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A B S T R A C T   

Fungi are well known for production of antibiotics and other bioactive secondary metabolites, that can be served 
as pharmaceuticals, therapeutic agents and industrially useful compounds. However, compared with the char-
acterization of prokaryotic biosynthetic gene clusters (BGCs), less attention has been paid to evaluate fungal 
BGCs. This is partially because heterologous expression of eukaryotic gene constructs often requires replacement 
of original promoters and terminators, as well as removal of intron sequences, and this substantially slow down 
the workflow in natural product discovery. It is therefore of interest to investigate the possibility and effec-
tiveness of heterologous expression and library screening of intact BGCs without refactoring in industrial friendly 
microbial cell factories, such as the yeast Saccharomyces cerevisiae. Here, we discuss the importance of developing 
new research directions on library screening of fungal BGCs in yeast without refactoring, followed by outlooking 
prominent opportunities and challenges for future advancement.   

1. Introduction 

Microorganisms provide us with a large number of biosynthetic gene 
clusters (BGCs) that produce bioactive secondary metabolites [1]. 
However, many of these are being produced by microorganisms that 
grow slowly, or are even unculturable at laboratory conditions [2]. 
Moreover, the majority of secondary metabolites are with complex 
structures, and are expressed at low levels, or even silent at most con-
ditions [3]. Thus, extraction or chemical synthesis of natural products is 
often costly, and bioproduction through industrial friendly hosts is 
gaining increased attentions [4]. 

Recent microbial genome sequences studies showed that awaken the 
silent or cryptic BGCs would enlarge the reservoir of natural products 
and provide more opportunities for identifications of novel compounds 
[5,6]. However, the number of identified natural products is far less 
compared with the number of putative BGCs [7], and the 
low-throughput expression step, either by endogenous activation [8,9] 
or heterologous refactoring [10,11], is one of the rate limiting steps in 

the pipeline of natural product discovery. For example, efforts on acti-
vation of BGCs in native hosts have been successful in a variety of cases, 
however, these advancements will not be helpful for the 99% of mi-
crobial strains that are not readily cultivable at laboratory conditions 
[2]. Moreover, compared with prokaryotic BGCs, heterologous expres-
sion for eukaryotic BGCs requires refactoring each coding region of the 
whole gene clusters, which adds additional challenges. 

Fungi produce a wide range of natural products. For example, many 
compounds from fungi possess antimicrobial activities such as the beta- 
lactam antibiotics penicillin and cephalosporins, as well as the anti-
fungal griseofulvin [12]. However, compared with those from bacteria, 
less attentions have been paid to investigate fungal BGCs [13]. This is 
partially because heterologous refactoring of eukaryotic BGCs often 
requires replacement with native promoters and terminators, as well as 
removal of intron sequences [14]. Thus, it will substantially speed up the 
pipeline of natural product discovery if we could develop engineered 
yeast cell factories having improved intron splicing and recognition of 
promoters from target fungi. 
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2. Key research directions 

In order to achieve high-throughput library expression of heterolo-
gous BGCs in a cut and paste fashion without refactoring (Fig. 1), there 
are at least three research directions that need to be optimized in 
S. cerevisiae (Fig. 2): 1) optimization of fungal BGC expression, 2) 
identification of target BGCs and 3) development of high-throughput 
BGC cloning. Powerful analytical platforms to identify novel natural 
products is also of great importance, but will not be covered further here 
as it is extensively covered in recent reviews [15–17]. 

2.1. Genetic elements and natural product discovery 

Heterologous expression of eukaryotic BGCs usually requires 
removal or replacement of original transcription and translation regu-
lation elements, such as introns, promoters, and terminators (Fig. 2). 
The spliceosome is host specific, and several widely used microbial cell 
factories such as S. cerevisiae generally cannot remove introns from 
distant fungal species [10,14,18]. This problem could be tackled by 
directly generating cDNAs of target BGCs [19], however, this could only 
be applied to expressed BGCs within the ~1% cultivable species [14]. 
For silent BGCs or the BGCs from the environment samples, another 
solution is in vitro assembly exons of a given gene or chemical synthesis. 
However, current in silico intron prediction tools have limitations, and 
mis-annotated exons, even with 1bp variation, can cause impaired 
protein translations and ruin the effort of the whole BGC characteriza-
tion [20]. On the other hand, since a large number of fungal BGCs 
contain more than ten genes, it is challenging to replace promoters and 
terminators for each gene to generate expression cassettes, not to 
mention the high-throughput cloning. Thus, in order to multiplex 
expression of BGCs in yeast without refactoring and screen for novel 
natural products, it is important to engineer and evolve yeast to improve 
intron splicing and promoter/terminator recognition towards a given 
heterogeneous host [21,22]. Future research direction may therefore 
include expression of transcription and translation regulation elements 
from fungi in yeast or evolve yeast to recognize heterologous tran-
scription units or BGCs. 

2.2. Bioinformatic analysis and natural product discovery 

Recent development in sequencing technologies and bioinformatic 
tools have greatly advanced BGC discovery. We now have tremendous 
genome sequences available on line for natural product discovery 
(Fig. 2). Databases and annotation tools are being developed and suc-
cessfully applied for BGC annotation and natural product discovery. For 
example, we can use Bayesian statistics to perform phylogenetic analysis 
[23]; eukaryotic orthologous groups (KOGs) [24] and Kyoto Encyclo-
pedia of Genes and Genome (KEGG, http://www.kegg.jp/) for annota-
tion analysis; antiSMASH [25], BiG-SCAPE [26], SMURF [27] and 

MIBiG [28] to identify putative BGCs; Softberry (http://www.softberry. 
com) to predict intron sequences; Mauve [29] to perform comparative 
genome analysis, etc. Moreover, we could further narrow down target 
BGCs through literature research, MIBiG database and FungiFun [30] to 
analyze key enzymes of selected BGCs. So far, millions putative BGCs 
have been predicted [31], however, the low throughput cloning and 
analytic techniques has substantially slowed down the discovery novel 
natural products and associated BGCs [7]. 

2.3. Cloning techniques and natural product discovery 

A number of cloning techniques have been reported for heterologous 
expression of target BGCs (Fig. 2). These approaches could be divided 
into sequence-independent library cloning methods that screen natural 
products from random sheared genomes, and direct cloning methods 
that identify novel natural products based on precise bioinformatic an-
notations followed by cloning target BGCs in a low throughput fashion 
[32]. Current heterologous BGC cloning techniques have achieved vast 
progress [32,33], however, the process is usually laborious and time 
consuming. For example, regarding the sequence-independent library 
cloning method, in order to cover reasonable number of BGCs, 10-20 
fold-coverage of the whole genome or metagenomics needs to be 
generated [34]. Moreover, current direct cloning methods need to 
replace or remove all heterologous transcription and translation regu-
lation elements, e.g. promoters, terminators, introns, and have been 
limited to capture few clusters per round [10,11,18,19]. With CRISPR 
tools revolutionizing the field of genome editing, it would be interesting 
to combine the strength of both methods, and simultaneously clone and 
screen all putative BGCs of a give genome without refactoring. We 
anticipate that this could work through optimization of high-throughput 
capture and cloning techniques. The step of enrichment of target BGCs 
after CRISPR-assisted in vitro cleavage may also need to be optimized. 

3. Summary 

The ability of heterologous expression and library screening of intact 
fungal BGCs without refactoring will contribute substantially to the field 
of synthetic biology and natural production discovery. In order to fulfill 
the great demand of natural products, it is necessary to develop a range 
of novel technologies that can speed up the fungal natural products 
discovery pipeline. For example, as natural products are derived from a 
limited number of precursor metabolites and co-factors [1], such as 
short chain carboxylic acids, amino acids, NADH, we need to engineer 
the primary metabolism to ensure efficient provision of precursor sup-
plies. We may also need to improve the yeast capability of transcription 
and post-transcriptional-modification of fungal BGCs, with focus pri-
marily on promoter recognition and intron splicing. We may also need to 
develop CRISPR-based high-throughput and multiplexed BGC cloning 

Fig. 1. Multiplexed screening of Penicillum BGCs in yeast. Putative BGCs can be 
analyzed by well-developed bioinformatics tools, and then captured through 
direct cloning strategies for heterologous expression and characterization in 
S. cerevisiae. 

Fig. 2. Workflow of high-throughput fungal natural product discovery in yeast. 
Development of strategies of multiplexed expression of fungal BGCs in yeast 
could be divided optimization of BGC expression, identification of target BGCs 
and development of high-through BGC cloning. 

Z. Liu et al.                                                                                                                                                                                                                                       

http://www.kegg.jp/
http://www.softberry.com
http://www.softberry.com


Synthetic and Systems Biotechnology 6 (2021) 20–22

22

techniques and use it for screening for novel natural products. These 
results will not only lead to the fundamental understanding of eukary-
otic cross-species intron splicing and promoter recognition, but shed 
lights in general on how species can be adapted to express heterologous 
gene clusters. These technologies may find wide applications also for 
optimization of intron splicing involved in pathways leading to 
completely different products, and substantially enlarge the scope as 
well as speed up the pipeline for natural product discovery. 

This paper was written to honor late Professor Arnold Demain, who 
for was a pioneer in natural product discovery and their production. 
Besides being a scientific leader, he served as a role model, mentor and 
friend for the senior author of this paper. We will continuously 
remember his fantastic scientific contributions. Thank you Arni! 
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