly, nanoparticles (NPs) have been used in biomedical 

research as powerful tools for drug delivery and personalized 

medicine.11 The objective of this study is to examine the 

efficiency of gene transfection in hiPSCs and hiPSC-CMs 

using magnetic NPs. Our study offers a novel approach to 

introduce desired genes into hiPSCs and hiPSC-CMs without 

the need for viral vector generation.

Materials and methods
Cell culture
HiPSCs (19-9-7T and 6-9-9, WiCell, Madison, WI, USA) 

were plated in feeder-free conditions using matrigel-coated 

culture dishes and chemically defined medium, mTeSR™ 1 

(Stemcell Technologies, Inc., Cambridge, MA, USA). Cardiac 

myocytes were generated using a directed differentiation pro-

tocol.12 Briefly, differentiation of confluent (80%–90%) cells 

was initiated by adding RPMI/B27 medium (Thermo Fisher 

Scientific, Waltham, MA, USA) lacking insulin and contain-

ing the CHIR99021 (Tocris, Minneapolis, MN, USA) for 

24 hours, followed by RPMI/B27 media with an inhibitor of 

Wnt signaling, IWR-1-endo (Tocris). Differentiated hiPSCs 

were replated on a coverslip prior to transfection and action 

potential (AP) recordings.

Magnetic-assisted transfection using 
nanoparticles
The transfection was conducted following the manufacturer’s 

instructions (Neuromag, OZ Biosciences Inc., San Diego, 

CA, USA) and published methods.13,14 The NPs are posi-

tively charged, with a zeta .+30 mV in water. The size of 

the NPs ranges from 140 to 200 nm with the majority around 

160 nm, and the particle population is rather homogeneous. 

Briefly, plasmid DNAs (pIRES2-EGFP, Clontech Labora-

tories, Inc., Mountain View, CA, USA) or a double fusion 

construct (an integrating vector) with green fluorescence 

protein (GFP)15 were diluted in cell culture medium, and 

the NP reagent was added to the culture medium containing 

DNA. DNA handling followed NIH guidelines. After brief 

vortexing and 20-minute incubation at room temperature, the 

medium containing the DNA/nanoparticle complexes was 

added to the cell culture dish. The dish was then placed on a 

magnetic plate and incubated in a cell culture incubator for 

1, 2, and 4 hours. Cells were harvested or differentiated after 

24–48 hours of transfection. For comparison, lipofectamine-

2000 and -3000 (Thermo Fisher Scientific) were used.

Flow cytometric analysis
Cells were trypsinized and analyzed for GFP signal using 

a standard FACScan cytometer (BD Biosciences, San Jose, 

CA, USA), as we have described.16 Briefly, cells were fixed 

with 0.4% paraformaldehyde (PFA) before treating with 

anti-myosin heavy chain antibody (Developmental Studies 

Hybridoma Bank, Iowa city, IA, USA) in PBS with 5% 

donkey serum and 20 µg/mL DNAse-free RNAse (Sigma-

Aldrich Co., St Louis, MO, USA), overnight at 4°C. Cells 

were also stained with 40 µg/mL 7-amino-actinomycin D 

(7AAD, BD Biosciences) to measure the DNA content. 

Data were collected using a standard FACScan cytometer 

(BD Biosciences) upgraded to a dual laser system with the 

addition of a blue laser (15 mW at 488 nm) and a red laser 

(25 mW at 637 nm Cytek Development, Inc., Fremont, CA, 

USA). Data were acquired using CellQuest software (BD 

Biosciences) and analyzed using FlowJo software (Ver9.4 

Treestar Inc., San Carlos, CA, USA). Cells stained with 

isotype-matched IgG antibodies were used as controls to 

determine the positive cell population.

Immunofluorescence confocal 
microscopy
Expression of troponin T in hiPSC-CMs was detected by 

using mouse monoclonal anti-cardiac troponin T antibody 

(Abcam, Burlingame, CA, USA). Images were taken 

using Zeiss LSM 700 confocal microscope (Carl Zeiss, 

Oberkochen, Germany).

Electrophysiologic recordings
Spontaneous action potentials (APs) of hiPSC-CMs were 

recorded using the perforated-patch recording technique 

at 35°C, as we have described.17 Briefly, the patch-pipettes 
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were backfilled with amphotericin (200 µg/mL). The pipette 

solution contained (mM) K-glutamate 120, KCl 25, MgCl
2
 

1, CaCl
2
 1, HEPES (N-2-hydroxyethylpiperazine-N’-2-

ethanesulphonic acid) 10, pH 7.4 with KOH. The external 

solution contained (in mM): NaCl 138, KCl 4, MgCl
2
 1, CaCl

2
 

2, NaH
2
PO

4
 0.33, glucose 10, HEPES 10, pH 7.4 with NaOH. 

The recording was performed using an Axopatch 200A 

amplifier (Molecular Devices, San Jose, CA, USA). The 

signal was filtered at 1 kHz using a 4-pole Bessel filter and 

digitized at sampling frequency of 2 kHz. Data analysis was 

carried out using Clampfit 10 software and graphics software 

(Origin Lab, Origin 6.0, Northampton, MA, USA).

Statistical analysis
Data are presented as mean ± standard error (SE). Statistical 

comparisons were analyzed by Student’s t-test or one-

way ANOVA followed by Bonferroni tests for post hoc 

comparison. Statistical significance was considered to be 

achieved when P,0.05, and n represents the number of 

independently repeated experiments.

Results
Efficient transfection of hiPSCs using 
magnetic nanoparticles
NPs have recently been used as powerful tools for drug and 

gene delivery.11,18 Magnetic NPs have been successfully used 

for transfection of difficult-to-transfect primary neurons.13,14 

However, the use of magnetic NPs for transfection of hiPSCs 

remains unknown. We therefore tested the transfection of hiP-

SCs using magnetic nanoparticles. Figure 1A shows a diagram 

depicting magnet-assisted transfection (magnetotransfection) 

using NPs. A schematic representation of the experimental 

protocol is shown in Figure 1B. We first tested the double 

fusion construct, and the confocal microscopic images of 

transfected cells are shown in Figure 1C. Flow cytometric 

analyses were used to directly quantify nanoparticle-mediated 

transfection in HEK 293 cells and hiPSCs (Figure 1D and E). 

We further tested the transfection using a non-integrating GFP 

construct (pIRES2-EGFP) and optimized the time needed for 

magnetotransfection (Figure 1F and G). We note a significant 

increase in percentages of GFP-positive hiPSCs using 4 hours 

Figure 1 Transfection of hiPSCs using magnetic nanoparticles.
Notes: (A) Diagram depicting magnetic nanoparticle-mediated transfection. (B) Schematic representation of the experimental protocol. (C) Confocal laser scanning 
microscopic images of double fusion construct-transfected HEK 293 cells (upper) and hiPSCs (lower). The left panels show the corresponding bright-field images of the cells. 
Scale bar is 10 µm. (D) Flow cytometric analyses of transfection efficiencies. Magnetic nanoparticle-treated cells without GFP plasmids were used as control for background 
fluorescence (Background FL) shown in the left panel. GFP signals were detected from the GFP expression in the cells. (E) Summary data from D (*P,0.05 by Student’s t-test, 
n=3–7). (F) Flow cytometric analysis of pIRES2-EGFP-transfected hiPSCs using 1, 2, and 4 hours of magnetotransfection. (G) Summary data from F (*P,0.05 by ANOVA, 
n=3–7). pIRES2-EGFP vector has a lower transfection efficiency compared to double fusion construct (D and E) after 4 hours of magnetotransfection. (H) Comparison of 
the transfection efficiency of hiPSCs using pIRES2-EGFP vector and lipofectamine-2000, -3000 and nanoparticle-mediated transfections. Four hours of transfection was used 
for all the conditions (*P,0.05 by ANOVA, n=3–7).
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of magnetotransfection. Importantly, there was a significant 

increase in the efficiency of transfection using magnetotransfec-

tion compared to lipofetamine-2000 and -3000 (Figure 1H).

Transfection with NPs did not alter the 
differentiation of hiPSCs to hiPSC-CMs
One possible concern using magnetotransfection is whether 

the procedure may alter the differentiation efficiency of 

hiPSCs. Here, we directly compared the differentiation 

efficiency between control (non-transfected) and transfected 

hiPSCs into cardiomyocytes (CMs). The differentiated CMs 

exhibited large beating clusters with spontaneous firing APs, 

consistent with populations of ventricular-like, atrial-like, 

and nodal-like APs (Figure 2A and B).19 There were no sig-

nificant differences in the efficiency of differentiation into 

CMs between control hiPSCs and GFP-transfected hiPSCs 

using NPs (Figure 2C and D).

Magnetotransfection was more efficient 
than lipofectamine in hiPSC-CMs
HiPSCs can be differentiated into multiple cell types. 

HiPSC-CMs have potential for many applications in cardiac 

regeneration, as well as serving as models for cardiovascular 

diseases.6,20 HiPSC-CMs, as differentiated cells, are even 

more difficult to transfect compared to hiPSCs. It is critical 

to further evaluate the efficiency of magnetotransfection in 

hiPSC-CMs. By using flow cytometric analysis of both myo-

sin heavy chain (MyHC) and GFP positive cells, we directly 

demonstrated that magnetotransfection was more efficient 

than lipofectamine not only in hiPSCs, but also in hiPSC-

CMs (Figure 2E and F) using pIRES2-EGFP construct.

Discussion
Since the original description of iPSCs,1 the wide-reaching 

potentials of the technology have been rapidly realized for 

Figure 2 Transfection of hiPSC-CMs using magnetic nanoparticles.
Notes: (A) Confocal laser scanning microscopic images of GFP-transfected hiPSC-CM. Scale bar is 10 µm. (B) hiPSC-CMs exhibit spontaneous APs with ventricular-like, 
atrial-like, and nodal-like characteristics. The dotted line represents 0 mV. (C, D) Assessment of the efficiency of differentiation into CMs in control hiPSCs compared to 
hiPSCs transfected with double fusion construct using nanoparticles by analysis of myosin heavy chain (MyHC) positive cells. Summary data are shown in the right panels. 
(E, F) Comparison of the transfection efficiency in double positive hiPSC-CMs (MyHC+/GFP+) using pIRES2-EGFP vector and lipofectamine-2000, -3000, and nanoparticle-
mediated transfections. Data were collected 4 hours after transfection (*P,0.05 by ANOVA, n=3).

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine 2018:13 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

6077

Transfection of hiPSCs by magnetic nanoparticles

both regenerative and precision medicine. The utilization of 

hiPSCs enables the development of an unlimited source of 

any human cell types needed for therapeutic and precision 

medicine. Genetic modification and expression of different 

reporters are essential for studies to evaluate cell-based 

therapy applications of hiPSCs and hiPSC-CMs. However, 

significant technical challenges exist for the transgene 

delivery into hiPSCs.8–10 Several methods have been devel-

oped for transgene delivery, which are mainly catogorized 

into viral and non-viral methods.8–10 Three types of viral 

vectors are widely used in the transgene delivery, including 

adenoviral, lentiviral, and adeno-associated viral vectors. 

The advantage of viral vectors lies in their high delivery 

efficacy, but their use also raises safety concerns including 

the cytotoxicity, cellular immune responses, and transgene 

integration into host genome. Non-viral methods, including 

mechanical and electrical methods such as injection or 

electroporation, and chemical methods such as lipofection, 

are potentially safer alternatives for transgene delivery into 

iPSCs, but the transfection efficiency is relatively lower.9,10 

For iPSC-CMs and embryonic stem cell-derived cardomyo-

cytes (ESC-CMs), viral transduction and nucleofection are 

commonly used for transgene delivery.21–24

Magnetic NPs have been used for the transfection of cell 

lines and primary cells including neurons.13,14,25 Magnetic 

nanoparticle-mediated gene transfer offers significant 

advantages over other gene transfer methods, such as high 

efficiency, low cytotoxicity, low cost, directional and distal 

controllability, efficient in vivo applications, and lack of 

immune responses.25–28 Recently, magnetic NPs have been 

used for gene delivery to neural precursor/stem cells.26,27,29 

However, whether magnetic nanoparticles can be efficiently 

used for transfection of iPSCs and iPSC-CMs has not been 

addressed and reported. Here, we demonstrate that the 

difficult-to-transfect hiPSCs and hiPSC-CMs can be effi-

ciently transfected using magnetic NPs.

Our study offers a novel approach to introduce trans-

genes into hiPSCs and hiPSC-CMs without the need for 

viral vector generation. Indeed, our findings transcend the 

benefits for hiPSCs and hiPSC-CMs. The technique may 

represent a non-viral method for the generation of hiPSCs 

and thus avoid the risk of genomic insertions inherent in 

some integrating viral methods. The potential application 

will be the genetic modification of hiPSCs and hiPSC-CMs 

for in vitro guided differentiation and in vivo transplantation 

for tissue regeneration and repair. The distal control of 

nanoparticles by a magnetic field will further potentiate the 

in vivo application and delivery of nucleic acids to specific 

organs for targeted gene therapy. The possible limitation 

may come from the cytotoxicity of magnetic NPs, which 

results from the accumulation of NPs in endosomes and/or 

vacuoles in cells. However, NPs will be degraded through 

normal iron metabolism over time, although the mechanism 

is still not well understood.11,25 For future studies, transfec-

tion efficiencies between different types of constructs need 

to be addressed.
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