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Thedesign of a patient-specific virtual tumour is an important step towards PersonalizedMedicine.However this requires to capture
the description of many key events of tumour development, including angiogenesis, matrix remodelling, hypoxia, and cell state
heterogeneity that will all influence the tumour growth kinetics and degree of tumour invasiveness. To that end, an integrated
hybrid and multiscale approach has been developed based on data acquired on a preclinical mouse model as a proof of concept.
Fluorescence imaging is exploited to build case-specific virtual tumours. Numerical simulations show that the virtual tumour
matches the characteristics and spatiotemporal evolution of its real counterpart. We achieved this by combining image analysis
and physiological modelling to accurately described the evolution of different tumour cases over a month. The development of
such models is essential since a dedicated virtual tumour would be the perfect tool to identify the optimum therapeutic strategies
that would make Personalized Medicine truly reachable and achievable.

1. Introduction

At the State of the Union address 2015, President Obama
launched the Precision Medicine Initiative (https://www
.whitehouse.gov/precision-medicine) with cancer and dia-
betes as the main targets [1]. Precision medicine is an inno-
vative approach that takes into account patient variability so
that treatments are tailored to patient-specific characteristics,
mainly the genetic profile. This aims to significantly improve
the treatment efficacy and chances of survival. Precision
medicine, not to be confused with Personalized Medicine, is
thus based on the identification of common characteristics in
patient subpopulations.Thatmeans that treatment is adapted
to specific subclasses but cannot be, per se, individualized
as Personalized Medicine aims it to be [2]. Classification of
subgroups of patients relies on processing a large amount
of data, big enough to be reliable and to help in confident
decisionmaking.The rise of big data over the recent years has
paved the path for this type of approach and its application to

medicine [3–6]. Although we can expect significant progress
from it, it still has some severe drawbacks already pointed
out by Mi et al., (2010) [7]. First, precision medicine, in the
current stage of research, mostly relies on genetic profiling.
However, it is now clear that genetic knowledge alone is
not sufficient to predict the evolution of a disease such
as cancer for which environmental conditions can affect
genetics indirectly by modifying epigenetic factors from the
cell to the tissue scale [8, 9]. Second, data analysis performed
for genetic profiling is essentially a correlative process that
brings very little insights for the reasons why treatment is
(or would be) efficient or not. Finally, cancer is an evolutive
and very heterogeneous disease with many different stages
involving temporal variability on the tumour dynamic and
on the patient state that cannot be easily predicted. This
requires the development of pathophysiological models that
integrate the underlying keymechanisms precisely describing
the evolution of the disease for predicting and understanding
its behaviour and its response to treatment [10–14].
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To that end, we developed a computational model that
integrates key pathophysiological mechanisms to describe
the growth of real tumours observed in a mouse pinna, so
as to build an avatar or virtual tumour for each observed
case. In order to build an accurate virtual clone, the exper-
imental mouse model was chosen in a way to provide
sufficiently detailed microscopic information on the tumour
evolution and on its vascular environment. We chose to
use immunodeficient nude mice to ensure the growth of
the tumour and also in order to neglect the interplay with
the immune system. This allows us to simplify the elements
to integrate in the computational model in this first stage
towards the development of a mouse-specific virtual tumour.
As proof of the concept, the virtual tumour evolution should
mimic its real life evolution. The growth of seven different
tumour cases were virtually described with a good accuracy
over a month. Moreover the model was able to capture
a characteristic event in the experimental growth process
corresponding to the well-known angiogenic switch [15]
and that we described as an angiogenic bottleneck. This
marks the progressive transition between avascular and
vascular tumour growth at a specific time. This study shows
that the virtualization of a patient’s tumour is achievable
using medical imaging techniques for the measurements
of pathophysiological parameters (i.e., tumour size, shape,
density, and vascular configuration) to be able to define,
in a near future, truly personalized and optimized treat-
ments.

2. Materials and Methods

2.1. The Experimental Model

2.1.1. Animal Model. We used a mouse ear tumour model
which consists in the injection of tumour cells in the dermis
of mice pinna [16]. This minimally invasive model allows
following the development of the tumour and of its vas-
culature over a long time period. In accordance with the
policy of Clinatec and the French legislation, experiments
were done in compliance with the European Parliament and
the Council of the European Union Directive of September
22, 2010 (2010/63/EU). The research involving animals was
authorized by the Ministère de l’Enseignement Supérieur et
de la Recherche. For the experiments, female athymic Nude-
Foxn1nu mice were used. Mice were housed in ventilated
cages with food and water ad libitum in a 12 h light/dark
cycle at 26 ± 1∘C. For in vivo imaging or injections, mice
were anaesthetized using isoflurane (5% for induction and
2% during the experiment) in a 80% air and 20% O2 gas
mixture.

2.1.2. Cell Culture. The U87-MG cell line (primary human
glioma) was obtained from the American Type Culture
Collection (ATCC HTB-14) where cell line authentication
and species identification was conducted. The cells were
transfected with the Green Fluorescence Protein (GFP). The
cells were grown in Dulbecco’s modified Eagle’s medium
(DMEM) containing 10% heat-inactivated foetal bovine

serum, 2% L-glutamine, penicillin (100 IU/mL), and strepto-
mycin (100 𝜇g/mL). The cells were kept in standard culture
conditions (100% relative humidity, 95% air, and 5% CO2).
The culture medium was changed twice weekly.

2.1.3. Tumour Generation. Tumour was generated by inject-
ing a 2𝜇L solution of 2⋅105U87-GFPMGcells inHCMatrigel
(Corning, New York, United States) in mouse ear dermis.
During thewhole injection procedure, cells and cells/matrigel
solution were kept on ice. Prior to injection, anaesthesia
was performed and ears were taped to a conical tube for
easy injection of the tumour cells using a 26-gauge custom
needle mounted on a RN-701 Hamilton syringe. Immediately
after injection the presence of tumour cells was controlled by
fluorescence microscopy.

2.1.4. Experimental Setup. The ear was gently placed in a
custom-built ear holder and immobilized under a coverslip
with ultrasonic gel in between the ear and the coverslip.
Body temperature was monitored with a rectal probe and
maintained at 36∘C during the whole imaging session using
a heating pad with feedback. Acquisitions were performed
only when body temperature reached 36∘C in order to avoid
hypothermia and vascular constriction during anaesthesia.

2.1.5. Microscopy. Tumour imaging was performed twice
a week during one month using a Nikon AZ100 multi-
zoom microscope (Nikon France, Champigny-sur-Marne,
France), equipped with 1x (0.1 NA), 2x (0.2NA), and 4x
(0.4NA) objectives. Fluorescence and bright field imaging
was performed for each tumour (Figure 1) with NIS-Element
software package. The vascular network was highlighted in
red fluorescence by injecting 100 𝜇L of a 20mg/mL solution
of Rhodamine B isothiocyanate-dextran (Sigma Aldrich) in
the vein of the mouse tail on days 7 and 14.

2.1.6. Image Analysis. Image analysis was performed using
ImageJ (version 1.47). To monitor apparent tumour growth,
a grey-level threshold was applied on the GFP-images. Yen’s
thresholding method was used [23] andmanually adjusted to
correct some artefacts. The more restrictive Default ImageJ
filter was also used as a comparison. The area of the tumour
was then measured from the filtered image.

2.1.7. Tumour Identification. The results presented corre-
spond to experiments made on 4 mice bearing two tumours,
one on each ear. Each mouse (M) is assigned a number (𝑋)
and the tumour is identified as left (L) or right (R). The
different tumours are thus coded M𝑋-L/R (with 𝑋 from 1 to
4).

2.2. The Computational Model

2.2.1. Cell States. A cellular automaton, under the form of
a square grid, is used to describe tumour growth and the
evolution of the tumour cells state. Full details are available
in [17, 24]. Transitions between four possible states are
considered: proliferative, quiescent, apoptotic, and necrotic,
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Figure 1: Imagingmodes. Bright field and fluorescence imaging of mouse pinna bearing a glioblastoma tumour are used to follow the tumour
and vascular evolutions simultaneously. Images were here acquired 14 days after cells injection (case M1-R). (a) Bright field image of the
tumour and vasculature, (b) fluorescence image of U87-GFP tumour cells, (c) blood vasculature highlighted by dextran-rhodamine, (d) the
two fluorescent channels which are merged, and (e) bright field image zoom on the tumour andmicrovasculature with objective 4x. All other
images have been acquired with objective 2x. Scale bars: (a), (b), (c), and (d) 1mm; (e) 500 𝜇m.

denoted as 𝑃, 𝑄, 𝐴 and 𝑁, respectively. The default state for
a normal (physiological) level of oxygen is the proliferative
state. If the level of oxygen decreases below a threshold and
the cell is in an oxygen-sensitive phase, which is assumed to
be restricted to theG1-phase of its cycle, then the cell becomes
quiescent [25]. It can reverse to the proliferative state if the
oxygen level comes back to normal or above. If the level of
oxygen becomes too low then the cell dies through necrosis
[26].

2.2.2. Cell Cycle and Cell Division. The duration of the cycle
of a cell after division (daughter cell) is assumed to be slightly
different from this of the dividing cell (mother cell). It is
determined using a truncated Gaussian distribution centred
on the duration (𝜇) of the cycle of the mother cell with
standard deviation 𝜎 = 0.2 hours. Only the duration of the
G1-phase is assumed to be altered since this phase is known
to vary themost between cells coming from a same clone [27].
In the automaton, the cell can only divide if there is some
available space, that is, (i) if there is a free element among the
8 neighbour elements of the square grid or (ii) if the dividing
cell can push a neighbour cell in a free element beyond the

first row of occupied elements; if not the cell enters apoptosis
[28].

2.2.3.The Vascular Network. Based on the results from a pre-
vious study [17], the capillary, microvascular, and angiogenic
networks are differentiated andmodelled differently. First the
capillary network is represented under the form of an implicit
submicrovascular field with 𝐸𝑖,𝑗 = 𝐸0 at each point of the
simulation grid (𝑖, 𝑗) where 𝐸0 corresponds to the normal
density of capillaries which ensures a physiological ground
level of oxygen. In the model, it can be locally degraded (i.e.,
𝐸 = 0) by proteases produced by proliferating tumour cells
[29, 30]. Shortage of oxygen can thus occur and influence
the tumour evolution in many ways that we limit here to cell
cycle arrest. Second, the microvascular network consists of
vessels with diameters ranging from 30 to a few hundreds
micrometers (capillaries and neovessels are thus excluded).
The vessels are mapped from the experimental images and
introduced into the automaton. Third, the angiogenic net-
work corresponds to the newly formed vessels sprouting from
the microvascular network. The microvascular vessels and
neovessels can occupy the edges and diagonals of the grid
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Table 1: Model parameters.

Parameter Unit Value Description Reference
𝐷𝑚 mm2⋅h−1 10.4 × 10−3 Proteases diffusion coefficient [17]
𝛼𝑚 h−1 130 Proteases production rate by sprout [17]
]𝑚 h−1 1.30 Proteases decay rate [17]
𝐷𝑝 mm2⋅h−1 1.73 × 10−3 Tumour proteases diffusion coefficient Adapted from [17]
𝛼𝑝 h−1 3600 Proteases production rate by tumour cells Adapted from [17]
]𝑝 h−1 0.21 Tumour proteases decay rate Adapted from [17]
𝐷𝑉 mm2⋅h−1 0.104 Growth factor diffusion coefficient [18]
𝛼𝑉 s−1 0.0145 Growth factor production rate by quiescent cells Estimated
]𝑉 h−1 0.65 Growth factor decay rate [19]
𝜆𝑉 h−1 1 Consumption rate of growth factor by endothelial cells [19]
𝑉max h−1 0.06 Max consumption of growth factor by endothelial cells [19]
𝐷𝑂 mm2⋅h−1 2.41 × 10−3 Oxygen diffusion coefficient [20]
𝛾𝑝 mm−1⋅s−1 4.8 × 𝑅/𝑅min Vessels permeability to oxygen [21]
𝑘0 s−1 2.4 Oxygen consumption rate by normal cells Based on [22]
𝑘𝑃 s−1 2𝑘0 Oxygen consumption rate by proliferative cells Based on [21]
𝑘𝑄 s−1 𝑘0 Oxygen consumption rate by quiescent cells Based on [21]

elements where the length of a vessel is 𝐿𝑏 = Δ𝑥, if the vessel
is on the edge (border) of the element and𝐿𝑑 = Δ𝑥√2, if it lies
on one of the diagonals. For each grid element (𝑖, 𝑗) the vessels
weight 𝑊𝑖,𝑗 can be calculated to evaluate the contribution of
the neovessels V in providing oxygen or in consuming growth
factors:

𝑊𝑖,𝑗 = ∑
V∈(𝑖,𝑗)

(𝐿𝑏
2 + 𝐿𝑑) + 𝐸𝑖,𝑗. (1)

We note that the length of the vessels at the border of the
element is divided by 2, since the vessels contribute to 2
elements (left/right or up/down). Angiogenesis, that is, the
formation of the new vessels, is described as in [17, 18, 24, 31].

2.2.4. The Extracellular Matrix. It evolves when the tumour
develops and can play an important role to stabilize the
tumour or at the opposite to favour tumour invasion [32].
Here we neglect the matrix fibre production and the role
it plays on the tumour. However the model takes into
account matrix degradation occurring during angiogenesis
via the proteases produced by themigrating and proliferating
endothelial cells [33].

2.2.5. Diffusive Molecules. Such growth factors and oxygen
influence the relationship between tumour growth and vas-
cular growth in a reciprocal way. Growth factors (𝑉) mainly
produced by hypoxic tumour cells trigger vascular growth
through angiogenesis and reciprocally the new vessels pro-
vide oxygen (𝑂) that fuels the growth of the tumour through
cell proliferation. The other diffusive molecules involved in
the model are the proteases produced by the proliferating
tumour cells (𝑝) and by the migrating endothelial cells (𝑚)
that degrade the capillary network and extracellular matrix

fibres, respectively. The equations that rule the spatiotempo-
ral dynamics of the concentrations for all diffusive species
{𝑉, 𝑂, 𝑝,𝑚} are given by

𝜕𝑉
𝜕𝑡 = 𝐷𝑉∇2𝑉 + 𝛼𝑉𝑄𝑖,𝑗 − ]𝑉𝑉

− 𝜆𝑉𝑊𝑖,𝑗min (𝑉, 𝑉max) ,
𝜕𝑂
𝜕𝑡 = 𝐷𝑂∇2𝑂 + 𝛾V𝑊𝑖,𝑗 (𝑂V − 𝑂) − 𝑘𝑖,𝑗𝑂,
𝜕𝑝
𝜕𝑡 = 𝐷𝑝∇2𝑝 + 𝛼𝑝𝑃𝑖,𝑗 − ]𝑝𝑝,

𝜕𝑚
𝜕𝑡 = 𝐷𝑚∇2𝑚 + 𝛼𝑚𝑛𝑖,𝑗 − ]𝑚𝑚,

(2)

where 𝐷𝑉, 𝐷𝑂, 𝐷𝑝, and 𝐷𝑚 are diffusion coefficients, 𝛼𝑉,𝛼𝑝, and 𝛼𝑚 are production rates, and ]𝑉, ]𝑝, and ]𝑚 are
decay rates for the related species; 𝜆𝑉 is the consumption
rate of growth factors by endothelial cells and by unit length
of vessels; 𝛾V is the permeability coefficient of the vessels;
𝑂V is the intravascular concentration of oxygen, taken as
a constant; 𝑉max is the maximum uptake of growth factors
when all cell receptors are saturated. The coefficient 𝑘𝑖,𝑗 is
the uptake rate of oxygen which depends on the cell state in
element (𝑖, 𝑗): if (𝑖, 𝑗) ∈ 𝑃, 𝑘𝑖,𝑗 = 𝑘𝑃 (proliferative cells), if(𝑖, 𝑗) ∈ 𝑄, 𝑘𝑖,𝑗 = 𝑘𝑄 (quiescent cells), and if (𝑖, 𝑗) ∈ 𝐴 or
𝑁 (apoptotic or necrotic dead cells), 𝑘𝑖,𝑗 = 0, else 𝑘𝑖,𝑗 = 𝑘0
(default uptake rate associated with normal cells) with 𝑘𝑃 ≥
𝑘0 ≥ 𝑘𝑄. 𝑛𝑖,𝑗 represents an angiogenic sprout (endothelial
cells) located on one edge of the grid element (𝑖, 𝑗). The cells
forming the sprouts have an intense proteolytic activity, via
the production of proteases that degrade the matrix to ease
cell migration. All the parameter values are given in Table 1.

2.3. Model Initialization. A virtual clone for each tumour is
built from the extraction of structural elements: shape and
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Figure 2: Stages of the procedure to transpose the fluorescence information of tumour cells to the computational framework. (a)Original GFP
fluorescence image; (b1), (b2), and (b3) successive threshold images; (c1), (c2), and (c3) corresponding noised images; and (d) reconstructed
final image obtained by summing images (c1), (c2), and (c3). The procedure is illustrated here on tumour case M4-L.

density of the tumour, local vascular structure. Those are
obtained by segmenting the images acquired immediately
after the tumour cells injection (or no later than 3 days
after). The GFP fluorescence image is used to extract the
tumour cells repartition and the information on cell density is
captured by the level of fluorescence intensity.Three intensity
thresholds for the fluorescence are applied successively on the
original image (Figure 2(a)) to differentiate three regionswith
various cell density from low density region to high density
region (Figures 2(b1) to 2(b3)). The images are resized to the
size of the computation grid (200× 200 pixels).We then apply
to each identified region some Gaussian noise (grey levels)
and the images are filtered again with three thresholds to
reflect the three different levels of cell density in each region
(Figures 2(c1) to 2(c3)). The three resulting images are added
to produce the initial virtual tumour (Figure 2(d)). We note
that the thresholds applied are not necessarily the same for
all the tumours since the fluorescence intensity varies from
one tumour to another. They are chosen empirically with the
aim to distinguish 3 levels of densities. In a future stage of
development we intend to standardize the procedure.

The vessels of the vascular network with a diameter
of at least 30 𝜇m are segmented and their coordinates are
transposed in the model. Very often, venules and arterioles
are parallel to one another. Since we do not distinguish them
in our computational framework, only one of the two is
represented in that case. Only the vessels next to the tumour
are taken into account. The segmented image is cropped
and resized to the size of the computation grid (200 × 200
pixels) (Figures 3(a) and 3(b)). A reference vessel is chosen
and its diameter is set to 80 𝜇m; all the other vessels are
initially assigned a diameter of 30 𝜇m. A pressure of 13 kPa
is imposed at the entry point of the reference vessel (black
dot in Figure 3(c)). The pressure at the boundaries of the
domain is set to 2 kPa. Vascular adaptation under the effects
of hemodynamical constraints induced by the blood flow is
simulated according to themodel presented in [31]. All vessels

are free to adapt until a steady state is reached, except the
reference vessel of which diameter is fixed to ensure stability
of the whole network (Figures 3(c) and 3(d)). The resulting
vasculature is then used as the initial vascular condition for
tumour growth.

3. Results

3.1. Tumour Growth through Texture and Size. Tumour devel-
opment is followed using intravital fluorescence imaging.The
different imaging modalities give access to detailed and spe-
cific structural information on the tumour and its vasculature
(Figure 1). The microscopic structural information is then
integrated to build up the virtual tumour (Figures 2 and 3).
Real tumour development is followed over 28 days and the
comparison with the parameterized virtual counterpart is
made at 4 discrete time points (days 3, 7, 14, and 28). Four
different cases are presented in Figure 4. Simulation results
are presented in order to provide graphical representations
compatible with experimental observations. Fluorescence
images which reveal tumour cells are compared with simu-
lations only showing the tumour cells while distinguishing
the different cell states: proliferative, hypoxic, and dying cells.
Brighter zones in the experimental images correspond to
higher tumour cell densities with proliferating cells. Similarly
in the simulation, proliferative cells are represented with a
brighter colour. Experimental bright field images show both
the vascular network and the tumour mass (Figure 5(a)). The
corresponding simulations exhibit the vascular network and
the distribution of growth factors (VEGF) produced by the
hypoxic tumour cells (Figure 5(b)).

Since all cells are initially introduced with a proliferative
state (in the computational model), they almost immediately
exhaust the oxygen resource by consuming oxygen and by
degrading the underlying capillary network field [29, 30, 34]
since the introduced tumour mass is important. The tumour
cells become hypoxic and turn into a quiescent state. We note
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Figure 3: Stages of the procedure to transpose the bright field image information of the vascular network into the computational framework.
(a) Bright field image of the vasculature; (b) the main vessels segmented; (c) the image cropped to the region of interest; (d) the vascular
network perfused at the entry point highlighted by the black dot and vascular adaptation simulated until a stationary state is reached; (e) the
resulting adapted vasculature merged with the extracted information on the tumour cells distribution. The procedure is illustrated here on
tumour case M4-L.

that in our model hypoxic and quiescent cells are in fact the
same cells. The hypoxic cells release growth factors (such
as vascular endothelial growth factor, VEGF). Depending
on the location of the closest vessels, angiogenesis will start
more or less rapidly to bring back oxygen to the hypoxic
tissue (Figure 5(c)). Tumour cells in the vicinity to the newly
formed vessels will turn back to the proliferative state andwill
primarily fill the empty gaps between cells, thus increasing the
tumour density and allowing the tumour to grow.

Similarly in vivo, we observe that tumours become more
compact with time. Compaction can be qualitatively assessed
from the texture of the GFP fluorescence images (Figure 4)
and the size of the tumours. On day 3, the fluorescent image
is very granular, that is, heterogeneous which allows us to dif-
ferentiate dense regions corresponding to higher fluorescence
intensity from low density regions with weaker signal inten-
sity. With time, the image texture becomes smoother, which
reveals that cell proliferation andmovements homogenize the
cells spatial distribution.

The changes in the texture on the tumour fluorescence
images from day 3 to day 28 are quantified and characterized
from the distribution curves of fluorescence intensity. To
that end, the fluorescence intensity and the intensity range
have been normalized to make the comparison possible
since the intensity levels are different from one image to

another depending on how the image has been tuned to
avoid pixel saturation. The resulting curve corresponding to
the previously presented tumour is displayed in Figure 6(a).
We recall that only pixels associated with the tumour are
taken into account. On day 3, darker pixels dominate; the
distribution of fluorescence intensity is heterogeneous and
decreases sharply leaving very few bright pixels. This gives
a rough (granular) texture. On the subsequent days, the
fluorescence distribution becomes more homogeneous with
less darker pixels and significantly more brighter ones, which
gives a smoother texture.The close-up in the figure compares
day 3 with day 28 to highlight the signal transition. The
progression with time of this transition is particularly clear
for this tumour case (Figure 6(a)) with a significant increase
of bright pixels.

In themeantime, the tumour size which is estimated from
its apparent area is multiplied in average by 1.67 ± 0.36 in 28
days (by 1.25 for tumour case M1-L and by 2.08 for tumour
caseM4-L, which are, resp, the slowest and the fastest growth
on our group of tumours). The apparent area taken alone is
however not sufficient to assess correctly the tumour growth
in the two-dimensional plane, that is, the increase of the
number of tumour cells in this plane. Correlation with the
granularity is necessary to obtain a better estimation related
to tumour cells density. A qualitative good match is attained
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Figure 4: GFP fluorescence images (upper row in each frame) are compared with snapshots of the simulations (lower row in each frame)
taken at four time points (days 3, 7, 14, and 28) for four different tumour cases (M4-L,M1-L,M3-L, andM3-R). Colour code for the simulations:
proliferative cells in light green, quiescent cells in green, and apoptotic cells in yellow. Scale bars: 500 𝜇m.The corresponding simulations are
available in Supplementary Data Video in Supplementary Material available online at http://dx.doi.org/10.1155/2016/7851789.

between the real tumour and the virtual one based on three
criteria: the shape, size, and texture.

3.2. Growth Kinetics and Limitations. Comparisons of the
real and virtual (simulated) tumour growth are realised
from the evaluation of the tumour area at discrete time
points. Experimentally the tumour area is measured from
the fluorescence images and depends on the filter used to
segment the image (see Image Analysis). For the virtual
tumour, the area can be directly calculated from the number
of cells since each cell occupies one element of the cellular
automaton. This gives us the effective tumour area. However
we also estimate the apparent tumour area which is obtained
by delineating the tumour edge. The different curves for
the evolution of the tumour area with time are plotted on
a same graph in Figure 6(b). These curves are the two
experimental curveswhich correspond to twodifferent filters:
the restrictive one gives the lower estimation for the tumour
area whereas the other one is more tolerant, so artefacts are
manually corrected which gives a more accurate estimation;
the two theoretical curves which correspond to the effective
and apparent areas.

Figure 6(b) shows some discrepancies between the curves
(which highlights the limit of the model). First, there is a
difference at time 𝑡 = 0. The virtual tumour areas are

smaller than the experimental ones.This is due to the strategy
we employ to define the initial virtual tumour. Only the
bulk of the tumour is taken into account for the estimation
of the tumour area. The scattered cells are not taken into
account (see Figure 2(d)) whereas in the experimental case,
the integration of other plans (third dimension) allows the
detection of a larger tumour surface.There is a relatively good
fit between the virtual and real tumours from day 7 to day
21: the measured virtual tumour area is catching up with the
estimated real one since the virtual tumour cells fill the gaps in
the simulated 2D plan.They further develop after the onset of
angiogenesis. Some divergence can occurmore or less rapidly
above 21 days. Those are especially visible in the tumour case
presented in Figure 6(b) where the virtual tumour expansion
is faster than for the real tumour. This is once again related
to the different dimensionality of the virtual (2D) and real
(3D) tumours but also to a compaction effect that has been
disregarded in the virtual tumour model due to the fact that
there can only be one cell per element of the automaton.

3.3. The Angiogenic Bottleneck. The best match in terms of
growth between the virtual tumour and its real counterpart
is obtained from day 7 to day 21. Figure 7 compares images
that merge the two fluorescent channels with simulated
images for two other tumour cases (M2-R and M4-R). The

http://dx.doi.org/10.1155/2016/7851789
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Figure 5: Comparison of the growth evolution of a simulated tumour (tumour caseM4-L) with its real counterpart at four time points (days 3,
7, 14, and 28). (a) Bright field images of the tumour with 2x objective and RFP-fluorescence image of the vasculature (on day 14); (b) associated
virtual tumour exhibiting the tumour cells (proliferative cells in light grey and quiescent cells in grey), vessels (darker vessels are larger), and
VEGF distribution (in red); (c) oxygen level (dark spots for oxygen levels lower than normal and bright spots for oxygen levels higher than
normal). Scale bars: 1mm for experimental images (a); 500𝜇𝑚 for simulated images (b, c).

simulated images show the tumour, the vasculature, and the
growth factors secreted by the hypoxic tumour cells. From
the experimental images we observe that the background is
darker at day 7 and much brighter at day 14. This is due
to some leakage of the fluorescent dye (dextran-rhodamine)
into the extravascular space induced by the growth fac-
tors which breaches the vascular walls as endothelial cells
detached to form the angiogenic sprouts. This effects is indi-
rectly captured in the simulated images where the increased
growth factor concentration is related to the increase vessel
leakage.

Experimental and simulated growth curves of all the
tumour cases are presented in Figures 8(a) and 8(b), respec-
tively. The curves 𝑠𝑘(𝑡) (𝑘 = 1 to 7) have been normalized
by their integral value, that is, �̃�(𝑡) = 𝑠𝑘(𝑡)/ ∫28

0
𝑠𝑘(𝑡)𝑑𝑡, to

make them all comparable. Experimental curves correspond
to the manually determined tumour area of Figure 6(b).
Simulated growth curves plot the evolution of the number
of tumour cells which corresponds to the effective tumour

area of Figure 6(b). Although the simulated growth curves are
obviously more homogeneous than the experimental ones,
there is a striking resemblance at day 17 where the curves
variability is minimum for both experimental and simulated
curves.

This corresponds to the well-known angiogenic switch
[15] that we designate here by the term bottleneck that more
accurately describes the observe phenomena by which slow
growing tumours (slower than the average) have a higher
angiogenic potential since they possess a higher proportion
of hypoxic cells (producing growth factors), whereas faster
growing tumours (faster than the average) produce a lower
angiogenic response. As a result, the growth curves coincide
at a specific time period due to a progressive and adapted
angiogenic regulation which starts to develop after about a
week and reaches its full capacity about 10 days later, leading
to the emerging convergence of the normalized growth
curves on day 17 (with the approximation of time sampling
for image acquisition).
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Figure 6: Tumour evolution (case M4-L). (a) The evolution of the tumour fluorescence distribution is assessed over 4 time points (days 3,
7, 14, and 28). The horizontal axis represents the fluorescence intensity of the images from dark pixels (with value 0) to bright pixels (with
value 1). The range of pixel intensity values has been normalized for each image between the minimum value (darker pixel equals 0) and the
maximum value (brighter pixel equals 1) since they are not necessarily the same from one image to another. The vertical axis stands for the
number of pixels for each fluorescence intensity normalized by the total number of tumour pixels (the integral of each curve equals 1). The
close-up compares day 3 with day 28 to exhibit the switch in the tumour fluorescence profile. (b) The evolution of the tumour area is first
evaluated from the experimental images (green curves with bullets) using both a manual Yen-guided filter (plain line) and the Default ImageJ
filter (dotted line). The curves are then compared with the areas measured on the corresponding virtual tumour (blue curves with squares),
where the effective area is the area effectively occupied by the tumour cells (plain line) and the apparent area is the area which is delineated
by the tumour’s edge (dotted line).
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Figure 7: Tumour and vascular states are compared between day 7 and day 14 for two tumour cases: M2-R (a) andM4-R (b). In experimental
images, the vasculature is highlighted in red using dextran-rhodamine and the U87-GFP tumour cells are highlighted in green. In the
simulated images, a corresponding colour code has been used. The vessels are in red and the neovessels in lighter red. The tumour cells
appear in green with actively proliferating cells in brighter green. In the simulated images, the growth factors produced by the tumour cells
appear in red in the background. Scale bars: 500𝜇m.
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Figure 8: Tumour growth is monitored from the normalized tumour area in experimental images (a) and in the simulations (b). All tumour
cases are represented in both graphics (curves in green for the experiments in panel (a) and in blue for the simulations in panel (b)) and
the black curves correspond to the mean curves featuring the standard deviation for each point. (c) shows the evolution of the ratio between
actively proliferating cells (𝑃) and quiescent cells (𝑄) in the simulations for all the tumour cases (where each grey curve represents one tumour
case) and the red curve represents the mean curve with standard deviation of the mean for each point.

Theproportion of quiescent cells (i.e., hypoxic cells) in the
simulated tumours is highlighted in Figure 8(c). The tumour
cells are initially (day 0) all proliferative.Onday 3, only 30% in
average are still proliferative; all other cells turned quiescent.
In average the proportion of proliferative cells decrease to a
minimum close to 10% on day 13. Angiogenesis then starts
to produce some sensible effects on the cell population by
reverting quiescent cells into a proliferative state. This leads
to an increase proportion of proliferative cells visible from
day 17 which confirms the interpretation of the angiogenic
bottleneck effect by which tumour growth is progressively
resumed.

4. Discussion

In this study we developed a model for tumour growth and
angiogenesis that has been applied to build up a virtual
clone of a real tumour. The model successfully describes the
development of seven different tumour cases over a period of
about amonth, without requiring any changes or adjustments
in the model parameters from one tumour to another. This
shows that the model with the default set of parameters

(Table 1),mostly taken from the literature and adjusted from a
previous study [17], is robust. Interestingly, we identifiedwhat
we called an angiogenic bottleneck characterizing the tumour
development. This effect, observable from the experimental
tumour growth curves, is very well captured by the computa-
tional model since it is found to be significantly emphasized
in the simulated curves. This angiogenic bottleneck marks
the convergence of the normalized growth curves around
day 17 (Figure 8). It can be interpreted as a signature of the
progressive transition—hence bottleneck rather than switch—
between avascular and vascular (i.e., angiogenic) tumour
growth over this specific time period for all the tumour
cases. We note that this phenomenon appeared in the
simulations as an emerging property of the physiological
model. It shows that the model, although simple, is able
to catch a major characteristic of the experimental model.
Specifically, the basic mechanisms for cell growth activation
and inhibition through the regulation of the oxygen level and
themediation of growth factors are sufficient to reproduce the
characteristics of tumour development in terms of shape, size,
and density. The vascular structure of the microenvironment
influences the cell shape and the tumour heterogeneity (active
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proliferating zones versus dormant quiescent zones) through
its angiogenic potential stimulated by the tumour itself.

Although successful in catching key aspects of reality, the
physiological model should be further improved to become
reliable on a longer time scale. First the computational model
can be generalized in 3D to exploit the potential of two-
photon imaging that gives access to a tissue depth of a few
hundreds microns for the reconstruction of a large tumour
volume. Second, cell compaction that has been overlooked
in this version of the model can be easily integrated in the
computational framework by allowing more than one cell in
a grid element. The consequences of the increase mechanical
pressure on the modulation of the cell proliferation rate [35]
and on vascular shutdown [34] can thus be described. This
will allow us to account for the increased density of the
tumourmass (by exploiting the image texture, rather than the
tumour area) in order to match more accurately the tumour
growth curve beyond the angiogenic bottleneck.

With this study, we have been able to show that a
biological object, as complex as a tumour, can be transposed
into a virtual clone to predict its overall behaviour. But
the main interest in detaining such a reliable tool is its
potential to investigate and predict the effects of therapies.
Its main object is to use it as a virtual substitute to test
a panel of therapeutic protocols (i.e., by defining the drug
dose, administration duration, and frequency). This is even
more helpful in combined therapy protocols that may influ-
ence each other like the use of antivascular and cytotoxic
drugs. This should help to identify the optimum therapeutic
strategy for the real tumour. It is expected that such a
personalized treatment, which takes into account all the
tissue specificities of the patient (tumour shape and density
and vascular configuration), would considerably increase
its efficacy. Although precision medicine has been recently
promoted and advertised through the rise of big data [3–6],
we remain convinced that Personalized Medicine, involving
biologically based computer models, is equally reachable and
achievable.

5. Conclusions

Personalized Medicine is pursued as a major goal to fight
cancer and requires the assistance of biologically based
theoretical models. However deriving such highly informed
and dedicated models is not easy. In this study we devel-
oped a virtual tumour based on basic mechanisms for cell
growth activation and inhibition through the regulation
of the oxygen level and the mediation of growth factors.
Those mechanisms appeared to be sufficient to reproduce the
characteristics of tumour development in terms of size and
shape over a month. Moreover, the key angiogenic transition
in the growth process was very well captured by themodel, by
spontaneously emerging in the simulations as a consequence
of these simple physiological rules.
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