
Developmental Cognitive Neuroscience 58 (2022) 101177

Available online 19 November 2022
1878-9293/© 2022 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Continuity versus change in latent profiles of emotion regulation and 
working memory during adolescence☆ 

Landry Goodgame Huffman a,b,*, Assaf Oshri a,b 

a Neuroscience Program, University of Georgia, Athens, GA, USA 
b Department of Human Development & Family Science, University of Georgia, Athens, GA, USA   

A R T I C L E  I N F O   

Keywords: 
Adolescence 
Emotion regulation 
Working memory 
Latent Transition Analysis 

A B S T R A C T   

Significant structural and functional brain development occurs during early adolescence. These changes underlie 
developments in central neurocognitive processes such as working memory (WM) and emotion regulation (ER). 
The preponderance of studies modeling trajectories of adolescent brain development use variable-centered ap
proaches, omitting attention to individual differences that may undergird neurobiological embedding of early life 
stress and attendant psychopathology. This preregistered, data-driven study used latent transition analysis (LTA) 
to identify (1) latent profiles of neural function during a WM and implicit ER task, (2) transitions in profiles 
across 24 months, and 3) associations between transitions, parental support, and subsequent psychopathology. 
Using two waves of data from the ABCD Study (Mage T1 = 10; Mage T2 = 12), we found three unique profiles of 
neural function at both T1 and T2. The Typical, Emotion Hypo-response, and Emotion-Hyper response profiles 
were characterized by, respectively: moderate amygdala activation and fusiform deactivation; high ACC, fusi
form, and insula deactivation; and high amygdala, ACC, and insula response to ER. While 69.5 % remained in the 
Typical profile from T1 to T2, 27.8 % of the sample moved from one profile at T1 to another at T2. However, 
neither latent profiles nor transitions exhibited associations between parental support or psychopathology 
symptoms.   

1. Introduction 

Throughout late childhood and adolescence, emotion regulation 
(ER) and working memory (WM) undergo significant changes, matched 
by underlying structural and functional developments in the brain. 
Although developmental science has documented normative adolescent 
brain development trajectories, the focus on average change may 
obscure inter-individual differences and intra-individual change in brain 
development. Indeed, adolescents’ brain development varies (Foulkes 
and Blakemore, 2018), particularly in response to risky and promotive 
environmental inputs. For example, positive and supportive parenting 
behaviors are critical in shaping children’s neurocognitive development 
and resulting WM and ER capacity (Borelli et al., 2021; Clark and Frick, 
2018; Deane et al., 2020; Oshri et al., 2021; Schroeder and Kelley, 2010; 
Whittle et al., 2016). Moreover, variability of brain development un
derlies neurobiological vulnerabilities and attendant risk for the devel
opment of psychopathology (Beauchaine and McNulty, 2013). This 

preregistered, data-driven study aimed to: 1) derive latent profiles of 
neural function during working memory and implicit emotion process
ing task in a priori ROIs, 2) identify latent statuses of neural function 
across 24 months (Mage, baseline = 11, Mage, T2 = 13), and 3) explore 
parental support and demographic covariates as predictors of statuses, 
and 4) evaluate between-status differences in the development of 
psychopathology. 

1.1. Working memory and emotion regulation during adolescence 

Adolescence comprises a period of significant neurocognitive 
growth. Early maturation of motivation and reward circuitry (e.g., 
ventral striatum, medial frontal and orbitofrontal cortices) paired with 
more protracted maturation of cognitive control systems (e.g., lateral 
prefrontal, parietal, and anterior cingulate cortices) precipitates greater 
attendance to and salience of emotional information (Casey et al., 2008; 
Pfeifer and Allen, 2012; Shulman et al., 2016; Steinberg, 2017). 
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However, these neurocognitive developments also underlie gradual in
creases in adolescents’ capacity for EF, or goal-directed control of 
thought and behavior, and ER, or modulation of emotional reactions in 
order to accomplish goals. Despite these increases in EF and ER, a 
maturational imbalance can occur between quickly-developing moti
vational systems and slowly-developing EF/ER systems in adolescence. 
This imbalance, in turn, can predispose adolescents to inconsistent 
behavioral regulation and heightened vulnerability for psychopathology 
(Carlson and Zelazo, 2011; Fuhrmann et al., 2015; Luna et al., 2010). 

Growing evidence suggests increasing differentiation of EF compo
nents by late childhood and early adolescence, necessitating research 
among adolescents that focuses on specific EF measures. Above and 
beyond other EF components, working memory (WM) – the process of 
maintaining and manipulating information for a short period of time in 
order to guide behavior (Baddeley, 1998) – is a central mechanism un
derlying self-regulation and consequent adaptation throughout adoles
cence (Huang-Pollock et al., 2017; Vuontela et al., 2013). However, 
day-to-day task demands rarely require “cold” WM, or that which occurs 
in isolation from emotion processing (Banich, 2009; Blair et al., 2007; 
Pessoa, 2008; Pessoa and Ungerleider, 2004). Given that emotion re
ceives priority in neural processing of stimuli (Pessoa and Ungerleider, 
2004), ER is critical to successful WM and overall EF (Banich et al., 
2009; Levens and Phelps, 2008; Mikels et al., 2008). Although ER takes 
many forms, it can be generally categorized into implicit ER, which 
involves passive, automatic, and often unconscious processing of 
emotional information, and explicit ER, which involves conscious 
cognitive effort aimed at modifying the emotional response (Gyurak 
et al., 2011). 

Paradigms such as the emotional N-back (EN-back) are designed to 
elicit brain function at the intersection of implicit ER and WM. The EN- 
Back task presents emotionally-salient stimuli (typically emotional 
faces) while prompting the subject to hold information in an active 
cognitive state for use in a working memory task (Rougier et al., 2005). 
Given that the EN-back requires management of automatic emotional 
responses at varying degrees of working memory load, it is also 
considered an implicit ER task. The confluence of WM and ER processes 
elicits increases in activity across multiple functional domains. EN-back 
studies in adolescence and adulthood reveal working memory-related 
activations within frontoparietal regions (e.g., middle and superior 
frontal gyrus, inferior parietal cortex) and deactivations in 
motivation-oriented regions such as the cingulate cortex and insula 
(Chaarani et al., 2021; Liu et al., 2021; Rosenberg et al., 2020; Vetter 
et al., 2017). Implicit emotion processing tasks such as the EN-back 
recruit areas underlying visual and somatosensory processing (primary 
and secondary somatosensory cortices, insula, supramarginal gyrus, and 
basal ganglia), executive control (medial orbitofrontal cortex, superior 
frontal gyrus, anterior cingulate, posterior cingulate, precuneus, and 
superior temporal sulcus), valuation and motivation (vmPFC, striatum), 
and memory (hippocampus, amygdala; Chaaya et al., 2018; Frank et al., 
2014; Fusar-Poli et al., 2009; Ghashghaei et al., 2007; Haxby et al., 
2000; Hiser and Koenigs, 2018; Kanwisher et al., 1997; Kohn et al., 
2014; Kropf et al., 2018; Lindquist et al., 2012; Richler and Gauthier, 
2014; Sel et al., 2014; Sergerie et al., 2008; Vuilleumier and Pourtois, 
2007; Yang et al., 2020). 

Several studies have also examined the developmental trajectories of 
neural function underlying WM and ER throughout adolescence. Ac
cording to a meta-analysis of 10 WM imaging studies among adolescents 
and young adults (ages 10–30, n = 382), WM-related function increased 
with age within the rostral middle frontal, precuneus, inferior parietal, 
and premotor cortices and decreased with age within the superior 
frontal, postcentral, and posterior cingulate cortices (Andre et al., 2016). 
However, in an accelerated longitudinal study of 8–30 year-olds, Sim
monds et al. (2017) found decreases in the middle frontal cortex, ante
rior cingulate, insula, and basal ganglia, as well as increases in the 
primary visual, visual association, and inferior temporal cortices. These 
group-level changes were associated with improved WM performance 

over time. Meta-analyses and reviews of emotion regulation studies 
among adolescents also reveal somewhat mixed findings. For example, 
in a review of 24 neuroimaging studies by Del Piero et al. (2016), 
changes in neural reactivity to emotion from childhood to adulthood 
were characterized by linear decreases in amygdala, insula, and fusiform 
gyrus response and increases in medial prefrontal/anterior cingulate 
response from childhood to early adulthood. Taken together, these 
findings suggest that neural specialization, and subsequent efficiency, 
during WM processing increases during adolescence, as reflected by 
decreased recruitment of the medial PFC (e.g., the middle frontal gyrus 
and anterior cingulate) and increased activation within visual cortices. 
On the other hand, neural function underlying ER is characterized by 
increasing prefrontal influence, as the medial PFC (particularly the 
anterior cingulate) increases in activity and regions underlying threat, 
motivation, and face processing (the amygdala, insula, and fusiform 
gyrus, respectively) decrease in activity. 

Although these average group-level trends are significant, they are 
limited by their variable-centered methodology, which focuses on mean- 
level associations between variables (for example, average magnitude of 
brain function predicting average level of behavior). Person-centered 
methods, on the other hand, characterize heterogeneity between and 
within individuals by identifying subgroups of people based on their 
multivariate similarities (Howard and Hoffman, 2018; Muthén and 
Muthén, 2000). These approaches are warranted, as a growing body of 
evidence suggests high variability of structural brain development (e.g., 
cortical thickness and gray matter volume) across adolescence (Lebel 
and Beaulieu, 2011; Mills et al., 2021; Paus et al., 2008; Tamnes et al., 
2013; Wierenga et al., 2014). Preliminary evidence from 
person-centered studies using fMRI, EEG, and neurocognitive tasks 
indicate substantial within- and between-person variability in neural 
function as well (Kjelkenes et al., 2022; Ordaz et al., 2013; Tang et al., 
2018). Ordaz et al. (2017) used mean growth curve modeling to char
acterize high within-person variability in neural function underlying EF 
in an accelerated longitudinal sample of 123 participants ages 9–26. 
Using latent class growth analysis within a sample of 43 12–16-year-old 
females, Tang et al. (2017) detected several unique trajectories of frontal 
alpha symmetry, suggesting both intra- and inter-individual variability 
of functional neural risk for psychopathology (Coan and Allen, 2004). 
Finally, Kjelkenes et al. (2022) used a normative modeling framework to 
identify inter-individual deviations from the norm in neurocognitive 
ability among youths ages 12–16. 

Latent profile analysis (LPA) and its longitudinal extension latent 
transition analysis (LTA) form another branch of person-centered 
methods that may be especially advantageous for examination of neu
ral function over time (Bray et al., 2010; Collins and Lanza, 2009; Lanza 
et al., 2013). LPA is a dimension reduction technique that characterizes 
heterogeneity across multiple variables into unobserved homogenous 
subgroups at a single time point. LTA extends LPA across time by (1) 
characterizing latent profiles at multiple time points, and (2) estimating 
the probability of individual movement from one profile to another 
across time points. Unlike growth mixture modeling (GMM) and latent 
class growth analysis (LCGA), in which subgroups of individuals are 
characterized by their level and shape of change over time, LTA exam
ines both between-person differences at static points and within-person 
continuity or discontinuity across time. As such, LTA has the potential to 
create a more comprehensive picture of brain function by characterizing 
inter-individual variability first at static points and then modeling 
development of intra-individual change (Bray et al., 2010). 

LTA differs from other person-centered approaches in its capacity for 
multivariate modeling. Whereas LCGA/GMM models often encounter 
issues of convergence and under-identification when modeling trajec
tories of more than 4 variables at a time, LPA and LTA models allow for 
inclusion of multiple indicators (extant studies have included between 4 
and 24; Scotto Rosato and Baer, 2012; Wurpts and Geiser, 2014) and 
typically improve in performance with increases in number of 
high-quality indicators (Wurpts and Geiser, 2014). This multivariate 
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capacity means that several brain regions may be included in an LTA 
model simultaneously, which allows for better characterization of 
brain-wide function and interaction between multiple regions during 
tasks. Given that WM and ER processes recruit numerous brain regions 
simultaneously (Ahmed et al., 2015; Andre et al., 2016), a method such 
as LTA may be ideal for modeling their neural underpinnings across 
time. 

1.2. Parenting and neurocognitive development 

Warm and supportive parenting behaviors are potent predictors of 
positive youth development, whereas a lack of parental support is tied to 
development of psychopathology in adolescence (Huffman and Oshri, 
2022; Meeus, 2016; Oshri et al., 2021; Waller et al., 2013; Weitkamp and 
Seiffge-Krenke, 2019). This link between the parenting context and 
youth psychopathology is mediated by the development of central 
neurocognitive processes, namely ER and EF, that underlie behavioral 
adaptation (Butterfield et al., 2021; Reuben et al., 2016). Growing 
research suggests that parental support is central to the formation of 
effective emotion regulation (Kerr et al., 2019; Morris et al., 2017) and 
working memory (Hughes and Devine, 2019) at both the behavioral and 
neural levels. The parent-child relationship fosters development of 
emotion regulation abilities primarily through modeling, socialization, 
and family emotional climate. Parents can model for their children 
effective emotion processing and regulation; they can also teach their 
children how to manage their emotions via discussion, transmission of 
ER strategies, and encouragement (Meyer et al., 2014). Use of these 
strategies is linked to heightened ER abilities during late childhood and 
adolescence (Morelen et al., 2016; Morris et al., 2017). Similarly, the 
emotional climate of the family lays the foundation for attachment se
curity between the parent and child, which is closely linked to devel
opment of emotion reactivity and regulation throughout the lifespan 
(Morris et al., 2017). 

Above and beyond genetic influence, parental support and sensitivity 
to children’s affective states is also a central predictor of child executive 
functioning, including working memory (Hughes and Devine, 2019; 
Lucassen et al., 2015; Towe-Goodman et al., 2014). Caregivers act as 
“external regulators” of their child’s affect, especially during infancy 
and early childhood, which facilitates development of the child’s 
self-regulation and executive function (Gunnar and Donzella, 2002). 
Moreover, consistent caregiver sensitivity and support allow for the 
child to interact with their immediate environment in a way that elicits 
positive, encouraging, and/or effective responses from the caregiver 
(Bernier et al., 2010), further promoting the internalizing of construc
tive self-regulatory strategies (Bernier et al., 2012). To this point, a 
recent meta-analysis spanning 2000–2016 confirmed consistent associ
ations between positive parenting (characterized by warmth, respon
siveness, and sensitivity) and overall executive function among children 
ages 0–8 (Valcan et al., 2018). Similarly, Sosic-Vasic et al. (2017) found 
that greater parental involvement was associated with improved exec
utive functioning, including working memory, response inhibition, and 
cognitive flexibility, among both children and adolescents. 

1.3. ER and WM as predictors of psychopathology 

Disruptions in both ER and WM are strong predictors of psychopa
thology in adolescence and adulthood. Low WM capacity underlies lack 
of self-regulation (Huang-Pollock et al., 2017; Vuontela et al., 2013), 
and is often implicated in externalizing, internalizing, ADHD, and poor 
academic achievement (Ahmed et al., 2015; Beck et al., 2010; Cassidy 
et al., 2016; Matthews et al., 2008). ER is a similarly powerful risk factor 
for psychopathology. A child with low ER may be less able to modify 
their emotional response in the face of daily challenges and as a result is 
more likely to develop internalizing and externalizing behaviors 
throughout their lifespan (Aldao et al., 2016; Halligan et al., 2013; 
Kim-Spoon et al., 2013; Shapero et al., 2016; Sheppes et al., 2015). 

A number of studies have examined interactions between EF/WM 
process and ER at the neural level. In two early studies, Gray and Braver 
(Gray and Braver, 2002) and Herrington et al. (Herrington et al., 2005) 
found that affective stimuli modulated activity in EF regions during a 
WM task: positive emotional face stimuli increased dlPFC activation, 
whereas negative emotional stimuli decreased dlPFC activation. In a 
meta-analysis of 33 fMRI studies, Schweizer et al. (2019) found that 
vlPFC, amygdala, temporal, and occipital activation increased during a 
WM task when visual stimuli were emotionally salient, indicating the 
greater cognitive (and thus metabolic) demand on EF regions in the 
context of emotion. When interference in EF by emotional information is 
excessive, problems of self-regulation often ensue (Mueller, 2011). 
Indeed, among those exhibiting psychopathology, affective information 
disrupts executive function more frequently than healthy individuals 
(Ochsner and Gross, 2005). However, no studies have examined the 
development of WM-ER interactions over time, nor during adolescence – 
a period in which developing cognition-emotion interactions exert a 
particularly salient influence on behavior and psychopathology (Luna 
et al., 2010; Paus et al., 2008). 

1.4. The current study 

The current study aimed to (1) derive latent profiles of neural 
function during working memory and implicit emotion processing task 
in a priori ROIs, (2) identify latent statuses of neural function across 24 
months (Mage, baseline = 10, Mage, T2 = 12), and (3) explore parental 
support and demographic covariates as predictors of latent statuses, and 
4) evaluate the differences in youth internalizing and externalizing 
symptoms across latent statuses. 

Hypotheses. Due to the complexity of study aims, we summarize all 
research questions, hypotheses, and analytic plans in Table 1. 

1a) We hypothesized that neural activation during working memory 
and emotion regulation (e.g., the 2 back vs. 0 back and Faces vs. Places 
conditions of the EN-back, respectively) would form homogenous sub
groups, or latent profiles, characterized by distinct patterns of task- 
activated regional function within regions delineated in Table 2. We 
anticipated that each profile would diverge in levels of activation, 
especially within the amygdala and medial prefrontal regions. We also 
hypothesized at least one “low regulation” profile at baseline that 
evinces particularly high amygdala and/or low ACC activation during 
the ER and low rostral middle frontal activation during the WM condi
tion. Additionally, we hypothesized a “high regulation” profile at 
baseline that shows high anterior cingulate activation during ER and 
visual cortex activation during WM. Although we originally proposed to 
include biological sex and age as indicators alongside relevant ROIs 
during the model building process (given their relevance to organization 
and function of neural circuits underlying WM and ER [Hill et al., 2014; 
Stevens and Hamann, 2012; Ullsperger and Nikolas, 2017; Zahn-Waxler 
et al., 2015]), inclusion in this way caused convergence issues (more 
details in Results section). As such, we included them as covariates (see 
number 3 below). 

1b) Given the relatively short time frame between the two waves, we 
hypothesized the number of latent profiles yielded by the LPA to remain 
consistent from baseline to T2 (24 months after baseline). 

2) We anticipated that most individuals in the sample would remain 
in or transition into the “high regulation” profile between baseline and 
T2. Conversely, we also hypothesized that very few youths would 
transition from a high to low regulation profile; rather, some youths who 
began in a low regulation profile would remain at T2. 

3) Low parental emotional support and low family income would 
significantly affect LTA parameters by changing probability of latent 
statuses and/or decreasing probability for transition into in a high 
regulation class. We hypothesized that family history of mental illness 
would similarly impact LTA parameters, given the documented effect of 
parental symptoms on adolescent psychopathology (Schulz et al., 2021). 
Although we initially proposed to account for potential effects of 
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scanner type on imaging data by also including it as a covariate 
(McCormick et al., 2021; McNeish and Kelley, 2019), this caused 
convergence issues (more information in Results section). As such, we 
included it as a clustering variable alongside family ID, which has also 
been used frequently within the ABCD sample (Bernanke et al., 2022; 
Lees et al., 2020a, 2020b; Pagliaccio et al., 2020; Saragosa-Harris et al., 
2022). 

4) We anticipated that latent status and transition probabilities 
would significantly affect rates of parent- and youth- reported inter
nalizing and externalizing symptoms at T2, such that latent statuses 
and/or transitions evincing low neural regulation will show increased 
mean values of parent- and youth-reported internalizing and external
izing symptoms. 

2. Method 

To address our questions, we used data from the Adolescent Brain 
Cognitive Development (ABCD) Study. Launched in 2015, the ABCD 
Study recruited over 11,500 adolescents aged 9–10 at baseline. Partic
ipants were sampled in such a way to be representative of the population 

Table 1 
Hypotheses and analytic plan.  

Research question Hypothesis Analysis plan Effect of interest Threshold for determining 
support of hypothesis 

Are there qualitatively distinct 
subgroups of adolescents who 
evince unique patterns of 
neural response underlying ER 
and WM? 

Inter-individual (between- 
person) differences in neural 
response during an ER and WM 
task will be evident at both T1 
and T21 within relevant ROIs2. 
Optimal class solution will yield 
between 3 and 5 profiles. We 
hypothesize at least 1 "high 
regulation" profile (high ACC 
[ER] and rMFG/visual cortex 
[WM]) and 1 "low regulation" 
profile (high amygdala [ER], low 
ACC [ER], low rMFG [WM]). 

We will use 2 separate LPAs to 
characterize homogenous 
subgroups of varying regional 
activation during the EN-back 
task 0- vs. 2-back (WM) and 
Faces vs. Places (ER) conditions. 
Indicators will include relevant 
ROIs (Table 2) as well as youth 
biological sex and age. 

To determine optimal number of 
classes: BIC, A-BIC, class size; To 
identify characteristics of and 
differences between groups: 
probabilities of profile 
membership, item response 
probabilities3, size of each profile 

Hypotheses will be confirmed if 
we identify an optimal profile 
solution of 3–5 profiles that show 
differences in mean ROI 
activation within each task 
condition. 

Is there change between latent 
profiles across time? If so, 
what is the probability that an 
adolescent’s distinct pattern of 
neural function underlying 
WM and ER will change 
between ages 10 and 12? 

1) The LPA at T1 and T2 will 
show measurement invariance. 
2) Probability of transitioning 
from one latent profile at T1 to 
another profile at T2 will range 
from low to moderate (τ = .2-.5), 
with highest probabilities for 
transition observed among those 
moving into a "high regulation" 
profile. 

We will conduct 1) repeated- 
measures LPA to determine 
measurement invariance, and 2) 
LTA to determine individual 
probability of transitioning from 
one latent profile at T1 to 
another 24 months later. 

Difference in model fit of nested 
models using likelihood ratio 
difference test, BIC, a-BIC; 
Probability of latent statuses4 (δ); 
Probability of transitioning from 
k profile at T1 to k profile at T2 
(τ); item response probabilities 

Hypotheses will be confirmed if 
we detect 1) a significant LRDT 
of nested models and lower BIC 
and a-BIC of constrained model, 
which indicate measurement 
invariance, and 2) more than one 
unique latent status (δ) and 
probability for transition (τ). 

How do parental emotional 
support, family history5, and 
family income impact latent 
statuses and transitions of 
neural function underlying 
WM and ER? 

Low parental emotional support, 
low family income, and family 
history of mental illness will 
significantly affect profile 
transition probabilities, by 
changing probability of latent 
statuses and/or increasing 
probability for transition into in 
low-regulation class(es). 

To test whether the slope of these 
covariates impacts latent 
statuses from T1 to T2, we will 
conduct two subsequent models: 
1) parental support and family 
income will be included as 
covariates, and 2) family history 
of mental health problems will 
be added subsequently. 

Changes in model fit parameters 
(significant LRDT of nested 
models); Probability of latent 
statuses (δ); Probability of 
transitioning from k profile at T1 
to k profile at T2 (τ); item 
response probabilities 

Hypotheses will be confirmed if 
we detect changes in model fit, 
model parameters (probability of 
latent statuses (δ), probability of 
transitioning from k profile at T1 
to k profile at T2 (τ), and/or item 
response probabilities) after 
adding parent emotional 
support, family income, and 
family history of mental illness as 
covariates. 

How do youth internalizing and 
externalizing symptoms at T2 
differ across latent statuses? 

Profile transition probabilities 
will significantly affect rates of 
internalizing and/or 
externalizing symptoms at T2, 
such that latent statuses evincing 
low neural regulation will show 
increased mean values of youth 
internalizing and externalizing 
symptoms. 

We will estimate the mean values 
of parent- and youth-reported 
internalizing and externalizing 
symptoms (derived by latent 
factor scores) and conduct 
separate Wald tests to determine 
if symptoms differ significantly 
across statuses. 

Mean values of internalizing and 
externalizing symptom scores per 
each latent status; Significance (p 
< .05) of each Wald test 

Hypotheses will be confirmed if 
any Wald test shows significant 
differences in internalizing and/ 
or externalizing symptoms across 
latent statuses (p < .05) after 
correcting for multiple 
comparisons using Benjami- 
Hochberg method (number of 
tests depends on number of 
profiles6). 

Notes. 1T1 = Time 1, T2 = Time 2, measured 24 months after T1; 2ROIs = Region(s) of interest. See Table 2 for specific ROIs and directional hypotheses; 3Item response 
probabilities are mean ROI activation per profile; 4Latent statuses are latent profiles that remain consistent over time; Family history = sum score of parental history of 
alcohol use, drug use, depression, mania, hallucinations, trouble with the law, nervous disorders, hospitalization for mental health problems, and suicidality; 6In 3- 
profile estimation: 2 outcomes* 3 comparisons per outcome = 6 tests; 4-profile: 2 * 6 = 12 tests; 5-profile: 2 * 8 = 16 tests 

Table 2 
Hypotheses regarding function and change of ROIs.  

Emotion regulation (faces vs. places condition) 

ROI Function Activity at 
T1 

Change 

Amygdala Emotion & threat 
detection 

Increase Decrease 

Insula Somatosensory, salience Increase Decrease 
Fusiform gyrus Visual face processing Decrease Decrease 
Anterior cingulate Integration, regulation Increase Increase 
Working memory (0-back vs. 2-back condition) 
Rostral middle frontal 

gyrus 
Executive function, 
memory 

Increase Decrease 

Anterior cingulate Integration, regulation Decrease Decrease 
Lateral occipital Visual processing Increase Increase 
Inferior parietal Visual processing Increase Increase 

Note. Hypotheses are sourced primarily from systematic reviews and meta- 
analyses: Del Piero et al. (2016), Andre et al. (2016). Simmonds et al. (2017) 
was also used to inform WM hypotheses change over time. Chaarani et al. (2021) 
was used to inform task-based activation specific to the ABCD sample. 
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of the United States. The ABCD Study will continue to follow these 
youths every 6 months for a total of 10 years. Questions and tasks are 
similar across waves but may be adjusted as is age appropriate. Ques
tions include demographic information, socioeconomic background, 
family history of physical and mental disorders, physical and mental 
health, and subjective experiences. We used a subset of participants with 
complete behavioral and functional neuroimaging (Emotional N-Back) 
data at baseline and 24 months after baseline. All subjects included 
passed the ABCD Study’s quality control measures for functional imag
ing to ensure evaluation of interpretable data. Table 3,Table 4. 

2.1. Measures 

2.1.1. EN-back task 
The EN-back is an implicit facial emotion and memory processing 

task eliciting short-term WM while presenting equal numbers of happy, 
fearful, and neutral facial expressions, as well as places, in each run 
(Barch et al., 2013). When presented with a happy, fearful, or neutral 
face, or a place, participants were asked to respond as to whether the 
picture presented is a “Match” or “No Match.” Conditions alternated 
between 0-back and 2-back conditions, for which youth were instructed 
to respond “Match” when the current stimulus corresponded to that 
presented at the beginning of the block or two trials back, respectively. 
Participants completed two runs of the task, with eight blocks per run 
and 10 trials (2.5 s each) per block. The current study employed two task 
conditions: faces vs. places, which was modeled to remove the effects of 
working memory and isolate effects of ER, and 0-back vs. 2-back, which 
was modeled to remove the effects of ER and isolate effects of WM. 

2.1.2. Image preprocessing and calculation region-of-interest data 
Preprocessing and analysis of MRI data was completed by the ABCD 

Data Analysis and Informatics Center and is outlined elsewhere (Casey 
et al., 2018; Hagler, 2019). In short, parcellated cortical regions used in 
the study analyses were derived from Desikan atlas cortical surface 
reconstruction and subcortical segmentation performed in FreeSurfer 
5.3.0 (Desikan et al., 2006). Estimates of task-related activation strength 
were computed for each individual using general linear modeling (GLM) 
in AFNI’s 3dDeconvolve and released as contrast beta weights. The 
present study uses GLM beta coefficients averaged across both runs. 

2.1.3. Working memory (indicators of LPA; IV and DV) 
WM ROIs were measured at T1 and T2 (24 months after T1) and 

include the rostral middle frontal gyrus (rMFG), rostral and caudal 
anterior cingulate (rACC, cACC), lateral occipital cortex (LOC), and 
inferior parietal cortex (IPC). To decrease computational burden and 
risk of convergence issues, mean values of bilateral activation were 
computed for each ROI. 

2.1.4. Emotion Regulation (Indicators of LPA; IV and DV) 
ER ROIs were measured at T1 and T2 (24 months after T1) and 

included the amygdala, insula, fusiform gyrus, rACC, and cACC. To 
decrease computational burden and risk of convergence issues, mean 
values of bilateral activation were computed for each ROI. 

2.1.5. Parenting behaviors (IV) 
Parental support was measured at T1 using the CRPBI-Short Parental 

Acceptance subscale (Schaefer, 1965). Youths reported on the emotional 
support of their caregiver who participated in the study with them at 
baseline. This subscale is the mean of 5 items, such as “makes me feel 
better after talking over my worries with him/her” and “believes in 
showing his/her love for me,” which youths evaluated using a Likert 
scale (1 = Not like them; 3 = A lot like them). 

2.1.6. Childhood psychopathology (DV) 
Child psychopathology was measured at T2 using symptom subscales 

of the parent-reported Child Behavior Checklist (CBCL; 119 items) and 
youth-reported CBCL Brief Problem Monitor (BPM; 19 items; (Achen
bach et al., 2017). The CBCL is 119 items and the BPM is 19 items. In the 
CBCL, parents report on the presence of youths’ behaviors over the last 6 
months using a Likert scale (0 = Not True, 1 = Somewhat or Sometimes 
True, 2 = Very True or Often True), such as rule-breaking (“Breaks rules at 
home, school, or elsewhere”), aggression (“Cruelty, bullying, or mean
ness to others”), anxious-depressed symptoms (“Too fearful or 
anxious”), and withdrawn-depressed symptoms (“Withdrawn, doesn’t 
get involved with others”), and somatic complaints (“Headaches, 
nausea”). Internalizing problems are a sum of the anxious-depressed, 

Table 3 
LPA fit indices by time point.  

T1 

Class solution BIC a-BIC Smallest class size 

1 48473.898 48410.432 7928 (100) 
2 42551.489 42452.977 1403 (17.7) 
3 36,369.347 36,235.879 495 (6.3) 
4 33149.873 32981.45 418 (5.3) 
5 29385.337 29181.957 363 (4.6) 
6 26538.885 26300.55 4 (.05) 

T2 
Class solution BIC a-BIC Smallest class size 

1 27496.889 27433.334 6164 (100) 
2 22629.873 22531.363 499 (8.1) 
3 17,955.246 17,821.781 381 (6.2) 
4 15296.427 15128.007 219 (3.6) 
5 12084.908 11881.533 209 (3.4) 
6 10607.348 10369.018 20 (.3)  

Table 4 
T1 and T2 item response probabilities.  

Working Memory 

Profile Rostral 
middle 
frontal 

Inferior 
parietal 

Caudal 
anterior 
cingulate 

Rostral 
anterior 
cingulate 

Lateral 
occipital 

T1      
Emotion 

hypo- 
response 

-0.051 -0.017 -0.093 -0.201 -0.144 

Emotion 
hyper- 
response 

0.044 0.023 0.027 -0.087 -0.034 

Typical 0.099 0.065 0.061 -0.064 -0.023 
T2      
Emotion 

Hypo- 
response 

0.131 0.09 0.056 -0.123 -0.01 

Emotion 
Hyper- 
response 

0.133 0.094 0.072 -0.088 0.043 

Typical 0.146 0.084 0.073 -0.104 -0.022 
Emotion Regulation  

Amygdala Caudal 
anterior 
cingulate 

Rostral 
anterior 
cingulate 

Fusiform Insula 

T1      
Emotion 

hypo- 
response 

-0.214 -0.688 -0.646 -0.886 -0.526 

Emotion 
hyper- 
response 

0.595 0.509 0.531 0.238 0.48 

Typical 0.183 -0.024 -0.005 -0.316 0.005 
T2      
Emotion 

Hypo- 
response 

-0.097 -0.44 -0.406 -0.714 -0.34 

Emotion 
Hyper- 
response 

0.61 0.61 0.603 0.356 0.555 

Typical 0.209 0.012 0.043 -0.275 0.035  

L.G. Huffman and A. Oshri                                                                                                                                                                                                                   



Developmental Cognitive Neuroscience 58 (2022) 101177

6

withdrawn-depressed, and somatic complaints subscales, and external
izing problems are a sum of the rule-breaking and aggressive behavior 
subscales. The BPM has been designed as a brief counterpart to the 
CBCL. It is structured with the same Likert responses and produces 
youth-reported item ratings and scale scores for internalizing, exter
nalizing, and attention problems that can be directly compared to the 
CBCL. Both the CBCL and BPM have been studied and validated in many 
different cultures among youths ages 6–18. The current study will 
employ raw scores of youths’ anxious-depressed, withdrawn-depressed, 
rule-breaking, and aggressive symptoms (parent report), as well as 
youth-reported internalizing and externalizing symptoms. 

2.1.7. Family history of mental health 
Family history of parental mental health problems were assessed at 

T1 via the participating caregiver. Inclusion of family history data in the 
ABCD study is dependent on the participating caregiver verifying they 
had knowledge about the child’s biological parents. Participating care
givers reported on whether the child’s biological parents had ever (in 
their lifetime) evinced drug problems, alcohol problems, depression, 
mania, hallucinations, problem behavior (e.g., fighting, not holding a 
job, trouble with the law), nerve problems or nervous breakdowns, 
suicidality, or hospitalization due to these problems. Each answer is 
coded dichotomously, such that 1 = Yes and 0 = No. A sum score of 
parent mental health problems was computed (minimum = 0, maximum 
= 9) prior to inclusion in the LTA. 

2.1.8. Covariates 
In addition to parental support and family history of mental health 

problems, we tested whether baseline covariates – annual family in
come, child age in months, and child biological sex (coded dichoto
mously as 0 = Female, 1 = Male) – were significant predictors of class 
membership, latent statuses, and likelihood for transition. 

2.2. Analysis plan 

2.2.1. Missing data 
All imaging data were filtered using quality control measures as 

outlined by Hagler (2019) and in ABCD Release Notes 4.0, MRI Quality 
Control Recommended Inclusion (https://doi.org/10.15154/1523041). 
Briefly, quality control metrics include imaging protocol compliance, 
mean head motion, framewise displacement, presence of artifacts, ir
regularities, or incidental findings, and behavioral task performance. 
Per ABCD data release 4.0, a single quality control index (abcd_im
gincl01) has been added to indicate those who pass all quality control 
filtering measures. The current sample was filtered using this quality 
control index (0 = passing QC, 1 = not passing QC). 

2.2.2. Inclusion/exclusion criteria 
T1 (baseline) data included all imaging data present at baseline that 

passed quality control (n = 7930) and all parental support and de
mographic data of those who have complete imaging data. T2 data 
include dall imaging data available at T2 that passes quality control 
(estimated n = 6184) and all CBCL and YSR data of those who have 
complete imaging data. 

2.2.3. Statistical outliers 
Outliers can bias results of multivariate analyses such as latent pro

file and latent transition analysis (Fidell, 2001). During pre-processing 
of tabulated ABCD imaging data, beta values with greater than 5% 
signal change are censored (replaced with empty cells), accounting for 
less than 0.5% of the sample (Hagler (2019)). For imaging variables with 
skewness greater than 2, we will Winsorize the top and bottom.25 %, 
which has also been recommended by Hagler (2019). Both LPA and LTA 
will be conducted with Winsorized and non-Winsorized imaging vari
ables to test robustness of the models to normality. 

2.2.4. Sampling weights 
The ABCD Study includes propensity weights, which are weighted 

estimates derived from the American Community Survey used to cali
brate ABCD distributions to nationally representative controls (Heeringa 
and Berglund, 2020). 

2.3. Statistical models 

Structural equation modeling in Mplus version 8.1 will be used to test 
all study hypotheses (Muthén and Muthén, 2014). All models were 
estimated using maximum likelihood with robust standard errors (Klein 
and Moosbrugger, 2000). Multilevel modeling was used to account for 
clustering effects of participants within families and scanner type (Sar
agosa-Harris et al., 2022). Although scanner was originally proposed as 
a covariate, Mplus software is currently unable to include categorical 
covariates with more than 10 categories. Given this, we instead used 
scanner as a nesting variable alongside family ID. Propensity weights 
were also used to calibrate distributions of the current sample to na
tionally representative controls from the American Community survey, 
thus mitigating potential selection bias in the ABCD sampling process 
(Heeringa and Berglund, 2020; Saragosa-Harris et al., 2022). Prior to 
conducting the LTA, we create two separate measurement models of 
child internalizing and externalizing symptoms. Using confirmatory 
factor analysis (CFA), we created a latent factor of internalizing symp
toms using parent-reported subscales of youth anxious-depressed and 
withdrawn-depressed symptoms, as well as youth-reported internalizing 
symptoms. We also created a latent factor of externalizing symptoms 
using parent-reported subscales of youth rule-breaking and aggressive 
behavior and youth-reported externalizing behaviors. We saved the 
resulting factor scores to a separate data file and include them as distal 
outcomes in Step 4 of the LTA. 

2.3.1. Latent transition analyses 
LTA Step 0. We built separate LPAs with T1 and T2 imaging data 

using the aforementioned ROIs within Mplus version 8.1. For both 
baseline and T2 indicators, we fit separate LPAs starting with a null 1- 
class model and increasing the number of profiles by one until stop
ping criteria were reached. In a simulation by Whittaker and Miller 
(2021), BIC and adjusted BIC (a-BIC) were found to predict number of 
correct classes with significantly greater accuracy than any fit indices, 
including AIC, entropy, VLMRT, and BLRT. As such, we used BIC and 
a-BIC to determine whether the k class solution was better than the k-1 
class solution, as indicated by decreases in both criteria. Scree plots were 
also used to visualize where BIC values began to display diminishing 
value for each additional class. The class number at the “elbow” of the 
plot where BIC values level out provides an indicator of best fitting 
number of classes (Nylund-Gibson and Choi, 2018). We also included as 
a stopping criterion a class size of less than 5% of the sample. This cri
terion was included to prevent fitting a model with so many classes that 
making comparisons between them becomes unwieldy and their quali
tative differences (in both item response probabilities, probabilities of 
latent status, and probabilities of transitions) become meaningless. 
Finally, we planned not to estimate the k + 1 model if the best logli
kelihood did not replicate or the model did not converge. As such, the 
following 4 questions comprised our selection criteria; if the answer to 
any one of these questions was no for models at either T1 or T2, we 
planned to stop and select the k-1 class solution.  

• Did the model converge?  
• Was the best loglikelihood replicated?  
• Are the BIC and the adj-BIC lower than the k-1 model?  
• Are all class sizes greater than approximately 5% of the sample? 

LTA Step 1. If finding the number of classes derived at each time point 
to be the same, we tested longitudinal measurement invariance by 
comparing model fit of a constrained and unconstrained model. In the 
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constrained model, all item response probabilities are constrained to be 
equal across T1 and T2 (see Appendix for Mplus syntax). We then 
compared model fit between the constrained and unconstrained LTA 
models by comparing BIC, a-BIC, and conducting a log likelihood ratio 
difference test (LRDT). Measurement invariance may be concluded if the 
BIC and a-BIC are lower in the constrained model, and if the LRDT is 
significant. We planned to fit a repeated measures-LTA if the number of 
classes between T1 and 5 were not consistent or if the LTA did not evince 
longitudinal measurement invariance, based on the recommendation of 
Bray et al. (2010). After failing to establish measurement invariance, 
however, we conducted exploratory LTA of the non-invariant model, 
based on the recommendation of Nylund et al. (2022). LTA Step 2. We 
used the results of the LTA to characterize probability of latent statuses 
(e.g., latent profiles that remain consistent from T1 to T2), probability of 
transition (e.g., moving from k profile at T1 to k profile at T2), and 
item-response probabilities (e.g., mean ROI activation by profile). LTA 
Step 3. We tested whether parental support, family history of mental 
health problems, family income, child biological sex, and child age 
impacted LTA parameters (see Appendix for Mplus syntax). To do so, we 
ran the same LTA model repeatedly in a stepwise manner, including one 
additional covariate each time. In this way, we aimed to disentangle the 
unique effects of each covariate on the model. For each covariate model, 
we conducted an LRDT to determine whether inclusion of these cova
riates significantly changed the model fit compared to the previous 
model (Ryoo et al., 2018). Using odds ratios, we also determined 
whether inclusion of these covariates conferred a greater likelihood of 
belonging to one latent status over another. LTA Step 4. We then tested 
whether psychopathology symptoms differed across latent statuses by 
estimating the mean values of internalizing and externalizing factors 
(see Statistical Models, above) within each T5 profile. We conducted 
Wald tests to determine whether these differences were statistically 
meaningful (Nylund, Muthén et al., 2007). Across all instances of mul
tiple comparisons (e.g., comparing odds ratios of covariates and mean 
values of outcome variables), we corrected for family-wise error using 
the Benjamini-Hochberg method (Thissen et al., 2002). 

2.3.2. Reliability and robustness testing 
Although a number of LPA, LCA, and LTA analyses have been con

ducted using cross-validation techniques, an LCA simulation study by 
Whittaker and Miller (2020) indicated that the most accurate cross- 
validation methods perform less accurately than BIC and a-BIC in a 
large single sample (n = 800). Considering our use of BIC and a-BIC to fit 
the proposed models, and also the large sample size and number of in
dicators of the current study (both of which increase estimation accu
racy), we conducted our analyses using the full sample without cross- 
validation. We also tested if our findings were robust without control
ling for clustering effects of family and scanner and no longer weighting 
estimates by propensity scores. 

2.3.3. Power analysis 
A previous simulation study by Nylund et al. (2007) indicated that 

for an 10-item complex LPA model with 4 unequal classes, a sample size 
of 1000 provided excellent coverage values for all parameters, including 
for the smallest class of 5 %. This simulation also showed that for both 
LMR and BLR tests, a sample size of 1000 provided sufficient power 
(greater than.80) to detect the k class model for a 10-item, 4 class 
complex LPA model. Given that the proposed sample is significantly 
larger than 1000, we anticipated adequate power to detect 3 and 4 class 
models. We confirmed this by conducting a Monte Carlo simulation 
study for a complex LPA model with 13 indicators, 5 covariates, and 4 
outcomes. For both 3 and 4 class solutions, LMR and BLR tests were 
significant (p < 0.01) and the proportion of replications at the 5% level 
for the BLRT, indicating that the proposed sample size of roughly 7000 
provided adequate power to correctly identify the k class model. The 
simulation also indicated that the proposed sample size provided 
enough power to reject the null for each of the 4 outcome variables 

100% of the time. 

3. Results 

3.1. Descriptive analyses 

Descriptive analyses and distributions of all study variables are 
included in Tables 5, 6, and 7. Only participants with EN-back imaging 
data that passed quality control measures were included in our analyses. 
As such, the imaging sample at T1 and T2 consisted of 7930 and 6183 
participants, respectively. Because some participants participated in 
only one wave of imaging data collection, the full sample was 9552, 
which included those with at least one time point of imaging data (T1 
and/or T2). A correlation analysis (Fig. 1) indicated that youth exter
nalizing and internalizing symptoms were moderately and negatively 
correlated with parental support and household income, and positively 
correlated with family history of mental illness. Parent- and youth- 
reported psychopathology symptoms were moderately and positively 
correlated. Tables 8,9,10,11. 

3.2. CFA of T2 child- and parent-reported psychopathology 

A two-factor model of child internalizing and externalizing behavior 
exhibited an acceptable fit to the data (see Fig. 2). Child-reported 
internalizing and externalizing were covaried due to high correlation 
and corresponding recommendation of modification indices. Resulting 
factor scores (e.g., individual Z-scores indicating factor-level standard 
deviations above and below the sample mean) were saved in a separate 
data file and used in subsequent analyses (see Step 4). However, given 
the low factor loading of child-reported measures (< 0.40) and the large 
disparity between parent- and child-reported factor loadings, we chose 
to follow all analyses with exploratory analyses of separate parent- and 
child-reported psychopathology. 

3.3. Step 0: Repeated measures LTA 

At both T1 and T2, we began with a null 1-class model and increased 
the profile number by 1 until model fit criteria were reached. For both 
T1 and T2 data, the 3-profile model indicated optimal fit (Table 3,  
Fig. 3). Although we initially proposed to include child age and child 
biological sex as indicators of profiles alongside imaging variables, T2 
models that included age and sex indicated convergence difficulties. 
Beginning at the 3-profile solution for T2, several parameters were 
automatically fixed to prevent singularity of the information matrix, 
indicating that the 3- to 6-profile models were not identified. However, 
this issue was resolved when removing both child age and biological sex 
as indicators. As such, we re-ran all profile solutions for both T1 and T2 
data to test whether they were sensitive to inclusion of child age and 
biological sex. Because the optimal profile solution and item response 
probabilities remained consistent without inclusion of child age and 
biological sex as indicators, we chose to fit all models without these 
indicators. Details on fit and profile solutions for models including child 
age and biological sex as indicators may be found in the Appendix. 

3.4. Comparing T1 and T2 profile solutions 

At both T1 and T2, the profile solution indicated three distinct pro
files largely differentiated by neural response to emotion regulation; 
neural response to working memory was relatively similar across pro
files at both time points (Fig. 4, Fig. 5, Table 4). The “Typical” profile 
(nT1 = 6661, 84 %; nT2 = 5059, 82.1 %) was characterized by moderate 
amygdalar activation and fusiform deactivation to the ER (faces vs. 
places) condition at both T1 and T2. All other ER-related ROIs within this 
profile exhibited low to negligible response. Within this profile, rostral 
middle frontal and caudal ACC response to the WM (0 vs. 2-back) con
dition were slightly higher than other profiles. The “Emotion hypo- 
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response” profile (nT1 = 495, 6.3 %; nT2 = 724, 11.8 %) was charac
terized by moderate amygdalar deactivation and high cACC, rACC, 
fusiform, and insula deactivation at T1 to the ER condition, with slight 
decreases in deactivation across these regions at T2. The “Emotion 
hyper-response” profile (nT1 = 772, 9.7 %; nT2 = 380, 6.2 %) was 
characterized by high amygdala, cACC, rACC, fusiform, and insula 
activation at T1 to the ER condition, with slight increases in activation 
across these regions at T2. Individuals in this profile also exhibited 
slightly greater T1 deactivation during WM, particularly within the 
caudal and rostral ACC. However, WM activation within this profile 
increased at T2 to levels similar to other profiles. At both T1 and T2, the 
WM condition elicited slight deactivation in the rACC across profiles, 
which became more pronounced at T2. 

We conducted exploratory Wald tests to establish whether item 
response probabilities within the same ROIs (for example, amygdala 
response within the Typical profile and amygdala response within the 
Hypo-response profile) were significantly different between profiles. All 
ER-related item response probabilities were significantly different be
tween profiles at both T1 and T2 (p = 0.000) after correcting for family- 
wise error. At T1, rostral middle frontal and anterior cingulate WM 
response were significantly different between the Typical and Hypo- 
response profiles (all p-values < 0.05); however, these p-values did 
not remain significant after correcting for family-wise error. No other 

ROIs exhibited significant WM-related differences between profiles at 
either T1 or T2. See Appendix for full results. 

3.5. Step 1: Measurement invariance of LTA 

After establishing that the 3-profile solution was optimal at both time 
points, we compared two different 3-profile LTA models (Table 14). The 
first model tested measurement invariance (MI) by constraining item 
response probabilities of all indicators across T1 and T2. For example, 
rostral middle frontal activation within Profile 1 at T1 was constrained 
to be equal to that within Profile 1 at T2, and this was done for all in
dicators that corresponded across both profiles and time points. Fit of 
the MI model was compared to that of a non-MI model, wherein no item 
response probabilities were constrained. Using a likelihood ratio dif
ference test, we established that the non-MI model exhibited better fit 
than the MI model, and thus we could not conclude measurement 
invariance across time points. We followed this comparison with an 
exploratory comparison of a partial-MI model, in which we constrained 
only WM indicators that evinced relatively consistent item response 
probabilities across time and/or profiles. Specifically, we constrained 
WM items within the Typical and Emotion Hyper-response to be equal at 
T1, and WM items with all profiles to be equal at T3. After comparing 
this partial-MI model to the unconstrained non-MI model and fully 

Table 5 
Descriptive statistics of imaging variables.  
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constrained MI models, significant LRDTs once again indicated a supe
rior fit of the non-MI model. 

In our preregistration, we proposed to abandon the LTA in the case 
that longitudinal MI was not established. However, after investigating 
the results of the repeated measures LPA and non-MI LTA, we found that 
T1 and T2 profiles still exhibited strong evidence for stability from T1 to 
T2, making them readily comparable. As stated by Nylund-Gibson et al. 
(2022), although longitudinal MI is advantageous in reducing bias 
(Nylund, 2007) and increasing clarity and ease of LTA interpretation, it 
is not a required prerequisite to fitting an LTA model. In the case of a 
non-MI LTA model, researchers must take care to interpret transition 
probabilities specific to their respective classes (Nylund-Gibson et al., 
2022). Considering these points, we proceeded with our proposed ana
lyses using a non-MI LTA. Given that the following steps were prereg
istered only for an LTA exhibiting longitudinal MI, the following 
analyses are considered exploratory. 

3.6. Step 2: Interpreting LTA profiles and transitions 

As specified above, the three profiles were similarly characterized at 
T1 and T2 by patterns of moderate response (the Typical profile), hypo- 
response (Emotion Hypo-response profile), and hyper-response 

(Emotion Hyper-response profile). Results of the LTA yielded probabil
ities of latent statuses and transitions based on posterior probabilities 
respective to each profile and time point (Fig. 6, Table 14). Individuals 
most commonly began and remained in the “Typical” profile (n = 6622, 
69.5 %). The second most common transition was characterized by 
movement from the Typical profile to the Emotion Hypo-response pro
file (n = 900, 9.4 %). The third most common transition was charac
terized by movement from the Emotion Hyper-response profile to the 
Typical profile (n = 698, 7.3 %). Those in the atypical profiles were 
most likely to transition into the Typical profile at T2. All other transi
tions involving less than 5 % of the sample are listed in Table 14. 

3.7. Step 3: Investigating impacts of covariates on LTA parameters 

We then investigated the impact of parental support, family history 
of mental illness, and family income on LTA parameters. Because issues 
with model identification prevented us from fully probing the effects of 
child biological sex and age on profiles, we conducted exploratory an
alyses of two additional covariate models that included child biological 
sex and age at baseline. In order to assess the unique contributions of 
each covariate to model fit and LTA parameters, we included them in the 
model in a stepwise manner (using the order described above), 

Table 6 
Descriptive statistics of covariate/predictor variables.  
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culminating in a final model with all three covariates included. Model fit 
was compared between each model using a likelihood ratio test. 

Reduced G2, BIC, and a-BIC values paired with significant LRDTs 
(p < .0001) indicated significantly improved model fit after including 
parental support, family history of mental illness, income, and child 
biological sex (Table 12). The addition of child age, however, did not 
confer significant changes in model fit, LTA parameters, or prediction of 
profile membership, and thus was not included in the final model. All 
LTA parameters, including item response probabilities and likelihood for 
transition, exhibited relative stability after inclusion of each covariate 
compared to the baseline model (Table 13, Table 14). However, both T1 
and T2 Emotion Hyper-response profiles exhibited slight changes in item 

response probabilities after including parental support and family in
come in the model (Fig. 7). In the T1 Emotion Hyper-response profile, 
activation across WM ROIs increased slightly after including parental 
support; subsequently, activation of all ROIs decreased as a result of 
including income in the model. In the corresponding T2 profile, acti
vation during WM decreased slightly in the rostral middle frontal cortex, 
inferior parietal cortex, and cACC, and deactivation during WM 
increased slightly in the rACC and lateral occipital cortex, after 
including parental support and income in the model. 

When using the T1 and T2 Typical profiles as reference classes, child 
biological sex predicted profile membership (Table 12). Namely, male 
youths were significantly more likely to belong to the Emotion Hypo- 

Table 7 
Descriptive statistics of outcome variables.  
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response profile than the Typical profile at T2 (OR = 1.449, SE = 0.217, 
p = .038). However, after correcting all p-values for family-wise error 
(16 tests total), these ORs were no longer significant (adjusted p-value =
0.229). 

3.8. Step 4: Evaluating mean differences in T2 psychopathology across 
latent transitions 

In the final step of model building, we used several Wald tests to 
determine whether mean differences in T2 internalizing and 

Fig. 1. Bivariate correlations of all study variables. Asterisks indicate significant correlation at or below p = 0.05.  

Table 8 
Comparison of model fit after implementing measurement invariance.  

Measurement invariance? G2* BIC a-BIC DF G2 diff DF diff LRDT p-value 

Comparison 1: MI v. non-MI                 
Yes (fully constrained)  -32655.13  65,841.68  65,657.36  58         
No (unconstrained)  -26676.16  54,158.60  53,878.95  88  -5999.27  30  11,998.53  < .0001 
Comparison 2: Partial MI v. non-MI                 
Partial* *  -26692.01  54,052.88  53,820.90  73         
No (unconstrained)  -26676.16  54,158.60  53,878.95  88  -15.86  15  31.71  0.007 
Comparison 3: MI v. partial MI                 
Yes (fully constrained)  -32655.13  65,841.68  65,657.36  58         
Partial* *  -26692.01  54,052.88  53,820.90  73  -5963.12  15  11,926.23  < .0001 

Note. MI = measurement invariance. *Likelihood ratio statistic. * *T1 profile 1 & profile 3 WM items constrained to be equal; T2 all WM items across all profiles 
constrained to be equal. 

L.G. Huffman and A. Oshri                                                                                                                                                                                                                   



Developmental Cognitive Neuroscience 58 (2022) 101177

12

externalizing symptoms were significantly different across T2 latent 
profiles (Table 14, Fig. 8). Three comparisons were conducted for both 
internalizing and externalizing symptoms (six comparisons in total). 
According to results of each Wald test, factor scores of internalizing and 
externalizing did not differ significantly based on profile membership at 
T2. Although those belonging to the Emotional Hyper-response profile 
at T2 exhibited the highest factor scores of both internalizing and 
externalizing, the non-significant Wald test indicates that the difference 
between psychopathology of the Emotion Hyper-response profile and 
other profiles was not significantly different from zero. Exploratory 
analyses that considered parent- and child-reported psychopathology 
separately yielded similar results. Although mean rates of child- and 
parent-reported internalizing and externalizing symptoms suggested 
slight differences across T2 profiles, they were not significantly different 
according to Wald tests (see Appendix). 

We followed this step with an exploratory analysis of mean differ
ences in T2 EN-back task behavior (Table 14, Fig. 8). Specifically, we 
tested whether total accuracy rate (reported as a percentage) and 
response time (in milliseconds) differed significantly across T2 profiles. 
We found that total accuracy but not response time differed between the 
Typical and non-typical profiles at T2, such that those in the Emotion 
Hypo- and Hyper-response profiles showed significantly lower accuracy 
(86.8% and 86.5%, respectively) than those in the Typical profile (89 
%). These significant differences remained after correcting for multiple 
comparisons. 

3.9. Sensitivity analyses 

Finally, we conducted sensitivity analyses to determine whether LPA 
parameters were robust to several model changes (see Appendix). We 
compared two models to the final model: one with non-windsorized LPA 
indicators (e.g., indicators evincing a skew greater than 2) and one 
without any clustering or propensity score weighting. When using T1 
non-winsorized LPA indicators, all profile solutions beyond a 1-profile 
solution failed to converge. However, T2 indicators, which did not 
exhibit convergence difficulties, exhibited an optimal 3-profile solution 
consistent with the 3-profile solution of the final model in both item 
response probabilities and likelihood for profile membership. Because 
we were unable to establish a non-winsorized T1 profile solution, we did 
not explore a latent transition model with these data. 

The model without clustering and weighting also showed similar 
profile solutions, item response probabilities, and transition probabili
ties compared to the final model, both within the baseline (no covariate) 
model and with all final covariates included (parental support, family 
history, income, and child biological sex). 

4. Discussion 

Extant research suggests that neural maturation evinces high inter- 
individual variability and intra-individual change, and this variability 
may underlie vulnerability for psychopathology in adolescence. Using 
latent transition analysis, the current preregistered study employed a 
large, two-wave sample of early adolescents to test whether neural un
derpinnings of working memory and emotion regulation may be char
acterized by distinct patterns of function both at fixed time points and 
across 24 months. Moreover, we explored whether parental emotional 
support and other demographic variables at the family and individual 
levels significantly contributed to inter- and intra-individual variability 
across time (e.g., latent transitions). Finally, we investigated the rele
vance of homogenous subgroups of neural function to behavior by 
testing mean differences of internalizing and externalizing psychopa
thology and (in a follow-up analysis) EN-back task performance across 
T2 latent profiles. 

Both latent profile and latent transition analyses yielded three 
distinct profiles of neural function at T1 and T2, which were charac
terized primarily by high, low, and moderate neural response (respec
tively labeled Emotion Hyper-response, Emotion Hypo-response, and 
Typical) during an ER task (e.g., the faces vs. places condition of the EN- 
back). Although our results did not fully support our hypotheses, many 
aspects of them were confirmatory. We anticipated a “low-regulation” 
profile characterized by attenuated WM response of the rostral middle 
frontal and ER response of the ACC. Although the Emotion Hypo- 
response profile did exhibit these qualities, most other regions in the 
profile also exhibited low response (e.g., greater deactivation). It should 
be noted that BOLD activation to faces stimuli within this profile was 
calculated in contrast to the places stimuli. As such, it could be that in
dividuals within this profile are showing particularly attenuated neural 
responses to images of faces or particularly elevated neural responses to 
images of places. Nonetheless, healthy individuals tend to show 
increased attentional bias and neural activation in response to viewing 
human facial stimuli compared to non-face stimuli (Reynolds and Roth, 
2018; Ro et al., 2007; Royuela-Colomer et al., 2022). Individual differ
ences in attention and neural response to emotional and facial stimuli 
often underlie development of psychopathology. While attentional bias 
for and increased neural response to emotional faces is linked to inter
nalizing symptoms (Jenness et al., 2021; Royuela-Colomer et al., 2022), 
low attention and neural response to emotional faces is linked to 
psychopathic-like traits, including CU traits and antisocial behavior 
(Dargis et al., 2018; Huffman and Oshri, 2022; Kaseweter et al., 2020). 
Although we did not find those within this profile to evince greater 
frequency of psychopathology, this profile may highlight a group of 
youths particularly vulnerable to future maladaptation stemming from 
attenuated response to facial stimuli. 

Table 9 
Comparison of model fit after stepwise addition of covariates.  

Covariates? G2* BIC a-BIC DF G2 diff DF diff LRDT p-value 

Comparison 1                 
None  -26676.16  54,158.60  53,878.95  88         
Support  -24741.69  50,319.64  50,027.28  92  -1934.46  4  3869.93  < .0001 
Comparison 2                 
Support  -24741.69  50,319.64  50,027.28  92         
Support, family history*  -24736.68  50,345.97  50,040.90  96  -5.01  4  10.03  0.04 
Comparison 3                 
Support, family history  -24736.68  50,345.97  50,040.90  96         
Support, family history, family income  -20015.99  40,918.38  40,600.60  100  -4720.69  4  9441.39  < .0001 
Comparison 3                 
Support, family history, family income  -20015.99  40,918.38  40,600.60  100         
Support, family history, family income, sex  -20000.88  40,923.63  40,593.14  104  -15.10  4  30.20  < .0001 
Comparison 4                 
Support, family history, family income, sex  -20000.88  40,923.63  40,593.14  104         
Support, family history, family income, sex, age  -19996.24  40,949.80  40,606.60  108  -4.64  4  9.28  0.06 

Note. *Family history = family history of mental health problems. 
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We anticipated that youth who evince relatively higher levels of 
amygdalar response to ER would be paired with lower levels of response 
within the ACC. Instead – and similar to the Emotion Hypo-response 
profile – we found within the Emotion Hyper-response profile that ac
tivity other ER-related ROIs corresponded closely to that of the amyg
dala. The ACC in particular nearly matched the level of activation of the 
amygdala at both T1 and T2. This may suggest that among youths with 
very elevated amygdala response to emotion, prefrontal regulatory re
gions such as the ACC have to “work harder” to modulate subcortical 
activity and facilitate emotion regulation (Ochsner and Gross, 2014; 

Yang et al., 2020). However, the close positive association between 
amygdala and ACC function in the Hyper-response profile, as well as the 
relatively elevated amygdala function in other profiles, may be norma
tive within the developmental period of the current sample (Gee et al., 
2013; Silvers et al., 2017). In a study focusing on ER development from 
childhood to early adulthood, Silvers et al. (2017) found that increasing 
age predicted decreasing amygdala response and increased inverse 
coupling between the vmPFC and amygdala during a reappraisal task. 
Indeed, vmPFC-amygdala coupling did not become inverse in the cohort 
studied by Silvers et al. until approximately age 16. As more waves of 

Table 10 
Changes in profile item response probabilities after stepwise inclusion of covariates.  

T1  

Working memory Emotion regulation  

Rostral 
middle 
frontal 

Inferior 
parietal 

Caudal anterior 
cingulate 

Rostral anterior 
cingulate 

Lateral 
occipital 

Amygdala Caudal anterior 
cingulate 

Rostral anterior 
cingulate 

Fusiform Insula 

Emotion Hypo-response (6.6 %) 
Baseline  -0.051  -0.017  -0.091  -0.198  -0.144  -0.213  -0.686  -0.644  -0.884  -0.523 
+ Support  -0.036  -0.016  -0.083  -0.183  -0.155  -0.208  -0.703  -0.665  -0.904  -0.542 
+ Family 

history  
-0.036  -0.016  -0.083  -0.183  -0.155  -0.209  -0.704  -0.666  -0.904  -0.542 

+ Family 
income  

-0.035  -0.016  -0.079  -0.177  -0.174  -0.232  -0.708  -0.675  -0.891  -0.54 

+ Sex  -0.037  -0.016  -0.079  -0.178  -0.174  -0.234  -0.709  -0.675  -0.891  -0.54 
+ Age  -0.037  -0.016  -0.079  -0.178  -0.174  -0.234  -0.709  -0.675  -0.891  -0.54 
Emotion Hyper-response (10.2 %) 
Baseline  0.044  0.023  0.028  -0.085  -0.033  0.597  0.51  0.532  0.238  0.481 
+ Support  0.071  0.05  0.049  -0.068  0.005  0.597  0.505  0.539  0.242  0.482 
+ Family 

history  
0.071  0.05  0.049  -0.068  0.005  0.597  0.505  0.539  0.242  0.482 

+ Family 
income  

0.046  0.028  0.03  -0.089  -0.035  0.558  0.452  0.492  0.194  0.434 

+ Sex  0.046  0.028  0.03  -0.089  -0.035  0.558  0.452  0.492  0.194  0.434 
+ Age  0.046  0.028  0.03  -0.089  -0.035  0.558  0.452  0.492  0.194  0.434 
Typical (83.2 %) 
Baseline  0.099  0.065  0.061  -0.064  -0.023  0.183  -0.023  -0.004  -0.315  0.005 
+ Support  0.094  0.06  0.058  -0.067  -0.03  0.185  -0.025  -0.006  -0.315  0.005 
+ Family 

history  
0.094  0.06  0.058  -0.067  -0.03  0.185  -0.025  -0.006  -0.315  0.005 

+ Family 
income  

0.096  0.063  0.06  -0.065  -0.024  0.178  -0.035  -0.019  -0.322  -0.005 

+ Sex  0.096  0.063  0.06  -0.065  -0.024  0.178  -0.035  -0.019  -0.322  -0.005 
+ Age  0.096  0.063  0.06  -0.065  -0.024  0.178  -0.035  -0.019  -0.322  -0.005 
T2 
Emotion Hypo-response (12.5 %) 
Baseline  0.13  0.09  0.056  -0.122  -0.011  -0.097  -0.439  -0.405  -0.713  -0.339 
+ Support  0.121  0.084  0.047  -0.129  -0.023  -0.09  -0.437  -0.403  -0.705  -0.338 
+ Family 

history  
0.121  0.084  0.047  -0.129  -0.023  -0.089  -0.436  -0.402  -0.704  -0.337 

+ Family 
income  

0.115  0.084  0.037  -0.132  -0.027  -0.102  -0.435  -0.405  -0.699  -0.338 

+ Sex  0.115  0.084  0.038  -0.132  -0.027  -0.1  -0.433  -0.403  -0.698  -0.337 
+ Age  0.115  0.084  0.038  -0.132  -0.027  -0.1  -0.433  -0.403  -0.698  -0.337 
Emotion Hyper-response (6.4 %) 
Baseline  0.133  0.093  0.071  -0.089  0.04  0.61  0.609  0.602  0.355  0.554 
+ Support  0.092  0.064  0.038  -0.121  -0.003  0.612  0.607  0.598  0.349  0.551 
+ Family 

history  
0.09  0.063  0.036  -0.122  -0.005  0.612  0.607  0.597  0.35  0.552 

+ Family 
income  

0.071  0.041  0.015  -0.15  -0.035  0.589  0.585  0.576  0.329  0.532 

+ Sex  0.07  0.041  0.014  -0.152  -0.036  0.591  0.587  0.577  0.331  0.534 
+ Age  0.07  0.041  0.014  -0.152  -0.036  0.591  0.587  0.577  0.331  0.534 
Typical (81.1 %) 
Baseline  0.146  0.084  0.073  -0.104  -0.022  0.21  0.013  0.043  -0.274  0.035 
+ Support  0.149  0.087  0.078  -0.101  -0.016  0.209  0.012  0.043  -0.276  0.034 
+ Family 

history  
0.149  0.087  0.078  -0.101  -0.016  0.209  0.012  0.043  -0.276  0.034 

+ Family 
income  

0.155  0.091  0.08  -0.1  -0.014  0.206  0.011  0.036  -0.276  0.034 

+ Sex  0.155  0.091  0.08  -0.1  -0.014  0.206  0.011  0.036  -0.275  0.034 
+ Age  0.155  0.091  0.08  -0.1  -0.014  0.206  0.011  0.036  -0.275  0.034 

Note. Bolded lines indicate item response probabilities of final model. 
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ABCD data and other large longitudinal imaging cohorts are released, 
additional research will be necessary to identify the developmental pe
riods at which high positive coupling between the amygdala and pre
frontal regions is normative and, conversely, maladaptive. 

Why is it that profiles exhibited such distinction in ER-related neural 
response but not WM-related response? This lack of heterogeneity in 
neural function underlying WM may be due to the relatively young age 
of the sample. Although WM, along with other EF processes, begins to 
exhibit marked increases in early adolescence, it is still in its nascency. 
Developmental studies encompassing late childhood and early adoles
cence suggest that WM function grows more specialized throughout 
adolescence and into adulthood (Andre et al., 2016; Del Piero et al., 
2016; Simmonds et al., 2017). Therefore, the neural function underlying 
WM among those in the current sample may simply not be mature 
enough to evince notable variation between individuals. As more time 
points of functional neuroimaging data become available for the current 
cohort, follow-up studies employing LTA or similarly person-centered 
methods are crucial to determining whether this homogeneity is 

indeed specific to early adolescence. 
Our findings were largely dimensional in nature, with profiles that 

captured high, moderate, and low response to an ER condition. With this 
in mind, it may stand to reason that a method like LTA is unnecessary 
when outcomes seem continuous (e.g., ranging uniformly from low to 
high). We argue that the current method remains advantageous for two 
reasons. First and most importantly, LTA offers the utility of modeling 
likelihood for transition – in other words, continuity or discontinuity – in 
patterns of neural function across time. In the current study, there was 
indeed a high number of individuals (nearly 30 %) who moved from one 
profile to another, thus exhibiting notable change in their pattern of 
neural response to the task across 24 months of early adolescence. Our 
results were inconclusive regarding which factors contributed to this 
discontinuity; nonetheless, the current study offers compelling evidence 
that LTA can yield unique insights into brain development when 
compared to other longitudinal methodologies. Moreover, the multi
variate capacity of LPA and LTA allowed us to investigate regional 
activation underlying both WM and ER simultaneously. As a result, we 

Table 11 
Changes in latent transitions after stepwise inclusion of covariates.    

Model   

Baseline + Support + Family History + Family Income + Sex + Age 

T1 T2 % % % % % % 
Hypo Hypo 1.4 1.4 1.4 1.5 1.5 1.5 
Hypo Hyper 0.9 1 1 1 1 1 
Hypo Typical 4.3 4 4 4 4 4 
Typical Hypo 9.4 9.4 9.5 9.3 9.3 9.3 
Typical Hyper 4.3 4.3 4.3 4.4 4.3 4.3 
Typical Typical 69.5 70 70 67.9 70 67.9 
Hyper Hypo 1.6 1.6 1.6 2 2 1.9 
Hyper Hyper 1.2 1.3 1.3 1.5 1.5 1.5 
Hyper Typical 7.3 7 7 8.6 8.6 8.6 

Note. Bolded lines indicate top three most common transitions. 

Fig. 2. Measurement model of T2 child internalizing and externalizing behaviors. All values are standardized. Model fit was acceptable: χ2 (7) = 191.697, p = 0.000; 
RMSEA = .065; CFI = .969; TLI = .933; SRMR = .033). 
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were able to observe a notable distinction in variation of neural response 
based on whether the task elicited WM or ER processes. Although several 
studies have investigated the role of WM and ER in early adolescence, no 
study to our knowledge has yielded results which simultaneously ac
count for both WM and ER function in the same statistical model. 

Counter to our hypotheses, parental support did not predict profile 
membership at either time point. However, inclusion of both parental 
support and family income in the model significantly impacted patterns 
of brain activation within the Emotion Hyper-response profile. Although 
the limitations of this statistical evidence prevent us from drawing 
directional conclusions between parental support and WM- and ER- 
related neural function, it may indicate that parental support and fam
ily income are particularly relevant to neural function among youth 
evincing heightened response to emotional stimuli, particularly within 
the amygdala and ACC. Indeed, a large body of evidence using both 
functional MRI and physiological data suggests that neurobiologically 
“reactive” youths may be more sensitive to contextual inputs via the 
rearing environment than their less reactive counterparts (Guyer, 2020; 
Huffman et al., 2020; Liu et al., 2021; Roberts and Lopez-Duran, 2019). 
Using data-driven longitudinal methods such as LTA may be a crucial 

next step to identifying profiles of neurobiological sensitivity to envi
ronmental inputs and their relevance to developmental outcomes among 
youths. 

There are numerous established links between normative variations 
in parenting behavior, including parental warmth and support, and 
youth emotion regulation (Kopala-Sibley et al., 2020; Tang et al., 2020). 
However, studies on parenting as a precursor to child neurobiological 
development have largely focused on parenting behaviors outside of the 
normative range (e.g., neglect, abuse, psychiatric illness, and addiction; 
Heeringa et al., 2016; McLaughlin, Peverill, et al., 2015; McLaughlin, 
Sheridan, et al., 2015; Teicher et al., 2016). In a scoping review, Farber 
et al. (2022) identified ten studies that investigated normative range 
parenting and functional neurodevelopment among youths. Several 
studies identified by the authors found significant associations between 
positive parenting behaviors and neural function, including amygdala 
response to threat (Farber et al., 2019; Romund et al., 2016), striatal 
response to reward (Telzer et al., 2013), and prefrontal response during 
cognitive control tasks (Kim-Spoon et al., 2017; McCormick et al., 2016; 
Telzer et al., 2013). Although invaluable, these studies are limited by a 
predominance of cross-sectional designs (six out of ten) and small 

Fig. 3. Scree plots of T1 and T2 profile solutions indicate “elbows” at the 3-profile solution where BIC values begin to display diminishing value for each additional 
class. Although another “elbow” is observed at the 5-profile solution for T2, this solution exhibited profiles comprised of less than 5% of the sample, which did not 
align with our predetermined fit criteria. 

Fig. 4. T1 and T2 latent profile solutions.  
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Fig. 5. Cortical and subcortical activation underlying ER and WM across profiles.  
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sample sizes (eight out of ten under 200; all under 1000). Moreover, 
these studies focus on measurements of parenting and neural function in 
middle to late adolescence (13–18 years). The current study builds upon 
this nascent literature by highlighting a particular pattern of neural 

response among early adolescents that may confer additional sensitivity 
to the parenting and socioeconomic contexts. 

When assessing mean differences in T2 behavior, we found no sig
nificant difference in internalizing and externalizing symptoms across 
T2 latent profiles. However, exploratory analyses suggested modest but 
significant differences in EN-back behavioral performance between the 
Typical and non-typical profiles, indicating that neural response to WM 
and ER conditions within the Hypo- and Hyper-response profiles may 

Fig. 6. Latent transition probabilities.  

Table 12 
Logistic regression odds ratio results (Reference class: Typical).   

OR SE p Adjusted p 

T1 Emotion Hypo-response 
Support  1.000  0.143  0.998  0.449 
Family history  0.978  0.024  0.359  0.327 
Family income  0.967  0.024  0.170  0.270 
Biological sex*  1.168  0.122  0.169  0.128 
T1 Emotion Hyper-response 
Support  1.365  0.261  0.162  0.838 
Family history  0.936  0.034  0.055  0.449 
Family income  0.944  0.029  0.055  0.505 
Biological sex  1.342  0.193  0.076  0.327 
T2 Emotion Hypo-response 
Support  0.936  0.174  0.712  0.888 
Family history  0.953  0.031  0.134  0.449 
Family income  0.957  0.033  0.188  0.327 
Biological sex  1.449  0.217  0.038  0.229 
T2 Emotion Hyper-response 
Support  1.014  0.139  0.101  0.229 
Family history  0.975  0.023  0.292  0.229 
Family income  0.981  0.030  0.618  0.537 
Biological sex  1.136  0.165  0.412  0.229 

Note. *Female = 0, Male = 1. Odds ratios that are greater than 1 indicate that the 
event is more likely to occur as the predictor increases. Odds ratios that are less 
than 1 indicate that the event is less likely to occur as the predictor increases. 

Table 13 
Mean values of outcome variables across latent trajectories in final model.   

n* % Internalizing Externalizing Accuracy rate Response time 

Hypo to Hypo  105  1.5  0.027  0.042  0.871  889.412 
Hypo to Hyper  69  1  0.060  0.069  0.863  889.174 
Hypo to Typical  280  4  0.012  0.012  0.890  882.827 
Hyper to Hypo  138  2  0.027  0.042  0.871  889.412 
Hyper to Hyper  106  1.5  0.060  0.069  0.863  889.174 
Hyper to Typical  606  8.6  0.012  0.012  0.890  882.827 
Typical to Hypo  658  9.3  0.027  0.042  0.871  889.412 
Typical to Hyper  306  4.3  0.060  0.069  0.863  889.174 
Typical to Typical  4805  67.9  0.012  0.012  0.890  882.827 

Note. Estimated n based on posterior probabilities rounded up to nearest whole number. 

Table 14 
Wald χ2 tests of equality in outcome variables.   

χ2* p Adjusted p 

Internalizing      
Hypo v. Hyper  0.240  0.624 – 
Hypo v. Typical  0.100  0.752 – 
Hyper v. Typical  0.751  0.386 – 
Externalizing      
Hypo v. Hyper  0.174  0.676 – 
Hypo v. Typical  0.415  0.520 – 
Hyper v. Typical  1.037  0.309 – 
Accuracy rate      
Hypo v. Hyper  1.077  0.299 0.449 
Hypo v. Typical  9.274  0.002 0.006 
Hyper v. Typical  21.601  0.000 0.000 
Response time      
Hypo v. Hyper  0.001  0.979 0.979 
Hypo v. Typical  1.217  0.270 0.449 
Hyper v. Typical  0.689  0.407 0.488 

Note. All tests have 1 degree of freedom. Hypo = Emotion Hypo-response, Hyper 
= Emotion Hyper-response. 
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undermine performance during affective WM tasks. Although the cur
rent study did not find these same profiles to evince greater psychopa
thology, a large body of evidence suggests that WM performance in the 
context of affective information is itself a consistent correlate of psy
chopathology. Individuals exhibiting psychopathology often exhibit 
lower WM performance when simultaneously processing emotional in
formation (Huang-Pollock et al., 2017; Schweizer et al., 2019). 
Conversely, interventions aimed at improving both affective and 
non-affective WM capacity are often effective in improving emotion 
regulation and mitigating psychopathological symptoms (Jopling et al., 
2020; Xiu et al., 2018). Should later studies find that those evincing 
similar patterns of neural response found in the current study are at 
greater risk for psychopathology, affective WM may be a compelling 
target for preventive intervention. 

Given the highly variable nature of associations between brain 
function patterns and psychological phenotypes, the fact that we did not 
detect significant differences between psychopathology symptoms is not 
entirely surprising. First of all, this may be an example of equifinality, in 
which unique mechanisms precipitate a similar outcome. Examples of 
equifinality have been previously documented in brain-behavior asso
ciations, such as between patterns of aberrant reward processing and 
multiple types of psychiatric outcomes (e.g., mood disorders, 

schizophrenia, and addiction; Luijten et al., 2017; Nusslock and Alloy, 
2017; Pine and Fox, 2015). However, the null finding may also stem 
from increased methodological rigor. Recent studies and commentaries 
(Marek et al., 2022) have pointed out that many extant studies identi
fying direct links between neural function and psychopathology are 
limited by small sample size and unreliable phenotypic measurements, 
which in turn inflate effect sizes and increase risk for irreproducibility 
(Nikolaidis et al., 2022). When sample size is large, as in the current 
study, brain-behavior associations fail to reproduce or at the very least, 
show smaller effect sizes than comparable less-powered studies (Marek 
et al., 2022). That we did not find strong associations between neural 
function and psychopathology might also be a picture of the complex 
pathways underlying not only psychopathology but resilience as well. 
Evidence that fails to support direct developmental links between 
atypical neural function and psychopathology arguably undergirds the 
idea of resilience: individuals and their behaviors are greater than a sum 
of their biological and contextual “parts,” however extensively those 
parts have been measured. Indeed, the complexity and inscrutability of 
the mediating and moderating processes that prevent inherent or 
inherited risk from developing into psychopathology cannot be over
stated, as decades of developmental studies have confirmed. 

The current study has several limitations. First, the use of only two 

Fig. 7. Fluctuation in item response probabilities of Emotion Hyper-response profiles after adding covariates.  
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time-points limits our ability to draw conclusions beyond the brief 
period studied. Considering our predictors and outcomes were assessed 
at T1 and T2, respectively, we were able to investigate cross-sectional 
associations only between covariates of interest and T1 neural func
tion, as well as outcomes of interest and T2 neural function. Addition
ally, our use of mean values of regional activation across hemispheres 
prevented us from investigating lateralized contributions of neural 
response to LTA parameters. This choice was made after establishing 
within the current sample the high positive inter-hemispheric correla
tions of all ROIs to prevent model-overfitting and convergence diffi
culties. However, given that lateralization during WM and ER processes 
has been previously documented, additional research is necessary to 
determine how hemispheric differences impact the current profiles of 
neural function. Despite these limitations, our findings offer valuable 
insight into person-centered patterns of neural function underlying key 
cognitive processes across a crucial period of adolescent development. 
We hope that the current study establishes a framework by which others 
may investigate, replicate, and expound upon the profiles generated 
within later waves of the ABCD Study and other large neuroimaging 
cohorts. 
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