
1/16https://immunenetwork.org

ABSTRACT

Scrub typhus, a mite-borne infectious disease, is caused by Orientia tsutsugamushi. Despite 
many attempts to develop a protective strategy, an effective preventive vaccine has not been 
developed. The identification of appropriate Ags that cover diverse antigenic strains and 
provide long-lasting immunity is a fundamental challenge in the development of a scrub 
typhus vaccine. We investigated whether this limitation could be overcome by harnessing the 
nanoparticle-forming polysorbitol transporter (PST) for an O. tsutsugamushi vaccine strategy. 
Two target proteins, 56-kDa type-specific Ag (TSA56) and surface cell Ag A (ScaA) were 
used as vaccine candidates. PST formed stable nano-size complexes with TSA56 (TSA56-
PST) and ScaA (ScaA-PST); neither exhibited cytotoxicity. The formation of Ag-specific 
IgG2a, IgG2b, and IgA in mice was enhanced by intranasal vaccination with TSA56-PST or 
ScaA-PST. The vaccines containing PST induced Ag-specific proliferation of CD8+ and CD4+ 
T cells. Furthermore, the vaccines containing PST improved the mouse survival against O. 
tsutsugamushi infection. Collectively, the present study indicated that PST could enhance both 
Ag-specific humoral immunity and T cell response, which are essential to effectively confer 
protective immunity against O. tsutsugamushi infection. These findings suggest that PST has 
potential for use in an intranasal vaccination strategy.
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INTRODUCTION

Scrub typhus is an acute, feverish, and sometimes fatal disease that is caused by infection 
with the obligate intracellular bacterium, Orientia tsutsugamushi. It has become a serious 
public health concern. It is frequently observed in the Asia-Pacific region, often referred to 
as the “tsutsugamushi triangle” (1). Sporadic outbreaks have also been reported (2). Recent 
epidemiological studies have shown that scrub typhus is spreading outside of its typical 
endemic areas; thus, scrub typhus is becoming a global problem (3,4). Unfortunately, 
a reliable prophylactic vaccine has not been developed against O. tsutsugamushi, despite 
numerous attempts to develop a protective strategy in recent decades (5-7). Because of poor 
cross-reactivity among O. tsutsugamushi genotypes, the protective immunity produced by early 
vaccine trials or natural infection does not persist. The greatest obstacles to the development 
of a scrub typhus vaccine include the identification of vaccine candidates that cover a broad 
range of antigenic strains with long-lasting immunity (8,9).

Various attempts to select appropriate vaccine candidates have led to further investigations 
with the aim of developing a better vaccine (10,11). The difficulties of using live or killed O. 
tsutsugamushi as a scrub typhus vaccine include the need for large-scale manufacturing. Because 
of the requirement for a biosafety level-3 laboratory space, manufacturing is inconvenient and 
costly. Thus, scrub typhus vaccine strategies have mainly focused on subunit vaccines using 
recombinant protein (11). In the present study, we used surface cell Ag A (ScaA) acting as an 
adhesin molecule that could confer protective immunity when used as vaccine candidate in a 
mouse model infected with O. tsutsugamushi (8,12). We also used a highly immunogenic outer 
membrane protein, 56-kDa type-specific Ag (TSA56), which plays an important roles in O. 
tsutsugamushi attachment and invasion to the host cells. Furthermore, when used as a vaccine 
candidate protein, TSA56 plays a role in genetic and antigenic heterogeneity (13,14).

Nanotechnology has made significant contributions to vaccine development, particularly 
with respect to delivery and adjuvanticity. The physicochemical characteristics of 
nanovaccines (e.g., size, viscosity, and surface charge) contribute to their efficacy by 
modulating the retention of vaccine in target tissues and mobility in lymphatic and blood 
vessels (15,16). The size of a nanovacccine is advantageous for targeting lymph nodes because 
10–100 nm particles can easily move through the interstitium and enter the lymphatic 
system, rather than blood vessels (17,18). Strategies to modulate intracellular Ag mobility 
for the induction of CD8+ T cell responses have also been devised using nanotechnology 
(18). Polysorbitol transporter (PST), synthesized from low-molecular-weight (LMW) 
polyethylenimine (PEI) and sorbitol diacrylate (SDA), has demonstrated long-term Ag-
specific Ab production against respiratory syncytial virus infection (19) and pneumococcal 
pneumonia, along with follicular helper T cell activation (20). Notably, PST is assumed to 
induce robust humoral and cellular immune responses.

Because O. tsutsugamushi is an intracellular parasitic bacterium, the infection cannot be 
effectively controlled by Ab production alone. This is a primary reason for difficulty during 
protective vaccine development against virus (21) or intracellular bacteria (9,22). Thus, 
there is a need for Ag-specific CD8+ T cell responses that can directly kill infected cells, 
in combination with the production of neutralizing Abs (23,24). In the present study, we 
found that a vaccine strategy harnessing nanoparticle-forming PST could elicit enhanced Ab 
production, along with Ag-specific T cell responses, to achieve protective immunity against 
O. tsutsugamushi infection.
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MATERIALS AND METHODS

Experimental animals
Female BALB/c mice (6–10 wk old) were purchased from RaonBio Inc. (Yongin, Korea). Mice 
were maintained under pathogen-free conditions in an animal facility at Seoul National 
University, and procedures were performed with the approval of the Institutional Animal Care 
and Use Committee (IACUC; approval No. SNU-200416-5-5). All challenge experiments using 
O. tsutsugamushi were conducted in the animal biosafety level-3 facility of the Korea Centers 
for Disease Control and Prevention (KCDC), with the approval of the IACUC at the KCDC in 
accordance with the laboratory’s animal ethics guidelines (KDCA-IACUC-21-011). The animal 
care and use protocol for the present study adhered to guidelines established by the Korea 
Association for Laboratory Animal Sciences.

Cell culture
Vero (ATCC CCL-81) and L929 (ATCC NCTC929) cells were maintained in DMEM (Gibco, 
Grand Island, NY, USA) supplemented with 5% heat-inactivated FBS (Gibco), 100 U/ml 
penicillin, and 100 μg/ml streptomycin (Gibco); cells were incubated at 37°C with 5% CO2.

Preparation of TSA56 and ScaA proteins
For the preparation of TSA56 and ScaA proteins, corresponding bacterial genes were 
amplified from the genomic DNA of the O. tsutsugamushi Boryong strain via polymerase chain 
reaction using the primer pairs TSA56 (forward primer: 5′-CGGGATCCGATCCATCAGCTTCA 
TCA-3′, reverse primer: 5′-CGGTCGACTATATCTTCGTCTTTGCC-3′) and ScaA (forward  
primer: 5′-CGGGATCCGCACCAGGATTTAGAAGCA-3′, reverse primer: 5′-CGGTCGACTTTA 
CTTGATTCTTTGC-3′). The polymerase chain reaction products were cloned into pET28a 
vector (Novagen, Gibbstown, NJ, USA). All constructs were sequenced to confirm in-frame 
cloning (data not shown). Recombinant TSA56 and ScaA proteins were purified from a 
recombinant plasmid containing Escherichia coli BL21 (DE3) cultured overnight at 37°C in 
Luria–Bertani medium supplemented with 50 µg/ml kanamycin (Sigma-Aldrich, St. Louis, 
MO, USA). Each culture was transferred into fresh Luria–Bertani medium and incubated until 
it reached an OD600 of 0.5–1.0. Protein expression in transformed E. coli was enhanced by 
incubation with isopropyl β-D-thiogalactoside (0.1 mM; Duchefa, Zwijndrecht, Netherlands) 
at 37°C for 4 h, then harvested by centrifugation at 4,000 ×g for 10 min. The resulting 
pellets were suspended in PBS and sonicated; soluble fractions were then separated by 
centrifugation at 20,000 ×g for 30 min. The proteins were purified using Ni-nitrilotriacetic 
acid His-resin (Qiagen, Carlsbad, CA, USA) or a glutathione-sepharose 4B column (GE 
Healthcare, Piscataway, NJ, USA), in accordance with the manufacturer’s instructions. The 
purified proteins were dialyzed against PBS in an Aside-A-Lyzer Dialysis Cassette (Thermo 
Fisher Scientific, Rockford, IL, USA) at 4°C overnight. Then, purified proteins were treated 
with endotoxin removal column (Thermo Fisher Scientific); endotoxin contamination 
was determined using an Endosafe PTS cartridge (Cat # PTS20F, 1.0–0.0; Charles River, 
Wilmington, MA, USA), in accordance with the manufacturer’s instructions. All purified 
proteins contained <100 EU/mg of endotoxin (data not shown).

Synthesis of PST
PST was synthesized with SDA and LMW (600 Da) PEI by a Michael addition reaction as 
previously described (19,20), with a slight modification. Briefly, SDA and PEI were separately 
dissolved in DMSO at concentration of 0.836 M and 0.209 M, respectively. The SDA solution 
was then added dropwise to PEI while gently stirring at a feed molar ratio of SDA:PEI = 
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4:1. The reaction mixture was continuously stirred at 80°C for 24 h, then dialyzed (using a 
Spectra/Pro® membrane with 3500 Da molecular weight cut-off ) against distilled water at 
4°C, lyophilized, and stored at −70°C until use.

Physicochemical characterization of the TSA56-PST and ScaA-PST complexes
The ability of PST to complex with ovalbumin (OVA) was determined by dynamic light 
scattering (DLS). Briefly, TSA56-PST or ScaA-PST complexes were prepared at various weight 
ratios by incubating the components at room temperature for 30 min with a final protein 
concentration of 500 µg/ml. The particle sizes of the TSA56-PST and ScaA-PST complexes 
were measured by a DLS spectrophotometer (DLS-7000; Otsuka Electronics, Osaka, Japan).

Generation and culture of bone marrow-derived dendritic cells (BMDCs)
BMDCs were generated from murine bone marrow cells as previously described (25). Briefly, 
bone marrow was flushed from the tibiae and femurs of B6 mice, then depleted of red 
blood using red blood cell-lysis buffer (Sigma-Aldrich). The resulting bone marrow cells 
were cultured in complete RPMI medium with 20 ng/ml GM-CSF (Creagene, Seongnam, 
Korea) at 37°C with 5% CO2 for 7 days. Complete RPMI medium was composed of RPMI-
1640 supplemented with 10% FBS, 20 mM HEPES, 1 mM sodium pyruvate, 220 nM 
2-mercaptoethanol, and 100 μg/ml gentamicin (all from Sigma-Aldrich). On day 0, bone 
marrow cells were seeded at 3×106 cells/well (3 ml media) in a six-well plate; 2 ml of fresh 
media were added on day 3. On day 5, half of the culture supernatant was discarded, and 3 
ml of fresh media were added. On day 7, suspended bone marrow cells were harvested and 
sorted using a CD11c MicroBeads UltraPure kit (Miltenyi Biotec Inc., San Jose, CA, USA). 
Differentiation into dendritic cells (DCs) was confirmed by staining with anti-CD11c and 
- MHC class II Abs (BD Biosciences, Franklin Lakes, NJ, USA) via flow cytometry (FACS 
CantoII; BD Biosciences).

Cytotoxicity assay
To examine cytotoxicity, BMDCs were treated with TSA56-PST or ScaA-PST complexes at various 
doses for 24 h. After FC-receptors had been blocked with anti-CD16/32 Abs (eBioscience, San 
Diego, CA, USA), the cells were stained with CD11c, MHC class II, MHC class I, and annexin V/7-
amino-actinomycin (7-AAD; BD Biosciences) at 4°C for 20 min, then examined for cytotoxicity. 
The cells were examined by flow cytometry (FACS CantoII, BD Biosciences); all cytometric data 
were analyzed using FlowJo software (Flowjo, Ashland, OR, USA).

Immunization with TSA56- or ScaA-PST complex vaccines
Mice were intranasally immunized with 10 μg (20 μl in PBS/mouse) of TSA56, ScaA, TSA56-
PST, or ScaA-PST complexes (weight ratio 1:10), three times at 2-wk intervals. To determine 
Ag-specific Ab levels in serum, retro-orbital blood samples were collected four times at 2-wk 
intervals beginning on the day before initial vaccination.

Measurement of Ab responses by ELISA
ELISA was performed to evaluate immune responses against TSA56 and ScaA proteins in 
serum samples from immunized mice. Briefly, 96-well microtiter plates (Nunc, Roskilde, 
Denmark) were coated overnight with pre-titrated recombinant TSA56 (3 μg/ml) or ScaA (3 
μg/ml) proteins in PBS, blocked with PBS containing 3% skim milk (200 μl/well) for 30 min, 
and washed with PBS containing 0.05% Tween-20. Serum samples were diluted at 1:100 in 
PBS containing 3% skim milk. Horseradish peroxidase-conjugated goat anti-mouse IgG or 
IgA Ab (Bethyl Lab Inc., Montgomery, TX, USA) was added to each well. Enzymatic reactions 
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were conducted by adding substrate containing o-phenylenediamine (Sigma-Aldrich) and 
optical density was examined using an automated ELISA spectrophotometer (Multiskan GO; 
Thermo Fisher Scientific) at 450 nm. Ab concentrations were determined after readings had 
been normalized with respect to the plate background.

Ag restimulation assay
To investigate Ag-specific T cell responses, spleens were collected 2 wk after the third 
vaccination; single cells from splenocytes were labeled with 5 µM cell trace violet (CTV; 
Invitrogen, Carlsbad, CA, USA). Then, CTV-labeled splenocytes (1×106 cells/ well) were 
restimulated with TSA56 or ScaA protein at 10 µg/ml for 72 h. Changes in T cell proliferation 
and population were examined by CTV and surface staining by anti-CD3, -CD8, and -CD4 
Abs (BD Biosciences) using flow cytometry (FACS CantoII; BD Biosciences). All cytometric 
data were analyzed using FlowJo software.

O. tsutsugamushi propagation and challenge
The O. tsutsugamushi Boryong strain was propagated in the monolayer of L929 cells as 
previously described (26). Briefly, bacteria were inoculated into confluent monolayer of the 
cells in FBS-free DMEM(Gibco) and incubated at 34 °C for 2 h, at the end of which DMEM was 
then supplemented with 1% FBS and 1% HEPES (Invitrogen). The levels of infectivity were 
determined by an indirect immunofluorescence assay. When >90% of cells were infected, the 
cells were collected, homogenized using a glass Dounce homogenizer (Wheaton Industries 
Inc., Millville, NJ, USA) and centrifuged at 500 ×g for 5 min. The supernatant was stored 
in liquid nitrogen tank until use. The infected cell-counting unit (ICU) was calculated by 
microscopic analysis, according to the following formula: ICU = Total Number of Cells Used 
for Infection × Ratio of Infected Cells to Counted Cells × Dilution Fold of O. tsutsugamushi 
Boryong Inoculum (27,28). A 100% lethal dose of O. tsutsugamushi was determined as 5×106 
ICU in wild type BALB/c mice. For the challenge experiments, immunized BALB/c mice 
were intraperitoneally infected with a 100% lethal dose of O. tsutsugamushi Boryong strain in 
200 μl of PBS at 14 days after the last immunization. Mice were monitored daily for signs of 
morbidity based on body weight changes and mortality for 21 days. Body weight loss >30% 
was regarded as the experimental endpoint.

Statistical analysis
The levels of statistical significance for comparisons between samples were determined 
by t-tests or one or two-way ANOVA test by using GraphPad InStat software (version 8; 
GraphPad, San Diego, CA, USA). The results were expressed as the mean ± SEM. The 
threshold for statistical significance was regarded as p<0.05.

RESULTS

PST and target recombinant proteins from O. tsutsugamushi were 
successfully synthesized
PST was synthesized from SDA and LMW PEI (600 Da) by the Michael addition reaction, as 
previously described (19,20). When PST, is properly formed, it has various functional properties 
including degradation, a proton sponge effect, and osmotic activity (Fig. 1A). The composition 
of the synthesized PST was determined by proton nuclear magnetic resonance (1H NMR) 
spectroscopy (Fig. 1B). Its ester bond maintains the biodegradability of PST (19), ensuring safety. 
When the 1H NMR spectra of SDA, LMW PEI, and PST were compared, the peaks of acrylate 
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Figure 1. Synthesis of PST and cloning of recombinant proteins from Orientia tsutsugamushi. 
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groups were observed between 5.9 and 6.5 ppm, but they were absent after the synthesis of 
PST by the Michael addition reaction with PEI and SDA (Fig. 1C). These results indicated that 
biodegradable ester bonds were formed during the synthesis of PST. Synthesis of the target 
recombinant proteins, TSA56 and ScaA, using an E. coli and pET28a cloning vector system was 
confirmed by Coomassie blue staining and western blotting (Fig. 1D). Collectively, the results 
indicated that PST and the target proteins, TSA56 and ScaA were successfully prepared.

Non-cytotoxic complexes of PST with each target Ag were formed with the 
expected size and stability
Nanoparticle sizes have key roles in nanovaccine efficacy and delivery (19,20). A nanovaccine 
particle size of 20−200 nm is reportedly favorable for endocytosis by Ag presenting cells 
(APCs) that initiate and/or induce the activation of T cell responses; microparticles in the 
size range of 0.5–5 µm are internalized by phagocytosis, thus favoring a humoral immune 
response (18). To determine the optimal conditions for the formation of nanocomplexes 
with the TSA56 and ScaA target proteins, PST was mixed with each Ag at weight ratios of 
1:1, 1:5, and 1:10, resulting in nanoparticle formation. Nanoparticle size was analyzed by 
DLS. Both target proteins had an appropriate nanoparticle size of 100–200 nm at a ratio of 
1:10 (Fig. 2A and B). The cytotoxicity of TSA56-PST and ScaA-PST were analyzed in BMDCs 
by using annexin V/7-AAD. Compared with a positive control; H2O2 treatment group, each 
nanocomplexes did not induce significant early apoptosis (Annexin V+7-AAD−) and necrosis 
(7-AAD+) (Fig. 2C and D). Collectively, the results indicated that PST optimally complexed 
with the TSA56 or ScaA proteins at a ratio of 1:10, without inducing cytotoxicity.

Nano-complexed TSA56 and ScaA Ags with a PST induced effective Ag-
specific Ab response
To examine Ag-specific humoral immunity, we vaccinated the mice with TSA56, ScaA, TSA56-
PST, or ScaA-PST three times at 2-wk intervals (Fig. 3A). Both groups vaccinated with TSA56-
PST or ScaA-PST showed significant enhancement of Ag-specific responses after the second 
vaccination (Fig. 3B and C), with further enhancement after the third vaccination. When 
vaccination was conducted with Ag alone (in the absence of nanocomplexes formation), the 
Ab response was minimally affected. The level of Ag-specific IgA, which plays a key role in 
mucosal protective immunity, significantly increased after the third vaccination with TSA56-
PST or ScaA-PST (Fig. 3D). These results suggested that vaccination with a nano-complexed O. 
tsutsugamushi target protein produced with PST could enhance Ag-specific humoral immunity.

Nano-complexed TSA56 and ScaA Ags produced with PST induced an 
effective Ag-specific T cell response
O. tsutsugamushi is an intracellular bacterium; thus, both Ag-specific Ab responses and cellular 
immune responses (e.g., T cell proliferation and IFN-γ expression) are critical for protective 
immunity (29-31). Two weeks after the third vaccination, spleens were collected, and single 
cells were labeled with CTV and changes in CD4+ and CD8+ T cell populations were examined 
after restimulation with TSA56 or ScaA proteins for 72 h (Fig. 4A). When the splenocytes were 
restimulated with the TSA56 (Fig. 4B) or ScaA (Fig. 4C) proteins, the overall proportions of 
CD8+ and CD4+ T cells did not change, presumably because of the low number of Ag-specific 
memory T cells (32-34). Therefore, we examined CTV and CD44 expression for memory 
cells responding to each of the restimulation Ags. To note that the memory T cells generated 
by vaccination could response to TSA56 or ScaA protein, respectively, which is identified 
by CTVlo and CD44+ expression (Fig. 4A). As a result, both the proliferation of Ag-specific 
CD4+ and CD8+ T cells restimulated with TSA56 protein was significantly enhanced in the 
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TSA56-PST vaccinated group (Fig. 4D and E). Similarly, the proliferation of CD4+ and CD8+ 
T cells was significantly enhanced in the group vaccinated with ScaA-PST (Fig. 4F and G) 
when restimulated with ScaA. Thus, when complexed with TSA56 or ScaA Ag, PST could 
enhance CD8+ and CD4+ T cells responses to the Ag. Collectively, the findings indicated that 
PST induced increase in both humoral and cellular immune responses, which are essential to 
confer protective immunity against O. tsutsugamushi infection.
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Figure 2. Physicochemical characterization of PST with TSA56 or ScaA. 
(A, B) PST with TSA56 or ScaA, mixed at weight ratios of 1:1, 1:5, and 1:10, were incubated at room temperature for 30 min to allow complex formation. Size 
distributions of (A) TSA56-PST and (B) ScaA-PST complexes at different weight ratios were measured by DLS. (C) Gating strategy for cytotoxicity assay. (D) 
Cytotoxicity of TSA56-PST and ScaA-PST was analyzed in BMDCs stained with annexin V/7-AAD using flow cytometry (n=5). Results are presented as mean ± SEM. 
Significant differences compared with CON group within each gating (Live, Early apoptosis, Necrosis) determined by t-test. 
*p<0.5, **p<0.01, ***p<0.001, ****p<0.0001.
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Figure 3. Ag-specific Ab responses in mice immunized with TSA56-PST or ScaA-PST. 
Mice (n=5 mice/group pooled data from 2 independent experiments) were immunized three times at 2-wk intervals with TSA56, ScaA, TSA56-PST, or ScaA-PST. 
(A) Schematic of vaccination protocol. TSA56- or ScaA-specific (B) IgG2a, (C) IgG2b, and (D) IgA in serum were determined by ELISA. Results are presented as 
means ± SEMs. Significant differences were analyzed by two-way analysis of variance, followed by Tukey’s multiple comparison test. Significant difference is 
noted only within the time points. 
**p<0.01, ***p<0.001, ****p<0.0001.
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Nano-complexed TSA56 and ScaA Ags produced with PST induced protective 
immunity
Next, we examined whether a vaccine strategy using PST could induce protective immunity 
against O. tsutsugamushi infection. 14 days after the third vaccination, mice were challenged 
with a lethal dose of O. tsutsugamushi (Fig. 5A). No significant weight loss which is considered 
the end point of experiment was observed during all experimental period. Mice vaccinated 
with TSA56-PST or ScaA-PST had high survival rates whereas the administration of Ag alone 
(without PST) resulted in low survival rates (Fig. 5B). In particular, the group vaccinated with 
TSA56-PST had a 100% survival and the group vaccinated with ScaA-PST had 80% survival 
throughout the experimental period (Fig. 5B). Collectively, the results indicated that a 
vaccine strategy that utilizes PST to deliver nano-size target Ags effectively elicits appropriate 
protective immunity with improved survival against O. tsutsugamushi infection.

DISCUSSION

Despite continuous efforts to develop a prophylactic vaccine against O. tsutsugamushi 
infection, a reliable vaccine has not been developed (6). The use of nanotechnology in 
vaccination strategies has successfully enhanced vaccination efficacy, suggesting a new 
paradigm for vaccine development (18). Consistent with such applications, we harnessed 
PST, a nanoparticle-forming transporter, as a delivery agent for intranasal vaccines against 
O. tsutsugamushi infection. We showed that the nano-complexed vaccine Ags, TSA56-PST and 
ScaA-PST, could elicit protective immunity against lethal O. tsutsugamushi infection.
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Figure 5. Protective immunity against O. tsutsugamushi in mice immunized with TSA56-PST or ScaA-PST. 
Mice (n=5) were immunized with TSA56, ScaA, TSA56-PST, or ScaA-PST for three times at 2-wk interval. Two weeks 
after the final immunization, mice were challenged by intraperitoneal infection with O. tsutsugamushi Boryong 
strain (5×106 ICU, 100% lethal dose). (A) Schematic vaccination schedule. (B) Survival of mice after the lethal 
challenge with O. tsutsugamushi. Mortality among the group of mice was monitored for 3 weeks; the survival rate 
was calculated as the ratio of live to total challenged mice within each group. Significant differences in survival 
rate were determined by the log-rank (Mantel-Cox) test.



Notably, an intranasal vaccination strategy with PST effectively induced humoral immune 
responses, including Ag-specific IgA production. The production of IgA is a primary 
benefit of the vaccination strategy targeting the mucosal area (35,36). In our previous 
studies, intranasal vaccination with PST also showed a protective immune response against 
respiratory syncytial virus infection and pneumonia, with effective production of IgA (19,20). 
While O. tsutsugamushi infection gives rise to typically vasculitis in human, the current 
murine infection model utilizes an intraperitoneal route of inoculation (37). Even those O. 
tsutsugamushi infections does not directly occur through the respiratory system, it has been 
discovered recently that O. tsutsugamushi infection causes lung inflammation that is often 
followed by enbdothelial dysfunction (38,39). Furthermore, as we previously reported (6), 
intranasal immunization showed much higher IgA levels resulting superior protection to 
other systemic routes (subcutaneous or intraperitoneal). Therefore, the production of IgA by 
PST is a factor that contributes to protective immunity against O. tsutsugamushi infection.

Because O. tsutsugamushi is an obligate intracellular bacterium, O. tsutsugamushi infections are 
difficult to effectively control by humoral immunity alone. Cellular immunity, which can 
directly kill infected cells, must therefore be accompanied by Ab production (22,40). Until 
recently, vaccine development primarily focused on increases in Ab production, rather than 
enhancement of cellular immunity, partly because Ab production is the standard parameter 
measured in clinical trials. Insufficient T cell response induction is primary obstacles in 
protective vaccine development against O. tsutsugamushi infection (5,41). The accompanying 
Ag specific CD8+ and CD4+ T cell responses when using nano-complexed O. tsutsugamushi 
proteins produced with PST were presumably key factors for protective immunity. After the 
third vaccination, both CD8+ and CD4+ T cell responses were observed upon restimulation. 
The proliferation of T cells increased only when the restimulation Ag was identical to the 
vaccine Ag. Therefore, the T cell response confirmed in the present study was not a bystander 
effect related to the low immunogenicity of purified TSA56 and ScaA proteins. CD8+ T cells 
play an essential role in cellular immunity by transitioning into cytotoxic T lymphocytes, 
which directly eliminate infected cells (42,43). Cytotoxic T lymphocyte function is dependent 
on the production of IFN-γ, which directly enhances the motility and cytotoxicity of cytotoxic 
T lymphocytes (29,44). In addition, it is well described that the expression of granzyme B, 
perforin and CD107a play a critical role in function of CD8+ T cells (45-47). Additionally, CD4+ 
T cells can function as helper T cells to assist CD8+ T cell responses. In particular, IFN-γ from 
CD4+ T cells is necessary for host survival and enhances CD8+ T cell function during infection 
(48,49). Here, we found that nano-complexed TSA56 or ScaA vaccine with PST could generate 
memory CD4+ and CD8+ T cells. Generation of memory T cells in addition to the Ag-specific 
Ab formation after the vaccination could be a key strategy in vaccine development not only 
against O. tsutsugamushi but also any other intracellular pathogen because it is important asset 
to eliminate infected cells. Therefore, it is necessary to conduct further study to examine 
how nano-complexed vaccine with PST affects the function of memory T cells including the 
expression of IFN-γ and granzymes.

The mediation of APCs is essential for Ag-specific T cell responses because APCs process 
internalized Ags and present appropriate epitopes to T cells. The T cell responses to O. 
tsutsugamushi confirmed in this study may also be mediated by APCs. Among the APCs, DCs 
play a key role in the activation of naïve T cells by presenting a cognate Ag loaded on MHC 
molecules (50). DCs have 2 major pathways for Ag presentation to CD8+ and CD4+ T cells, 
depending on Ag origin (51). First, they can present intracellular endogenous Ags loaded on 
MHC class I molecules, resulting in CD8+ T cell activation (52). In contrast, after exogenous 
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Ag-derived peptides have been internalized, they are loaded on MHC class II molecules; 
presentation of Ags on these MHC molecules results in CD4+ T cell responses (53). To induce 
appropriate CD8+ T cell responses from exogenous Ags, DC must present exogenous Ags 
through MHC class I molecules by a mechanism known as cross-presentation. Because most 
vaccine Ags encounter DCs in the extracellular environment, cross-presentation plays a major 
role in activating CD8+ T cells to manage viral and intracellular bacterial infections (54-57).

Because PST enhanced the CD8+ T cell responses against TSA56 and ScaA proteins in the 
present study, PST is likely to be involved in the cross-presentation ability of DCs. We 
previously reported that PST had a proton-sponge effect, which modulated the intracellular 
Ag mobility (19). Moreover, the proton-sponge effect has the potential to enhance cross-
presentation (18). It may be necessary to investigate whether PST can modulate the cross-
presentation of TSA56 and ScaA Ags in DCs.

In conclusion, we demonstrated that nano-size vaccines produced with PST induced Ag-
specific Ab responses (including IgG and IgA) to target proteins. Moreover, the vaccines 
induced Ag specific CD4+ and CD8+ T cell responses, including cell proliferation. Finally, 
the promotion of both humoral and cellular immunity resulted in protective immunity 
against O. tsutsugamushi infection. Overall, our findings suggest that an intranasal vaccination 
strategy using PST as a nano-size delivery agent can provide effective protection against O. 
tsutsugamushi infection.
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