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Abstract

The Complementarity Determining Regions (CDRs) of antibodies are assumed to account for the antigen recognition and
binding and thus to contain also the antigen binding site. CDRs are typically discerned by searching for regions that are
most different, in sequence or in structure, between different antibodies. Here, we show that ,20% of the antibody
residues that actually bind the antigen fall outside the CDRs. However, virtually all antigen binding residues lie in regions of
structural consensus across antibodies. Furthermore, we show that these regions of structural consensus which cover the
antigen binding site are identifiable from the sequence of the antibody. Analyzing the predicted contribution of antigen
binding residues to the stability of the antibody-antigen complex, we show that residues that fall outside of the traditionally
defined CDRs are at least as important to antigen binding as residues within the CDRs, and in some cases, they are even
more important energetically. Furthermore, antigen binding residues that fall outside of the structural consensus regions
but within traditionally defined CDRs show a marginal energetic contribution to antigen binding. These findings allow for
systematic and comprehensive identification of antigen binding sites, which can improve the understanding of antigenic
interactions and may be useful in antibody engineering and B-cell epitope identification.
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Introduction

Antibody-Antigen (Ab-Ag) interactions are based on non-

covalent binding between the antibody (Ab) and the antigen

(Ag). Correct identification of the residues that mediate Ag

recognition and binding would improve our understanding of

antigenic interactions and may permit the modification and

manipulation of Abs. For example, introducing mutations into the

V-genes has been suggested as a way to improve Ab affinity [1–3].

However, mutations in the framework regions (FRs) rather than in

the Ag binding residues themselves are more likely to evoke an

undesired immune response [4]. Knowing which residues bind the

Ag can help direct such mutations and be beneficial to Ab

engineering [5–7]. It has been shown that Ag binding residues are

primarily located in the so called complementarity determining

regions (CDRs) [7–9]. Thus, the attempt to identify CDRs, and

particularly the attempt to define their boundaries, has become the

focus of extensive research over the last few decades [7,8,10].

Kabat and co-workers [9,11] attempted to systematically identify

CDRs in newly sequenced Abs. Their approach was based on the

assumption that CDRs include the most variable positions in Abs

and therefore could be identified by aligning the fairly limited

number of Abs available then. Based on this alignment they

introduced a numbering scheme for the residues in the

hypervariable regions and determined which positions mark the

beginning and the end of each CDR. The Kabat numbering

scheme was developed when no structural information was

available. Chothia et al. [12,13] analyzed a small number of Ab

structures and determined the relationship between the sequences

of the Abs and the structures of their CDRs. The boundaries of the

FRs and the CDRs were determined and the latter have been

shown to adopt a restricted set of conformations based on the

presence of certain residues at key positions in the CDRs and the

flanking FRs. This analysis suggested that the sites of insertions

and deletions in CDRs L1 and H1 are different than those

suggested by Kabat. Thus, the Chothia numbering scheme is

almost identical to the Kabat scheme, but based on structural

considerations, places the insertions in CDRs L1 and H1 at

different positions. As more experimental data became available,

the analysis was performed anew, re-defining the boundaries of the

CDRs. These definitions of CDRs are mostly based on manual

analysis and may require adjustments as the structure of more Abs

become available. Abhinandan et al. [14] aligned Ab sequences in

the context of structure and found that approximately 10% of the

sequences in the manually annotated Kabat database have

erroneous numbering. A more recent attempt to define CDRs is

that of the IMGT database [15] which curates nucleotide

sequence information for immunoglobulins (IG), T-cell receptors

(TcR) and Major Histocompatibility Complex (MHC) molecules.

It proposes a uniform numbering system for IG and TcR

sequences, based on aligning more than 5000 IG and TcR

variable region sequences, taking into account and combining the

Kabat definition of FRs and CDRs [16], structural data [17] and

Chothia’s characterization of the hypervariable loops [12]. Their
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numbering scheme does not differentiate between the various

immunoglobulins (i.e., IG or TcR), the chain type (i.e., heavy or

light) or the species.

A drawback of these numbering schemes is that CDRs length

variability is accommodated with either annotation of insertion

(Kabat and Chothia) or by providing excess numbers (IMGT). Abs

with unusually long insertions may be hard to annotate this way,

and therefore their CDRs may not be identified correctly.

Honegger and Pluckthun [18] suggested a structurally improved

version of the IMGT scheme. Instead of introducing unidirec-

tional insertions and deletions as in the IMGT and Chothia

schemes, they were placed symmetrically around a key position.

MacCallum et al. [8] have proposed focusing on the specific

notion of Ag binding residues rather than the more vague concept

of CDRs. They suggested that these residues could be identified

based on structural analysis of the binding patterns of canonical

loops. Other studies have dubbed those Ag binding residues

Specificity Determining Regions (SDRs) [5,7]. Here, we analyze

Ag-Ab complexes and show that virtually all Ag binding residues

fall within regions of structural consensus. We refer to these

regions as Ag Binding Regions (ABRs). We show that these regions

can be identified from the Ab sequence as well. We used

‘‘Paratome’’, an implementation of a structural approach for the

identification of structural consensus in Abs [19]. While residues

identified by Paratome cover virtually all the Ag binding sites, the

CDRs (as identified by the commonly used CDR identification

tools) miss significant portions of them. We refer to the Ag binding

residues which are identified by Paratome but are not identified by

any of the common CDR identification methods, as Paratome-

unique residues. Similarly, Ag binding residues that are identified

by any of the common CDR identification methods but are

not identified by Paratome are referred to as CDRs-unique

residues. We show that Paratome-unique residues make crucial

energetic contribution to Ab-Ag interactions, while CDRs-unique

residues have a rather minor contribution. These results allow for

better identification of Ag binding sites and thus for better

identification of B-cell epitopes. They may also help improve

vaccine and Ab design.

Results

Structural consensus defines ABRs
The outline of our structure-based ABRs identification method

is delineated in Figure 1. Briefly, the algorithm structurally aligns

all known Abs and marks the residues that contact the Ag in each

of them. We have shown [19,20] that in this multiple structure

alignment there is a consensus among Abs that some structurally

aligned positions contact the Ag. These positions form six

sequence stretches along the Ab sequence that roughly correspond

to the six CDRs. Beyond the edges of these stretches there were no

structurally aligned positions in which more than 10% of the Abs

contact the Ag. Thus, we defined the boundaries of the ABRs

based on these stretches and marked the ABRs in all the Abs in

our dataset.

Paratome: Automatic sequence based ABRs identification
Figure 2 depicts the automated ABRs identification tool we

developed. Given a query sequence (Figure 2A) a BLAST search is

performed against all Abs in the dataset described above. The best

hit (i.e., lowest E-value) is used to infer the positions of the ABRs in

the query sequence, based on its alignment to the annotated Ab

from the dataset. When the query Ab has a known 3-D structure,

it can be used to identify the ABRs as described in Figure 2B (see

Methods).

Content statistics
Figure 3 summarizes the number of residues identified by each

method on the test set. In all regions except L1 and H2, Paratome

identified a slightly larger number of residues than any other

method. The largest differences were recorded in L2 and H2. In

L2, Paratome had 50% more residues identified than Kabat and

Chothia and four times the number of residues identified by

IMGT. For H2, Kabat and Paratome identified twice the number

of residues suggested by Chothia and IMGT.

Structural consensus regions contain virtually all Ag
binding residues

For each Ab in our test dataset we recorded the average recall of

the residues that actually bind the Ag by each method. Given the

typical trade-off between recall and precision in which the increase

of one is at the cost of decreasing the other, we measured the

average precision of each method. The results are presented in

Figure 4. The ABRs identified by Paratome included 94% of Ag

binding residues, followed by Kabat (85%), IMGT (81%) and

Chothia (79%) CDRs. Precision rates ranged between 48%

(IMGT) and 41% (Kabat), with Chothia (44%) and Paratome

(42%) in between.

ABRs-specific residues cover 10–17% of the Ag binding
sites

Table 1 compares the consensus sets and the method specific

sets of residues. The Paratome-Kabat consensus set is the largest

(3476 residues), covering 83.54% of the Ag binding sites.

Paratome-Chothia consensus set covered 77.08% of the Ag

binding sites (3203 residues), and Paratome-IMGT consensus set

covered 79.47% of the Ag binding sites (3077 residues). In all

consensus sets, approximately 50% of the residues are Ag binding

residues. DParatome contains a substantially larger percentage of

Ag binding residues than DKabat, DChothia and DIMGT (20.8%,

26.23% and 20.6% respectively, compared with 5.03%, 4.88%

and 6.88% respectively).

Author Summary

Antibodies are a primary adaptive defence mechanism
against infection, and function by recognizing and binding
to non-self antigens. While most of the sequence of all
antibodies of a given individual is identical, relatively small
variations turn each antibody into a specific binder of one
antigen. It is widely assumed that antigen binding sites
correspond to the so called Complementarity Determining
Regions (CDRs) of the antibody, which are defined as the
elements that are most different between antibodies. We
analysed all known antibody-antigen complexes and
found that about 20% of the residues that actually bind
the antigen fall outside the CDRs. However, we also found
that virtually all antigen binding residues fall within
regions of structural consensus between antibodies.
Moreover, we demonstrate that antigen binding residues
that reside within these structural consensus regions but
outside of the traditionally-defined CDRs make significant
energetic contribution to antigen binding. Furthermore,
we show that these regions are organized along the
sequence of the antibody chains and are identifiable from
the sequence of the antibody.

Structural Consensus Defines Antigen Binding Site
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Moreover, DParatome residues cover a significantly larger

portion of the Ag binding sites. DParatome residues covered

10.77% of the Ag binding sites while DKabat covered merely

1.78% of the Ag binding sites. The coverage of DParatome

(14.84%) was 20 times larger than that of DIMGT (0.76%). When

compared to Chothia, the coverage of DParatome (17.23%) was,

again, more than an order of magnitude greater than that of

DChothia’s (0.86%). In each comparison, Paratome-specific

residues covered a significantly larger portion of the Ag binding

sites than the alternative method-specific residues. Thus, indicat-

ing that structural consensus regions capture more of the Ag

binding portion of Abs.

Figure 1. Structure-based identification of ABRs. (A) Using the non-redundant set of all Ab-Ag complexes in the PDB, (B) we created a multiple
structure alignment of the Abs. Residues that are in contact with the Ag were identified by searching for structurally aligned positions that
systematically create contacts with the Ag (black and grey solid circles) and disregarded positions that contact the Ag only sporadically (open
shapes). (C) The contacting positions were mapped to the sequence representation of the multiple structure alignment (bold letters). The stretches of
amino acids in which at least 10% of the Abs are in contact with the Ag were defined as ABRs (white rectangle).
doi:10.1371/journal.pcbi.1002388.g001

Structural Consensus Defines Antigen Binding Site
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Figure 2. Automated ABRs Identification (A) Sequence based ABRs identification. A BLAST search is performed using the query Ab
sequence versus the dataset of non-redundant PDB Abs. Using the best hit from the BLAST search, the query and annotated Abs FRs are aligned and
hence the query sequence ABRs are inferred based on the location of the annotated sequence ABRs in the MSTA. (B) Structure based ABRs
identification. A BLAST search is performed using the sequence of the query Ab versus our dataset of Abs. Using the best hit from the BLAST
search, the query and annotated Abs are structurally aligned. The ABRs of the query Ab are inferred based on the location of the annotated Ab ABRs
in the MSTA.
doi:10.1371/journal.pcbi.1002388.g002

Structural Consensus Defines Antigen Binding Site
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Differences in ratios of Ag binding residues
Figure 5A shows the average precision for each ABR/CDR on

the light and heavy chains as defined by each of the methods. L2

has the lowest precision in all methods. For L3, all the methods

have a similar precision, with a slightly higher rate for Paratome

(0.55). IMGT has the highest precision for L1 (0.46), followed by

Paratome (0.38) and Chothia and Kabat has the lowest precision

(0.27). The largest difference between the methods is in H2 where

Chothia has the highest precision (0.69), followed by IMGT (0.57),

then Paratome (0.43) and Kabat (0.37).

Figure 5B summarizes the average recall of each method for

each of the six regions. For all methods, L2 has the lowest recall

(2–7%). This is expected considering L2 has the lowest precision

(see Figure 5A). For L1, all methods show similar recall (11–12%).

The same holds for H3, which covers the largest fraction of the Ag

binding sites (24–25%). H2 shows the highest diversity; For

Paratome and Kabat it covers 21% of the Ag binding sites while

for Chothia and IMGT recall ranged between 13–15%,

respectively. In all cases, Paratome shows the highest recall. Note

that while the overall recall ranges between 0.7–1 (see Figure 4),

the recall of each of the six regions ranges between 0–0.3. This is

due to the fact that the total recall is the accumulation of the recall

obtained by each of the six regions.

Paratome-unique residues are important for Ag binding
To gain insight into the extent to which Paratome-unique

residues contribute to Ag binding, we searched the non-redundant

set of Abs for Ag binding residues residing within structural

consensus regions that are not identified by any of the CDR

identification methods. We obtained 153 Paratome-unique

residues, originating from 104 Abs (Table S3). Using the FoldX

algorithm [21,22], we performed an in-silico alanine scan in which

each Paratome-unique residue and each Ag binding residue

identified by the CDR identification methods (2707 residues)

within the 104 Abs were mutated to Alanine. Additionally, we

searched the non-redundant set of Abs for Ag binding residues

residing within CDRs that are not identified by Paratome (i.e.

CDRs-unique residues). We found 59 CDRs-unique residues,

stemming from 41 Abs (Table S4). To each CDRs-unique residue

we performed an in-silico alanine scan in which it was mutated to

Alanine. The distribution of the predicted interaction energy

(DDG) of these mutants is presented in figure 6A. Destabilizing

residues in this analysis (DDG.0.25) are residues whose mutation

to alanine is predicted to destabilize the Ab-Ag complex. These

residues, therefore, are likely to be important for Ag binding.

Paratome-unique residues have a slightly higher percentage of

destabilizing residues (49%) than Ag binding residues that fall

within the CDRs according to Kabat, Chothia or IMGT

(44.15%). While it is not clear whether the differences between

Paratome-unique and Ag binding residues within the CDRs are

significant, it is obvious that the former are at least as important to

stability as the latter. In contrast, CDRs-unique residues have

substantially lower contribution to binding: only 27% of them are

destabilizing and the vast majority of them (70%) are neutral. To

demonstrate the importance of Paratome-unique residues we show

a more detailed analysis of the complex of IL-15 with an anti-IL-

15 Ab (PDB ID 2xqb). Two Ag binding residues, LEU46 and

TYR49, which were identified by Paratome to be part of ABR L2,

were not identified by any of the CDR identification methods

(Table S1). Figure 6B shows these residues relative to the surface of

the Ag. It can be seen that TYR49 protrudes into the surface of

the Ag, while LEU46 is located opposite to the antigenic LEU52,

forming a hydrophobic interaction. As shown is Figure 6C, only

seven residues from L2 interact with the Ag, and two of them are

Paratome-unique residues. TYR49 forms one of the two hydrogen

bonds between the Ag and ABR L2. The results of the FoldX in-

silico single-point mutations analysis indicate that mutating

ARG50, ARG53 and TYR49 to Alanine have the most significant

destabilizing effect (Table S2). Not surprisingly, due to the salt

bridge it forms with antigenic GLU46, mutating ARG50 had the

Figure 3. Total number of residues identified by each method for all Ab-Ag complexes in the test set. L1–L3 are ABR/CDR1-3 of the light
chain. H1–H3 are ABR/CDR1-3 of the heavy chain. Total light and heavy are the sum of all identified residues in the light and heavy chains
respectively.
doi:10.1371/journal.pcbi.1002388.g003

Structural Consensus Defines Antigen Binding Site
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most prominent destabilizing effect. The next most destabilizing

mutation to Alanine was of TYR49 which forms a hydrogen bond

between ABR L2 and antigenic GLU53. The third most

destabilizing mutation to Alanine was of ARG53, which forms a

cation-p interaction with TYR49. As expected, mutating LEU46

to Alanine has a weak destabilizing effect on the binding energy.

Hence, Ag binding residues within the structural consensus regions

that fall outside the CDRs may play a pivotal role in Ag binding

and recognition. The amino acid composition of Paratome-unique

residues is presented in Table S8.

Discussion

Ab-Ag recognition is the basis for the vast usage of Abs for

molecular identification in research and in the clinic [23–26].

Thus, identifying Ag binding sites facilitates the understanding of

the underlying biology as well as Ab design and engineering. In a

previous study [19], we have shown that structural analysis can

lead to the identification of residues that roughly correspond to the

CDRs. Here we further developed this approach, and tried to

determine whether it can be used to identify the Ag binding

regions within Abs. To our knowledge, this study is the first to

quantitatively compare the residues identified by the most

commonly used CDR identification methods. The residues that

reside within the structural consensus regions cover most of the

observed Ag binding residues (94%), a significantly higher

coverage than with the other methods. The coverage obtained

by Kabat, Chothia and IMGT stemmed almost entirely from

the residues that were within the structural consensus regions.

While CDR residues unique to Kabat, Chothia and IMGT

comprised less than 2% of the Ag binding sites, ABRs residues

unique to Paratome covered 10–17% of the Ag binding residues.

Nevertheless, there are cases in which the structural consensus

regions did not contain Ag binding residues while a CDR

identification method identified them. For a detailed example, see

Figure S1. Approximately 2% of the Ag contacting residues are

located remotely from the ABRs/CDRs and thus should be

considered as true negatives. Therefore, the actual recall of

Paratome is 96%.

Interestingly, all Paratome-unique residues come from either L2

or H2. However, when we compare each method separately to

Paratome there are differences in other CDRs as well. Table S9

Figure 4. Recall and precision of Ag binding sites identification. Average precision and recall were calculated for the Abs in the test set for
Paratome, Kabat, Chothia and IMGT methods. Error bars represent standard error of the mean.
doi:10.1371/journal.pcbi.1002388.g004

Structural Consensus Defines Antigen Binding Site
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shows the distribution of CDRs from which the Ag binding

residues that are identified by Paratome but are missed by one of

the other methods originated, in a pairwise comparison.

MacCallum et al. [8] demonstrated that for some of the CDRs,

the residues that contact the Ag correspond better with the Kabat

definition of CDRs than with that of Chothia. This finding may, to

some extent, explain the fact that the ABRs residues have the

highest overlap with the residues identified by Kabat, and that for

both H2 rather than H3, comprises the largest number of residues.

Attempts to increase Ab affinity have suggested that CDRs L3 and

H3 are prevalently responsible for high energy interactions with

the Ag [27,28]. This coincides with our observation that ABRs/

CDRs L3 and H3 have the largest fraction of Ag binding residues

for both Paratome and Kabat. For Chothia and IMGT, however,

the CDRs with most Ag contacting residues are H2 and H3

(Figure 5A). Notably, for all methods except for Chothia, H2 and

H3 rather than L3 and H3, cover a significantly larger percentage

of the Ag binding residues (Figure 5B).

This analysis of Ag binding residues recognition demonstrates

that relying on structural consensus rather than sequence

differences, enables to identify Ag binding residues significantly

better than the commonly used CDR identification methods.

Additionally, a detailed in-silico single point mutation analysis of

all Ag binding residues demonstrates that Paratome-unique

residues contribute to Ag binding at least as much as residues

within the CDRs and substantially more than Ag binding residues

that are not identified by Paratome and are identified by CDR

identification methods. This may prove useful for applications

aimed at identifying and manipulating Ag binding residues.

Materials and Methods

Extraction of 3D structures
The outline of our structure-based ABRs identification method

is delineated in Figure 1. To identify all Ab-Ag structures in the

PDB [29] we performed a BLAST [30] search against the August

2009 version of the PDB using an arbitrarily chosen Fab sequence

as a query. The search was performed separately for the light and

heavy chains and thus two lists were obtained, a heavy chains list

(2000 chains from 962 structures) and a light chains list (2500

chains from 1047 structures). To obtain an E-value cut-off that will

ascertain that the hits for the light chain do not contain any heavy

chains and vice versa, we performed a BLAST search using the

heavy chain of the query Fab against the hits of light chain and

another BLAST search using the light chain of the query Fab

against the hits of the heavy chain. Based on these analyses we

determined that results with an E-value#1e-6 should be further

analysed (1280 heavy chains from 855 structures and 1846 light

chains from 961 structures remained). To discard all T-cell

receptors or MHC molecules complexes from our lists, we

searched for a BLAST E-value that will exclude all T-cell

receptors and MHC molecules from the dataset. We arbitrarily

chose MHC-I, MHC-II, TCR type A and TCR Type B sequences

and performed a separate BLAST search against the hits of light

and heavy chains. Results with an E-value of 1e-6, 1e-6, 1e-12 and

1e-28, respectively, or smaller, were discarded. Furthermore, we

removed files that contained the keywords TcR or MHC,

duplicate chains from the same PDB and complexes that did not

contain both a heavy Ab chain and a light Ab chain. This resulted

in a list containing 1568 Ab chains from 784 structures. We then

screened the list so each complex holds one heavy Ab chain, one

light Ab chain, and a single Ag chain which is not an Ab and

contains at least five amino acids. We did not include non-peptide

Ags in the analysis. The final list from which we removed

redundancy contained 352 structures.

Redundancy removal
Redundancy removal was performed using Blastclust [31] with

sequence identity $97% and coverage $95%. We ran Blastclust

separately for the sequences of the light chains and for the

sequences of the heavy chains and obtained 96 clusters, 48 for

each. To determine which sequences to remove in each cluster, we

chose the Ab-Ag interactions as the distinguishing criterion for

redundancy removal. For each PDB complex in a given Blastclust

cluster, we identified all residue-residue contacts (see below for

contact definition). The similarity between any two complexes (i.e.,

lists of Ab-Ag contacts) within each cluster was measured as the

number of identical contacts (i.e., the same amino acid and

alignment position within the Ab and the same amino acid and

position within the Ag) divided by the total number of contacts in

the shorter of the two lists. Since the similarity score on its own is

not sufficient for separating the non-redundant complexes from

the redundant ones, we plotted a histogram of the similarity scores

to obtain a discriminating cut-off. Most of the complexes in any

given Blastclust cluster had a similarity score greater than 0.90

while only 25% of all complexes had a similarity score smaller than

0.77. Therefore the latter was chosen as the cut-off, rendering

complexes with a similarity score ,0.77 non-redundant. For each

group of complexes with a similarity score above the cut-off, the

complex with the highest number of interactions was chosen as the

representative complex. This process removed 152 redundant

complexes and the resulting non-redundant set included 200

experimentally determined 3-D structures of Ab-Ag complexes

from the PDB.

Ag Binding Regions identification - Paratome
Using a structure-based approach [19] that is presented in

Figure 1, we determined the ABRs of the Abs in our dataset of

non-redundant known Ab-Ag complexes from the PDB. The

algorithm structurally aligns all Abs whose 3-D structure was

experimentally determined bound to their protein Ag, using the

MUSTANG multiple structure alignment algorithm [32]. Next, it

marks the residues in each structure that contact the residues on

the Ag. Then, it searches for structurally aligned positions that

Table 1. Ag binding sites coverage by consensus and
method-specific residues.

Residues set
# of
residues

# of
residues in
contact

binding sites
coverage

consensus Paratome - Kabat 3476 1664 83.54%

DParatome 1018 212 10.77%

DKabat 695 35 1.78%

consensus Paratome - Chothia 3202 1517 77.08%

DParatome 1292 339 17.23%

DChothia 348 17 0.86%

consensus Paratome - IMGT 3077 1564 79.47%

DParatome 1417 292 14.84%

DIMGT 218 15 0.76%

For each set, we recorded the total number of residues, the number of Ag
contacting residues and the percentage of Ag binding sites coverage. In all of
the comparisons, Paratome-specific residues covered a significantly larger
portion of the Ag binding sites.
doi:10.1371/journal.pcbi.1002388.t001

Structural Consensus Defines Antigen Binding Site
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create such contacts across at least 10% of the Abs. These positions

form six sequence stretches along the Ab sequence that correspond

to the six CDRs. Beyond the edges of these clusters, there were no

structurally aligned positions in which more than 10% of the Abs

created contacts with the Ag. Therefore, these were defined as the

ABRs edges. Applying this algorithm to the dataset, we

automatically identified all ABRs defined by our method without

any manual intervention.

CDR identification - Kabat, Chothia, and IMGT
Kabat, Chothia and IMGT establish Ab sequence numbering

schemes that define in a straightforward manner the location of

the CDRs within the sequence. Applying the various numbering

schemes to the Ab sequences in our dataset we obtained the

residues composing the CDRs according to each of the methods.

We used the online AbNum tool [8] to number the Abs in our

dataset according to Kabat and Chothia. The boundaries of the

CDRs were defined as described in AbNum (see table of CDR

definitions [33]). To obtain the CDRs according to IMGT, we

coupled the Kabat numbering obtained by applying AbNum with

a conversion code available at the IMGT web site.

Automatic sequence based ABRs identification
Considering that the three dimensional structure of most known

Abs is not yet known, the ability to identify the ABRs based merely

on its sequence, is highly desirable. We constructed an automated

ABRs identification tool capable of identifying the ABRs of an Ab

from its amino acid sequence. Given a query sequence, the tool

works as follows: First, a BLAST search is performed using the

query Ab sequence, against all Abs in our dataset. As described

above, all Abs in this non-redundant set were annotated and the

ABRs within each of them were identified based on the multiple

Figure 5. Average Ag binding sites recall and precision of light and heavy chains for all ABRs/CDRs. (A) Average Ag binding sites
precision (B) Average Ag binding sites recall. Error bars represent standard error of the mean.
doi:10.1371/journal.pcbi.1002388.g005
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structure alignment (MSTA). The best hit from this BLAST search

(i.e., lowest E-value) is then used to infer the positions of the ABRs

in the query sequence from the annotated sequence. Since our aim

is to identify the ABRs, aligning the entire input Ab sequence,

including its yet unidentified stretches of ABRs, may lead to

misalignments. Therefore, standard application of global sequence

alignment algorithms is not suitable for this task. To overcome

this, we align only the FRs, using the Smith-Waterman local

Figure 6. Contribution of Paratome-unique and CDR-unique residues to the binding energy in Ab-Ag complexes. (A) The distributions
of DDG values of an in-silico alanine scan analysis of Paratome-unique, CDRs-unique and CDR Ag binding residues. DDG values ranging between
20.25 and 0.25 were defined as neutral. DDG values,20.25 were defined as stabilizing. DDG values .0.25 were defined as destabilizing. It is clear
from the distributions that typically, a Paratome-unique residue is at least as energetically important as a residue in the CDRs, while a CDR unique
residue is less energetically important relative to residues within the CDRs that are identified by Paratome. (B)+(C) A detailed analysis of anti-IL-15 Ab
with human IL-15 (PDB 2xqb). (B) The surface of the Ag chain is rendered according to atom charge. Due to the hydrogen bond with antigenic GLU53,
TYR49 is located in high proximity to the Ag. Ab LEU46 is located in proximity to antigenic LEU52. (C) Seven residues from L2 (green, solid ribbon)
interact with the Ag (orange, solid ribbon). Two of them (LEU46 and TYR49) are not identified as part of the CDR by any other CDR identification
method. These Paratome-unique residues and the antigenic residues they contact (LEU52 and GLU53) are depicted in sticks. LEU46 forms a
hydrophobic interaction with LEU52. TYR49 forms a hydrogen bond with antigenic GLU53 as well as a cation- p interaction with ARG53 of the Ab.
Both contribute substantially to Ag binding (see text).
doi:10.1371/journal.pcbi.1002388.g006
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alignment algorithm [34]. This is based on the premise that the

FRs originate from a limited set of genes and undergo fewer

mutations than the highly variable ABRs [25]. Therefore aligning

the FRs is less error-prone than aligning the entire Ab. The FRs of

the annotated sequence are identified based on the location of the

ABRs in the MSTA, which in turn is used to identify the FRs of

the query sequence and thus identifying the ABRs. Figure 2A

summarizes the process of sequence based ABRs identification.

Automatic structure based ABRs identification
When the query Ab has a known 3-D structure, it can be used to

identify the ABRs. The first stage in this case is, once again, to

identify the top BLAST hit for the sequence of the query Ab. Next,

the query Ab and the top BLAST hit in the non-redundant Abs set

are structurally aligned using the Combinatorial Extension (CE)

algorithm [35]. Finally, the MSTA and the pairwise structural

alignment are used to transfer the locations of the ABRs from the

annotated Ab structure to the structure of the query Ab. Figure 2B

summarizes the process of structure based ABRs identification.

Generation of the test dataset
To assess the identification of Ag binding sites, we curated a test

set of Ab-Ag complexes that were not used to construct our tool.

We started by recording all Ab complexes added to the PDB

between September 1st 2009 and February 22nd 2011 (8522

entries). We identified which of these entries are Abs by

performing a BLAST search against the same arbitrarily chosen

light and heavy chain Ab Fabs as well as MHC-I, MHC-II, TCR-

A and TCR-B sequences described previously at the process of

constructing the initial dataset of Ab-Ag complexes (see Extraction

of 3D structures). A PDB entry was retained if i) At least one of its

chains was similar to the light chain (e-value#2e-32), ii) At least

one of its other chains (belonging to the same biological unit, as

defined by remark 350 within the PDB file) was similar to the

heavy chain (e-value#2e-26) and iii) Neither of these chains was

similar to any of the MHC or TCR molecules. The resulting list

was further analysed to include only interacting Ab-Ag complexes.

An Ab-Ag complex was defined as interacting if at least one of the

atoms in the Ab molecule was #6 Å from any atom of the Ag

molecule [36]. The final list contains 69 distinct Ab-Ag complexes.

Extraction of Ag binding residues
For each Ab in the test set of 69 Ab-Ag complexes, we identified

all Ab residues that contact the Ag (see next paragraph for

definition of contact). Then we applied to each Ab the

implementation of the CDR identification tools of Kabat, Chothia

and IMGT. Finally, we used the structure based approach

described above to identify the ABRs. Thus, each Ab in the test

dataset has five lists, the list of all Ab binding residues (‘‘gold

standard’’) and four lists of identified residues, one for each of the

compared methods. Applying the sequence based approach

presented above to the test set resulted in identification of a set

of Ag binding residues that is 99% identical to the set identified

using the structural approach.

An Ab amino acid and an Ag amino acid are considered as

interacting if at least one of their respective atoms were #6 Å of

each other [36]. While this is a permissive cut-off that introduces

into the dataset many non-interacting residues, it allows for an

unbiased dataset [37]. To demonstrate that the results are not

sensitive to this choice, we repeated the analysis also for distance

cut-offs of 4 Å, 4.5 Å, 5 Å and 5.5 Å (Figure S2). The results show

that the recall of Paratome remains superior to that of all other

methods, and that the inevitable changes in recall and precision

that stem from changing the positive set have the same effect on all

the methods.

Comparing regions identified by different methods
For each method and for each Ab within the test dataset we

recorded:

1. The number of residues identified within each of the six regions

(ABR/CDR).

2. The percentage of ABR/CDR residues that contact the Ag out

of the total number of ABR/CDR residues.

3. The fraction of ABR/CDR residues that contact the Ag out of

the entire set of Ab residues contacting the Ag.

We then performed a pairwise comparison between Paratome

and each of the other methods. We examined three sets of

residues: the consensus residues (i.e. residues identified by both our

method and the other method), and two sets of method-specific

residues (i) residues identified by Paratome yet not by the other

method (DParatome) and (ii) residues identified by the other

method yet not by Paratome (e.g., DKabat.). For each of the three

sets, we recorded the number of residues it includes, the number of

Ab binding residues and what fraction of the Ag binding sites is

covered by these residues. Figure 7 shows an example of the

comparison of method-specific residues and consensus residues for

all methods, for one Ab light chain.

All data are available in tables S6 and S7.

Assessing performance
To assess the performance of the extracted sets according to

each of the methods, we computed for each Ab, the precision:

precision~
tp

tpzfp
ð1Þ

where tp is the number of true positive predictions, namely the

number of residues predicted to bind the Ag that were observed

in the structure to be in contact with the Ag. fp (false positive)

is the number of residues predicted to bind the Ag that were

not observed to be in contact with the Ag. Measures such as

precision are typically complemented by the recall measure,

defined as:

recall~
tp

tpzfn
ð2Þ

where fn is the number of false negative predictions (i.e. residues

not predicted to bind the Ag that were observed to be in contact

with the Ag). The average recall and precision were computed for

the Abs in the test set.

Extraction of Paratome-unique and CDRs-unique
residues

The ABRs/CDRs were obtained for each of the Abs in the non-

redundant train set according to Kabat, Chothia, IMAGT and

Paratome as described above. Next, all Ag binding residues were

extracted from the PDB structure, and mapped to the ABRs and

CDRs. We then searched for Ag binding residues that are

identified by Paratome but not by any CDR identification method.

Next, we searched for Ag binding residues that are identified by

any of the CDR identification methods but not by Paratome

(Table S3, S4 and S5).
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Single-point mutations analysis
To assess the contribution of Paratome-unique Ag binding

residues to Ab-Ag binding, we used the FoldX algorithm [21,22], a

molecular modelling software that computationally predicts the

effect of mutations on the binding energy. It is based on empirical

energy terms correlated with experimental DDG measurements

[21]. We computed the effect of mutating each Ag binding residue

to Alanine on Ab-Ag binding energy (DDG). We applied FoldX

(version 3.0b4) to all Paratome-unique residues (Table S3) and to

all CDRs-unique residues (Table S4), in the following manner: i)

3D structures were taken from the PDB (PDB accession numbers

and relevant chains are listed in Table S5) and optimized using the

FoldX repairPDB function, ii) Structures corresponding to each of

the single-point mutants were generated using the FoldX

BuildModel protein mutagenesis function, iii) The interaction

energy of the WT structure and the mutated structure with the Ag

were calculated using the ComplexAnalysis energy calculation

function of FoldX, iv). DDG values were obtained using the

following equation:

DDG~DGmutated structure{DGWT structure ð3Þ

Mutations for which DDG.0.25 were defined as destabilizing

mutations, whereas mutations for which DDG,20.25 were

defined as stabilizing. Mutations were defined as neutral if

0.25$DDG$20.25.

Supporting Information

Figure S1 Ag binding residues not identified by Para-
tome (PDB 1kb5). (A) The definition of ABR H2 according to

Paratome. The distance of GLN61 (Ab heavy chain) is less than

6 Å from VAL57 and LYS55 on the Ag. Nevertheless, GLN61 is

erroneously not defined to be a part of H2 according to Paratome.

(B) The definition CDR H2 by Kabat. Kabat’s definition of H2

identifies GLN61 to be part of the CDR.

(TIF)

Figure S2 Recall and precision of Ag binding sites
identification using various distance cutoffs. An Ab amino

acid and an Ag amino acid were defined as interacting if at least

one of their respective atoms were #6 Å of each other. To

demonstrate that the superior performance of Paratome does not

stem from using this permissive cutoff, average precision and recall

were computed for the Abs in the test set for all methods, using

various distance cutoffs. Error bars represent standard error of the

mean. (A) Recall and precision for a 4 Å cutoff. (B) Recall and

precision for a 4.5 Å cutoff. (C) Recall and precision for a 5 Å

cutoff. (D) Recall and precision for a 5.5 Å cutoff.

(TIF)

Table S1 ABRs, CDRs and Ag binding residues of anti
IL-15 Ab (PDB ID 2xqb) according to Paratome, Kabat,
Chothia and IMGT.

(PDF)

Table S2 The effect of mutating ABR L2 Ag binding
residues to Alanine on the binding energy (DDG) between
the Ab and the Ag (PDB ID 2xqb).

(PDF)

Table S3 The list of Paratome unique residues within
the train set on which we performed our in-silico alanine
scan analysis.

(PDF)

Table S4 The list of CDRs unique residues within the
train set on which we performed our in-silico alanine
scan analysis.

(PDF)

Figure 7. Comparison of consensus and method-specific residues. A light chain is analysed by all methods. In the top comparison, the
residues identified by Paratome (grey, top line) are compared to those identified by Kabat (grey, second line). For L1, for example, both methods
agree on the fragment ESVDSYGKSFMH, however, according to Kabat, CDR L1 includes also three amino acids N-terminal to this fragment (RAS,
marked with a grey box) while according to Paratome these are not included in ABR L1. ABR L2, is identified by Paratome to be longer than the CDR
L2 identified by Kabat by four residues (VLIY, marked with a dashed box).
doi:10.1371/journal.pcbi.1002388.g007
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Table S5 The list of ABRs and CDRs for which we
performed the in-silico alanine scan analysis as well as
which residues are Ag binding residues.
(PDF)

Table S6 Train dataset. Contains the list of PDB structures

used to construct Paratome.

(PDF)

Table S7 Test dataset. Contains the list of PDB structures

used to test Paratome.

(PDF)

Table S8 The amino acid composition of Paratome-
unique Ag binding residues.
(PDF)

Table S9 The percentage of Paratome-unique residues
for each ABR/CDR.

(PDF)
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