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Introduction
Serotonin (5-hydroxytryptamine; 5-HT) neurons are clustered 
into rostral and caudal groups. The rostral group is located at the 
mesencephalon and rostral pons, including the midbrain raphe 
nuclei with major projections to the forebrain and are critical for 
the regulation of various functions, including emotion and deci-
sion-making (Müller and Jacobs, 2009). The caudal group is 
located from the caudal pons to the caudal portion of the medulla 
oblongata, with major projections to the brainstem and the spinal 
cord (Ding et al., 2003; Hornung, 2003). The effects of 5-HT on 
brain functions is mediated through its release and reuptake, and 
its 14 receptor subtypes throughout the brain (Barnes and Sharp, 
1999). Genetic variation in 5-HT can affect emotional processing 
in animals and humans, and research has reported links between 
5-HT and vulnerability to anxiety and depression (Müller and 
Jacobs, 2009). Although 5-HT-targeted drugs can have important 
therapeutic effects on various disorders (e.g. depression and post-
traumatic stress disorders), such agents currently lack the effi-
cacy and tolerability required, and further improvement is needed 
(Nichols and Nichols, 2008). This is largely due to the still 
unknown mechanisms that 5-HT exerts on brain systems.

Computational modeling and mathematical theories are use-
ful tools to provide quantitative and conceptual understanding of 
observed experimental phenomena, while offering predictions 
for future tests (Abbott, 2008). Despite decades of research on 
the 5-HT system, its computational roles are still not completely 
known (Nakamura and Wong-Lin, 2014). Theories on the role of 
5-HT in health and disease have been separately developed at 
different levels of biological descriptions, with efforts largely 
focused on either models with high biological details such as 
intracellular signaling mechanisms or those on cognitive and 
behavioral aspects such as decision-making (e.g. Doya, 2002; 
Zhou et al., 2014). With technological advancements, levels 
intermediate to these are more readily studied, revealing highly 

heterogeneous, complex and multifunctional aspects of the 5-HT 
system (e.g. Cohen et al., 2015; Muzerelle et al., 2016; Okaty 
et al., 2015). These experimental findings present challenges in 
modeling and understanding 5-HT functions.

In this paper, we will review existing experimental and com-
putational modeling work on the 5-HT system at various levels  
of description, from intracellular through neuronal circuit to  
systems and behavioral levels (sections 2–5). Toward the end 
(section 6), we suggest, with some examples, that a multiscale 
computational modeling framework that integrates across 
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multiple scales of 5-HT functions could potentially embrace the 
new types of complex data and further illuminate 5-HT func-
tions. The paper will have a computational modeling focus, and 
biologically-based models will be emphasized as they have pre-
viously received less attention. We will not be able to cover the 
wide spectrum of studies on 5-HT system. For further informa-
tion regarding detailed experimental work, we shall refer the 
readers to other comprehensive reviews on the 5-HT system (e.g. 
Jacobs and Azmitia, 1992; Barnes and Sharp, 1999; Celada et al., 
2013; Müller and Jacobs, 2009; Smythies, 2005). For more 
extensive discussions on modeling neuromodulation and their 
effects on cognition, we refer the readers to insightful reviews, 
such as those by Fellous and Linster (1998), Doya (2002), Dayan 
(2012) and Marder (2012).

Intracellular signaling processes

5-HT presynaptic terminals

In the presynaptic terminals, 5-HT is synthesized and stored via a 
series of biochemical reactions beginning with the uptake of 
tryptophan. With sufficient presynaptic 5-HT terminal excitabil-
ity and spiking activity, 5-HT can be released into the extracel-
lular space. The released 5-HT may bind to postsynaptic 5-HT 
receptors (see below), be metabolized to 5-hydroxyindoleacetic 
acid (5-HIAA) via monoamine oxidase (MAO), removed through 
diffusion, or reabsorbed back to the presynaptic terminal via ser-
otonin reuptake transporter (SERT) (Figure 1). Polymorphisms 
and alterations in the SERT gene have been linked to depression 
and mood disorders (Ansorge et al., 2004; Caspi, 2003; Heils 
et al., 1996; White et al., 2005). In addition, 5-HT1A autorecep-
tors can regulate presynaptic neuronal firing rates, while 5-HT1B 

autoreceptors decrease synthesis and release with increasing 
extracellular 5-HT concentration, with over-expression of 
5-HT1A autoreceptors implicated in reducing serotonergic neu-
rotransmission, and associated with major depression and suicide 
(Albert et al., 2011). In fact, 5-HT neurons’ unique identity arises 
from the co-expressing of genes including those directing 5-HT 
synthesis, reuptake, vesicular transport, autoreceptor signaling 
and metabolism, and alterations in the transcription regulatory 
networks governing these processes can lead to physiological 
and behavioral pathogenesis (Deneris and Wyler, 2012).

Pharmacological drugs can directly affect these presynaptic 
signaling processes. For example, selective serotonin reuptake 
inhibitors (SSRIs) and tricyclic antidepressants (TCAs) can 
block SERT on cell bodies, including presynaptic terminals, thus 
raising extracellular 5-HT concentration levels (Casanovas and 
Artigas, 1996; Gartside et al., 1995; Gillman, 2007; Tatsumi 
et al., 1997). Chronic treatments can lead to the desensitization of 
5-HT1A autoreceptors (affecting 5-HT neuronal excitability) and 
downregulation of SERT mRNA (Adell et al., 2002; Benmansour 
et al., 2002; Mizra et al., 2007). Variations in SERT gene expres-
sion may be responsible for variability in antidepressant response 
(Porcelli et al., 2011). MAO inhibitors play a similar role with 
regard to increasing extracellular 5-HT by reducing the catabo-
lism of 5-HT. However, TCAs and MAO inhibitors also affect 
other monoamines such as dopamine and norepinephrine and 
other receptor types, and thus their effects are more complex 
(Gillman, 2007; Shulman et al., 2013).

Models of 5-HT presynaptic terminals

Given the important direct relationships between intracellular 
signaling and drugs, it is imperative to understand their mecha-
nisms more deeply, using in silico models. Currently, there are 
few computational models of 5-HT presynaptic signaling. 
Stoltenberg and Nag (2010) made use of control theory with 
differential and difference equations in developing a dynamical 
systems model. This model can simulate 5-HT neuronal firing 
rate due to tryptophan hydroxylase 2 (TPH2) and serotonin-
transported-linked polymorphic region (5-HTTLPR) geno-
types, and cerebrospinal fluid levels of the 5-HT metabolite 
5-hydroxyin-doleacetic acid (CSF 5-HIAA). A biologically 
realistic mathematical model was developed by Best et al. 
(2010), based on previous work modeling the dopaminergic 
presynaptic terminal (Best et al., 2009). This model is con-
strained by experimental data, and consists of nine coupled 
nonlinear differential equations, describing the kinetic dynam-
ics of the interacting substrates. Specific functions of the veloc-
ities could be derived via Michaelis–Menten kinetics. The 
model’s aim was to explore various hypotheses on 5-HT home-
ostasis and signaling. They include effects due to tryptophan 
(food intake), autoreceptor effects, acute dose of SSRIs, and 
polymorphisms of gene expressions.

Based on this model by Best et al. (2009), Flower and Wong-
Lin (2014) used perturbation techniques to tease apart the relative 
dynamical timescales and relationship strengths among the sub-
strates. This led to determining key relationships among the 
interacting substrates in the original full model, and allowed the 
reduction of the original model into simpler fast and slow ver-
sions. For example, the approximated reduced fast model could 
be described only by the relatively faster dynamics of the vesicu-
lar and extracellular 5-HT concentration levels, treating the rest 

Figure 1. Schematic of the 5-HT presynaptic terminal processes and 
signal transduction pathways. Abbreviations as defined in main text. 
Only metabotropic 5-HT receptors are shown. Compared with Table 1.
5-HT: 5-hydroxytryptamine; SERT: serotonin reuptake transporter; Gαi/Gαo, Gαs, 
Gαq: isoforms of the α subunits of G protein-coupled receptors; AC: adenylyl 
cyclases; cAMP: cyclic adenosine monophosphate; EPAC: exchange proteins 
activated by cAMP; PKA: protein kinase A; CREB: cAMP response element-binding 
protein; Raf: rapidly accelerated fibrosarcoma kinase; ERK: extracellular signal 
regulated kinase; PLC: phospholipase C; IP3: inositol 1,4,5-trisphosphate;  
DAG: diacylglycerol; PIP2: phospholipid phosphatidylinositol 4,5-bisphosphate; 
ER: endoplasmic reticulum; PKC: protein kinase C.



Wong-Lin et al. 1123

of the substrates’ dynamics to be relatively constant. The fast 
reduced model, with only two differential equations to describe 
substrates’ dynamics, was able to substantially speed up the com-
putational processing speed. This improvement becomes even 
more substantial when simulated with ~100,000 neurons, about 
the total number of 5-HT-containing neurons in the human brain 
(Flower and Wong-Lin, 2014).

While extracellular 5-HT concentration levels can be meas-
ured by traditional microdialysis methods, the temporal dynam-
ics of the release and reuptake of extracellular 5-HT can be 
experimentally captured using voltammetry techniques (Bunin 
et al., 1998; Dankowski, and Wightman, 2013; Hashemi et al., 
2011). Models based on such data have recently been developed, 
assuming the uptake kinetics of the extracellular 5-HT to follow 
the Michaelis–Menten equation, and fitted to the voltammetry 
data in tissue slice preparation (Bunin et al., 1998; Daws et al., 
2005). The model has since been adopted into neural models in 
which neural firing can directly stimulate the increase in extracel-
lular 5-HT level (Best et al., 2011; Flower and Wong-Lin, 2014; 
Joshi, 2014; Joshi et al., 2011, 2015, 2017). Using in vivo fast 
scan cyclic voltammetry, Wood et al. (2014) developed a more 
complex computational model to capture two distinct 5-HT reup-
take mechanisms (one with high affinity and low efficiency and 
another with low affinity and high efficiency), and a rapid inhibi-
tory autoreceptor control mechanism.

Computational models at the 5-HT presynaptic terminals at 
different levels of complexity have been developed. The general-
ity of these models allow them to be applied to various brain 
areas innervated by 5-HT terminals. Importantly, there exist sim-
pler models that are scalable (e.g. to the neuronal circuit level).

5-HT receptor signal transduction pathways

Rather early on, 5-HT was known to be an integral neuromodula-
tor for learning and memory. In particular, due to its small nerv-
ous system, the marine mollusk Aplysia has been used as a 
powerful model system for nonassociative learning, such as 
habituation, dishabituation, and sensitization (Carew et al., 1971; 
Pinsker et al., 1970, 1973), and associative learning, such as clas-
sical, operant, and fear conditioning (Brembs et al., 2002; Carew 
et al., 1981, 1983; Lechner et al., 2000a, 2000b; Walters et al., 
1981). Sensitization requires 5-HT-dependent synaptic plasticity 
from sensory to motor neurons (Brunelli et al., 1976; Castellucci 
and Kandel, 1976; MacKey et al., 1989; Marinesco and Carew, 
2002). Specifically, the memory for sensitization exhibits distinct 
temporal phases: short-term, intermediate-term, and long-term 
sensitization (STS, ITS, LTS). ITS requires protein synthesis but 
not ribonucleic acid (RNA) synthesis, while LTS requires both 
protein and RNA synthesis.

These effects require knowledge of how the released 5-HT 
exerts its effects through a variety of membrane-bounded recep-
tors, namely, ligand-gated ion channels and metabotropic 5-HT 
receptors (Maejima et al., 2013; Roth, 2006). The effects are 
complex and multifaceted, and hence deserve further attention. 
The 5-HT ligand-gated ion channels 5-HT3A and 5-HT3B are 
nonspecific cation channels and elicit fast excitatory postsynaptic 
potentials, while the metabotropic 5-HT receptors, with 7 trans-
membrane domains, are grouped into 6 families and 14 distinct 
subtypes with the heterotrimeric G-protein-coupled receptors 
(GPCRs) (Bockaert et al., 2006).

The heterotrimeric G-proteins are composed of the α  and the 
dimeric βγ  subunits. When the α  subunit is bound to guano-
sine diphosphate (GDP), α  and βγ  subunits will form the inac-
tive heterotrimeric complex (Magali, 2012; McCudden et al., 
2005; Siehler and Milligan, 2011). In the presence of 5-HT and 
the GPCRs activated, GDP will be replaced by guanosine triphos-
phate (GTP) and leads to the dissociation of G-proteins, not only 
activating the α  subunit but also liberating the βγ  subunit 
(Millan et al., 2008). The active α  subunit and βγ  subunit can 
relay information to different downstream signaling pathways 
(McCudden et al., 2005). There are several isoforms of the α  
subunit associated with 5-HT: Gαi/Gαo, Gαs, and Gαq. For exam-
ple, activated Gαi subunits inhibit the adenylyl cyclases (AC), the 
active Gαs subunits stimulate AC, activated Gαq subunits stimu-
late phospholipase Cβ (PLCβ), and activated Gαo subunits often 
lead to opening of K+ channels and closing of Ca2+ channels 
(Figure 1). The liberated βγ  dimeric subunits not only can regu-
late ion channels such as G-protein gated inward rectifier chan-
nels (GIRK or Kir 3 channels) as well as Ca2+ channels, but also 
regulate kinase and small G-proteins such as βγ -mediated stim-
ulation of extracellular signal regulated kinase (ERK) and mito-
gen activated protein kinases (MAPKs), Ras proteins and PLCβ 
(Berridge, 2014; McCudden et al., 2005).

AC, regulated by Gαs/Gαi, can convert ATP into the second 
messenger cyclic adenosine monophosphate (cAMP) using the 
catalytic regions on its larger cytoplasmic domains C1 and C2. The 
cAMP acts through three effector systems: protein kinase A (PKA), 
exchange proteins activated by cAMP (EPACs), and components 
of other signaling pathways. After cAMP binds to the regulatory 
subunits of PKA, the catalytic subunits of PKA can phosphorylate 
downstream target proteins to regulate specific cellular processes 
(Figure 1). The effects include: (i) enhancing gene transcription 
associated with formation of long-term memory regulated by 
cAMP response element-binding protein (CREB); (ii) increasing 
NMDA and AMPA receptor-mediated synaptic currents, and 
decreasing gamma-aminobutyric acid (GABA) receptor-mediated 
synaptic currents by phosphorylation of their subunits to control 
the receptors’ properties and their synaptic trafficking underlying 
plasticity; and (iii) modulating voltage-gated sodium, potassium, 
and calcium ion channels. EPACs bind to cAMP with high affinity 
and activate the Ras super family small GTPases Rap1 and Rap2, 
which can activate PLC, open the cyclic nucleotide-gated chan-
nels, and control the actin dynamics of cells (Cheng et al., 2008). 
The third kinds of effectors of cAMP are cyclic GMP phosphodi-
esterase (PDE) and Ca2+ channels Cav1.1 and Cav1.2. SSRIs can 
act on signal pathways such as cAMP on the postsynaptic neuronal 
cell, which can in turn release brain-derived neurotrophic factor 
that can enhance the growth and survival of neurons and synapses 
(Schwindinger and Robishaw, 2001).

PLCβ, stimulated by αq  and βγ  subunits, can cleave the 
phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) into 
two kinds of second messenger: soluble inositol 1,4,5-trisphos-
phate (IP3) and membrane-adhering diacylglycerol (DAG). IP3 
diffuses into the cytosol and releases Ca2+ from the endoplasmic 
reticulum. The DAG activates the enzyme protein kinase C 
(PKC), where the classic PKCs (PKCα, PKCβ and PKCγ) require 
both Ca2+ and DAG, whereas novel PKCs (PKCδ, PKCε and 
PKCη) are Ca2+-independent (Berridge, 2014; Turner et al., 2006).

To summarize, metabolic 5-HT receptors coupled to different 
isoforms of G-proteins can evoke different intracellular signaling 
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pathways, modulating neuronal and synaptic activities. Table 1 
provides some examples of the various complex modulatory 
effects on cells and synapses due to 5-HT receptor subtypes.

Models of signaling pathways and affected 
currents

The Michaelis–Menten kinetics formalism and the law of mass 
action approach are often used in modeling the biochemical sign-
aling pathways (Keener and Sneyd, 2008; Michaelis and Menten, 
1913). For example, to understand the interplay between 5-HT 
receptor subtypes on intracellular signaling pathway dynamics, a 
comprehensive mathematical model of 5-HT1A and 5-HT2A 
receptor-activated ERK pathways was developed by Chang et al. 
(2009). The transformation reactions were represented by the 
Michaelis–Menten formalism, and the dynamics of the reaction 
network formulated using the law of mass action. The results of 
this detailed mathematical model are in agreement with experi-
mental data, showing the dominance of 5-HT2A receptor over 
5-HT1A receptor in the MAPK signaling pathway, and the dele-
terious effects of regulator/enzymes affecting basal levels of 
ERK1/2. Hence, the model provides insights into the interplay of 
the two 5-HT receptor subtypes with potential applications in 
drug efficacy studies.

To more precisely formulate and test hypotheses of PKA and 
ERK activities in different memory learning/training protocols 
(short-term, intermediate-term, and long-term facilitations), 
Pettigrew et al. (2005) modeled 5-HT modulation on the Aplysia 
sensorimotor synapse, in which several parallel and feedback 
5-HT-induced signaling pathways were simulated, including 
involvements of PKA, ERK and recombination-activing gene 
(REG). These led to intermediate- and long-term facilitations 
(ITF and LTF), which are correlated with ITS and LTS, respec-
tively. Although this model was incomplete and did not include a 
gene regulatory step, it provided a qualitative representation of 
key biochemical processes essential for ITF and LTF of sensori-
motor synapse. This model is subsequently modified with only 
the initial steps in the induction of LTF, plus a time delay in the 
phosphorylation the rapidly accelerated fibrosarcoma kinase and 
an inducer was added (Zhang et al., 2012). The modified version 
was used to search for a training protocol to maximize PKA–
ERK interactions to enhance LTF. Later, to understand a previ-
ously unappreciated role for a PKC-dependent processes in the 
maintenance of STF, Zhou et al. (2014) modeled PKC signaling, 
in parallel with PKA mechanisms, to demonstrate that PKC was 

sufficient for STF at non-depressed synapses and the facilitation 
of depressed synapses.

In contrast with modeling the 5-HT metabotropic receptors, 
modeling the ligand-based 5-HT3 receptor largely comes from 
quantitative molecular analysis and homology modeling of the 
5-HT3 receptor binding affinity, structure and dynamics 
(Menziani et al., 2001; Reeves et al., 2003; Schmidt and 
Peroutka, 1989). These modeling techniques are more complex, 
which required not only differential equations, but also other 
theories and methods in physics and chemistry (e.g. quantum 
mechanics).

The above examples show that computational models of 
5-HT intracellular signaling via its various receptor subtypes can 
provide quantitative insights into the various effects caused by 
5-HT receptors and the underlying biochemical pathways. 
Importantly, some of these pathways can be perturbed by drugs, 
and therefore, these models are highly useful for computer-aided 
drug discovery and development. However, the models have sev-
eral parameters and complex pathway dynamics, and therefore 
remain a challenge in terms of scalability (e.g. bridging to the 
neuronal circuit level and beyond). In the next section, we will 
discuss how by directly modeling the effects (e.g. ion channel or 
current modulation), some of these complexities can be circum-
vented, providing a plausible solution.

Neuronal properties

Diversity of neuronal properties

5-HT neurons are largely found in the raphe nuclei of the brain 
(Müller and Jacobs, 2009). A major challenge of conventional 
single-unit recording is the identification of the chemical charac-
teristics associated with the recorded neurons. For example, a 
substantial proportion of dorsal raphe nucleus (DRN) neurons are 
serotonergic: 30% in rats (Descarries et al., 1975), 70% of 
medium-sized DRN neurons in cats (Wiklund et al., 1981), and 
70% in humans (Baker et al., 1991); however, the DRN also 
includes neurons containing other neurotransmitters, such as 
GABA, glutamate, dopamine, noradrenaline/norepinephrine and 
peptides (e.g. cholecystokinin, somatostatin, enkephalin, galanin, 
substance P, and neurotensin) (Fu et al., 2010; Jacobs and 
Azmitia, 1992; Kohler and Steinbusch, 1982; Michelsen et al., 
2007). GABAergic neurons form the largest population of non-
5-HT neurons in the dorsal raphe (Calizo et al., 2011; Celeda 
et al., 2001; Varga et al., 2001, 2003). However, there is little 

Table 1. Some examples of serotonin (5-HT) modulatory effects on neurons and synapses due to various 5-HT receptor subtypes. Abbreviations as 
defined in main text. ↑ and ↓ denote an increase and decrease, respectively. Compared with Figure 1.

Receptor subtype Associated G-protein Second messengers Modulatory effects

5-HT1 Gαi/Gαo cAMP,PKA ↓cAMP, open K+ channels, ↓AMPA, ↓NMDA, ↓GABA,
5-HT2 Gαq PLC,IP3, DAG, PKC ↑cAMP, open Ca2+channel, ↑AMPA, ↑NMDA, ↓GABA
5-HT3 Ion channels Ligand-gated Na+ and K+ channels Fast excitatory postsynaptic potential
5-HT4 Gαs cAMP,PKA ↑cAMP
5-HT5 Gαi/Gαo ↓cAMP
5-HT6 Gαs cAMP,PKA ↑cAMP
5-HT7 Gαs cAMP,PKA ↑cAMP

5-HT: 5-hydroxytryptamine; Gαi/Gαo, Gαs, Gαq: isoforms of the α subunits of G protein-coupled receptors; cAMP: cyclic adenosine monophosphate; PKA: protein kinase A; 
PKC: protein kinase C; DAG: diacylglycerol; PLC: phospholipase C; IP3: inositol 1,4,5-trisphosphate; AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid;  
NMDA: N-Methyl-D-aspartic acid; GABA: gamma-Aminobutyric acid.
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coexistence of GABA and 5-HT in the same cells (Fu et al., 2010; 
Shikanai et al., 2012). Dopamine, a monoamine like 5-HT, also 
appears to be present in DRN neurons, which are separate from 
5-HT neurons (Descarries et al., 1986; Fu et al., 2010; Hökfelt 
et al., 1976; Yoshida et al., 1989).

The properties of neurons in the raphe nuclei are diverse and 
heterogeneous, including metabolism, anatomy, neurochemistry 
and physiology (Andrade and Haj-Dahmane, 2013; Beck et al., 
2004; Fernandez et al., 2017; Gaspar and Lillesaar, 2012; 
Muzerelle et al., 2016; Okaty et al., 2015). Electrophysiologically, 
5-HT and non-5-HT neurons are heterogeneous in terms of rest-
ing membrane potentials, input resistances, spike amplitudes and 
spike thresholds (Allers and Sharp, 2003; Kocsis et al., 2006; Li 
et al., 2001; Marinelli et al., 2004). There are also regional excit-
ability differences among subnuclei within the DRN. For exam-
ple, the lateral wings contain neurons with higher membrane 
excitability (Crawford et al., 2010; but see Shikanai et al., 2012). 
5-HT neurons have been found to exhibit classical regular-spik-
ing and bursting behavior (Cohen et al., 2015; Hajós et al., 1996, 
2007; Hajós and Sharp, 1996; Kirby et al., 2003; Li et al., 2001) 
and are also associated with a characteristic slow after-hyperpo-
larization (AHP) (Kirby et al., 2003). The variety of 5-HT neu-
ronal spiking behavior has been suggested to be due to the 
interplay among multiple ion channel currents (Aghajanian and 
Sanders-Bush, 2002).

Neuronal models

Despite the wealth of electrophysiological data accumulated over 
the decades, the membrane excitability and spike generation of 
5-HT neurons have only recently been modeled (Penington and 
Tuckwell, 2012; Tuckwell, 2013; Tuckwell and Penington, 2014). 
In their latest model, based on voltage-clamp data, Tuckwell and 
Penington (2014) used a biophysical single-compartmental 5-HT 
neuronal model with 11 ion channel currents and calcium dynam-
ics. Their conductance-based model includes fast sodium current, 
delayed rectifier potassium current, transient potassium current, 
slow non-inactivating potassium current, low-threshold calcium 
current, two high-threshold calcium currents, small- and large-
conductance potassium currents, hyperpolarization-activated 
cation current, and leak currents. These currents are modeled 
using the Hodgkin–Huxley formalism (Hodgkin and Huxley, 
1952). With this model, Tuckwell and Penington were able to 
account for a wide variety of electrophysiological properties of 
5-HT neurons. For instance, the neuronal membrane potential of 
the model could exhibit spontaneous periodic spiking, spike dou-
blets, and subthreshold humps or notches as found in experi-
ments. The model also supported the competitive functions of the 
transient potassium current and the low-threshold calcium current 
on interspike intervals. The model also can mimic the excitatory 
effects of adrenoreceptor (α1 ) effects by decreasing the potas-
sium leak conductance and the resting membrane potential.

The neuronal spiking behavior of 5-HT neurons can also be 
modeled using different and simpler spiking neuronal models. In 
particular, Wong-Lin et al. (2011, 2012) have used the Izhikevich 
neuronal model (Izhikevich, 2003) that has only two coupled dif-
ferential equations and four intrinsic neuronal parameters and 
hence is computationally efficient. Yet, it can replicate a reper-
toire of spiking and subthreshold membrane potential behaviors 
(e.g. slow periodic spiking, and spike doublets or triplets) as 

observed in 5-HT neurons without explicitly involving specific 
complex ion channel dynamics (Wong-Lin et al., 2011, 2012). 
This two-dimensional dynamical model is also highly conducive 
for rigorous mathematical (e.g. phase-plane) analysis, such that 
specific neuronal behavior can be easily selected without exten-
sive brute-force model parameter searching (Izhikevich, 2007; 
Wong-Lin et al., 2011, 2012). A similar type of model, the adap-
tive exponential integrate-and-fire neuronal model (Brette and 
Gerstner, 2005), has also been adapted to model 5-HT neurons 
(Joshi, 2014; Joshi et al., 2015). Similarly, Tuckwell et al. (2015) 
subsequently also developed other reduced 5-HT neuronal mod-
els, namely the Fitzhugh–Nagumo (Fitzugh, 1961; Nagumo 
et al., 1962) and the reduced Hodgkin–Huxley model, both 
described by only two coupled differential equations. Despite 
some limitations (e.g. higher firing frequency), the general spik-
ing behaviors are similar to those from experimental observa-
tions. Due to their lesser complexity, the models were also 
rigorously mathematically analyzed.

More generally, neuronal computational models can provide 
a platform to mimic the effects of 5-HT on the targeted areas, 
circumventing detailed modeling of signaling pathway pro-
cesses. This can be done by directly simulating the affected con-
ductances, currents or other neuronal properties. For example, 
based on voltage-clamp studies of sensory neurons in Aplysia, 
Baxter et al. (1999) used the Hodgkin–Huxley type model to 
describe the neuronal excitability of a sensory neuron modulated 
by 5-HT modulation. Specifically, the model was based on the 
knowledge that 5-HT induced elevation of cAMP modulated 
several membrane currents: (i) decreasing S current (IK,s) and a 
slow component of the Ca2+-activated K+ current (IK,Ca-s); (ii) 
decreasing the conductance and slowing the kinetics of a large, 
steeply voltage-dependent K+ current (IK-V); while (iii) enhanc-
ing a dihydropyridine-sensitive and slowly inactivating compo-
nent of the Ca2+ current similar to the L-type Ca2+ current (ICa-L). 
Thus, Baxter et al. (1999) mimicked PKA and PKC effects by 
decreasing the conductances of IK,s, IK,Ca-s, while increasing that 
of ICa-L. They also simulated the actions of 5-HT on IK-V by 
increasing the time constants of the activating and inactivating 
variables. Despite the model not incorporating explicit intracel-
lular signaling, the model could replicate experimental data of 
the PKA and PKC effects on membrane currents and action 
potential waveform. The model also predicted the important 
contribution of IK,Ca-s and ICa-L in the excitability of the sensory 
neurons, which had not been investigated prior to this work. 
Moreover, the model prompted further investigation of Na+ cur-
rents to fill the remaining discrepancy between the neuronal 
model behavior and experimental data.

Other models that mimicked the affected currents include 
Bertram (1993, 1994). Bertram (1993) modeled and mathe-
matically analyzed how 5-HT could affect the burster R15 neu-
ronal activity by modulating its subthreshold inward rectifier 
currents (IR) and negative-slope-region currents (INSR) that 
control the neuronal bursting mechanism. The model sug-
gested that 5-HT increases the sensitivity of the burster neuron 
to synaptic perturbations due to the competition between vari-
ous states (stationary, bursting and the beating attractor). 
Bertram (1994) further reduced the model for more detailed 
mathematical analysis of the model.

With a similar modeling approach, Cano-Colino et al. (2014) 
modeled 5-HT1A and 2A effects on prefrontal cortical neurons 
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by modulating the 5-HT induced currents. Specifically, the 
5-HT1A effects on prefrontal cortical (PFC) excitatory pyramidal 
cells were simulated by modeling the inhibitory 5-HT modula-
tion on some GIRK currents (IGIRK). In contrast, 5-HT2A exerted 
excitatory effects on pyramidal cells via increased in intracellular 
Ca2+, which simultaneously inhibited Ca2+-activated afterhyper-
polarization currents (IK,Ca) and activated an afterdepolarization 
current mediated by a Ca2+-dependent nonselective cation chan-
nel (ICan). In addition, their model also included 5-HT2A modula-
tion of prefrontal inhibitory interneurons by decreasing the 
conductance of their leak current. This model will be further dis-
cussed in the next section.

To allow even higher scalability in the modeling, Joshi et al. 
(2017) fitted a nonlinear relationship between 5-HT concentra-
tion levels and the induced currents on targeted neurons based on 
experimental data from electrophysiology, pharmacology and 
voltammetry. By shifting the nonlinear input–output functions or 
changing the parameter values in the Michaelis–Menten relation-
ships, the model can simulate drug (e.g. antidepressant) effects. 
The modeling framework proposed was sufficiently general to 
model the interactions of multiple drugs and neuromodulators on 
multiple brain regions. Simpler and more abstract models have 
been developed (Jalewa et al., 2014; Joshi et al., 2011); the mod-
ulated currents in Jalewa et al. (2014) were more abstract (i.e. 
based on a neural firing-rate type model (Wilson and Cowan, 
1972)); and Joshi et al. (2011) directly obtained the nonlinear 
function from 5-HT to the neuronal population firing rate without 
introducing any affected currents. In contrast with 5-HT modula-
tion via its metabotropic receptors, simplified more scalable 
model for 5-HT3 mediated currents has only recently been mod-
eled (Jalewa et al., 2014). These models will be further discussed 
in the next section.

In summary, the computational models of 5-HT neurons can 
be rather complex with several ion channel currents involved. 
However, more recent modeling work has attempted to reduce 
the model to allow better scalability (e.g. neuronal circuit level). 
Models of neurons and neural populations innervated by 5-HT 
can also be simulated, circumventing the need to explicitly model 
the complex signaling transduction pathways. This is mainly 
achieved through direct modeling of the affected currents in the 
neuronal or neuronal population models.

Single neuronal functions and 
neuronal microcircuits

Circuits and functions of 5-HT neurons

A useful way to understand 5-HT function in the brain is to meas-
ure the activation pattern of single cells (‘units’) in the raphe 
nuclei of animals performing behavioral tasks. This can provide 
rich information about the context and events encoded by DRN 
neurons, at least some of which secrete 5-HT, and behavioral-
pharmacological experiments can then examine how 5-HT is uti-
lized at the projection sites. Due to its high spatiotemporal 
resolution, single-unit recording is also beneficial for analyzing 
trial-by-trial changes in activity related to particular aspects of 
behavioral tasks.

To date, several characteristics and heterogeneity of DRN 
neuronal activity have emerged from single-unit recording stud-
ies in awake animals (Cohen et al., 2015; Hayashi et al., 2015; 

Inaba et al., 2013; Li et al., 2013, 2016; Miyazaki et al., 2011; 
Nakamura et al., 2008; Ranade and Mainen, 2009). First, DRN 
neurons respond to various task events, including visual, olfac-
tory, and somatosensory events, to incentive events such as 
rewards and punishments, to movement, and to delay, which 
indicates that there is a wide array of inputs to the DRN. Second, 
different activation patterns in terms of timescale were observed; 
very brief responses, sensory stimuli; brief responses well-
aligned to the onset of tonic activity that may last across trials, 
which encodes appetitive and aversive contexts (Cohen et al., 
2015; Hayashi et al., 2015). Third, responses with modulations in 
opposite directions were observed. For example, a group of neu-
rons exhibited an increase while others exhibited a decrease in 
activity during the same sensory events, such as a tail pinch 
(Schweimer and Ungless, 2010) or air puff (Cohen et al., 2015). 
Task factors such as reward value also evoked opposite direction 
modulations in DRN neurons (Hayashi et al., 2015; Nakamura, 
2013). It is unknown how and why such mirror-imaged modula-
tion in neuronal activity is created and utilized downstream of the 
information processing. The characteristics of the DRN neuronal 
activity described above are in strong contrast to those observed 
in midbrain dopamine neurons which typically exhibit phasic, 
not tonic, and uniformly excitatory responses (Nakamura, 2013).

While the activities of DRN neurons are correlated with a 
variety of events (Ranade and Mainen, 2009), it appears that 
reward information is one of the most influential factors that 
modulate DRN neuronal activity (Bromberg-Martin et al., 2010; 
Cohen et al., 2015; Inaba et al., 2013; Luo et al., 2015; Miyazaki 
et al., 2011; Nakamura et al., 2008; Ranade and Mainen, 2009). 
One of the prevailing questions is whether the DRN is involved 
in appetitive or aversive information processing. To answer this 
question, Hayashi et al. (2015) measured the activities of DRN 
neurons while monkeys performed a Pavlovian conditioning 
task, in which visual cues predicted appetitive or aversive out-
comes. In the ‘appetitive’ trial blocks, conditional visual stimuli 
which were associated with a liquid reward at different probabili-
ties were presented. In the ‘aversive’ blocks, visual stimuli were 
associated with an aversive air puff at various probabilities. Note 
that, this separate presentation of appetitive and aversive condi-
tional stimuli as a block created the appetitive and aversive con-
text. Hayashi et al. (2015) found that single DRN neurons encode 
both appetitive and aversive information, but over differing time 
scales: a tonic and categorical activity to discriminate emotional 
(i.e. appetitive and aversive) contexts, and a relatively phasic, 
quantitative activity to encode rewarding events (i.e. the proba-
bility of outcomes) (Hayashi et al., 2015).

In terms of animal models of psychiatric disorders, recent 
work using acute pharmacogenetics perturbation on 5-HT neu-
ronal activity of the dorsal and median raphe nuclei has demon-
strated that these nuclei are causally linked to differential control 
on emotional behaviors (Teissier et al., 2015). Specifically, 
median raphe 5-HT hyperactivity in mice seems to encourage 
anxiety behavior while low dorsal/median raphe 5-HT activity 
increases depression-like behavior.

In addition to the raphe nuclei’s heterogeneous populations 
of 5-HT and non-5-HT neurons and diverse expression of neuro-
transmitters (and co-transmitters), these neurons also provide 
diffuse projection to multiple targets, thereby increasing their 
complexity. The mammalian DRN contains the majority of  
forebrain-projecting 5-HT neurons (Azmitia and Segal, 1978; 
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Descarries et al., 1975; Jacobs and Azmitia, 1992; Moore et al., 
1978; Vertes, 1991), which appears to be highly conserved 
across vertebrates (Azmitia, 2007). However, the projection of 
DRN 5-HT neurons is selective. Some 5-HT neurons make col-
laterals to multiple distal structures, but many appear to selec-
tively target particular areas (Gagnon and Parent, 2014; 
Vasudeva et al., 2011; Waselus et al., 2011). Glutamatergic 
inputs appear to be nonuniformly distributed among DR subnu-
clei (Commons, 2009; Crawford et al., 2011), which could con-
tribute to the diversity of neuronal activity in vivo. 5-HT neurons 
in different areas are highly interconnected (Bang et al., 2012), 
which may perhaps be important for autoregulation. Interestingly, 
GABAergic and glutamatergic inputs to DRN neurons can them-
selves be regulated by 5-HT (Lemos et al., 2006), which form 
larger regulatory circuits.

Many GABAergic neurons in the DRN are synaptically con-
nected to 5-HT neurons (Bang and Commons, 2012; Weissbourd 
et al., 2014). DRN’s GABAergic neurons inhibit at least 20% of 
midline 5-HT neurons, and are likely important regulators of 
5-HT function (Challis et al., 2013). For instance, the corticotro-
pin-releasing factor, a stress-related hormone, can inhibit 5-HT 
neurons both directly and indirectly (via DRN’s GABAergic neu-
rons) (Kirby et al., 2008; Lowry et al., 2000; Pernar et al., 2004). 
VGLUT3-expressing (glutamatergic) neurons also form a sizea-
ble population in the DRN (Hioki et al., 2010). Recent studies 
have suggested a role in reward-based processes (Liu et al., 2014; 
McDevitt et al., 2014). Interestingly, there appears to be a sub-
stantial coexpression of 5-HT and glutamate in many DRN cells, 
with the potential to regulate targets across multiple timescales 
(Cohen et al., 2015; Johnson, 1994; Trudeau, 2004). Some of the 
dopaminergic neurons in DRN can also co-release glutamate and 
have been shown, with in vivo calcium imaging and optogenetics 
techniques, to be causally linked to social preference (following 
isolation) and place avoidance (Matthews et al., 2016).

Animal models with simpler organizations have also been 
useful to further illuminate the functions of 5-HT on targeted 
microcircuits (Marder, 2012). For instance, in zebrafish, the 
habenulo-raphe pathway is found to be necessary for active 
avoidance learning but not classical fear conditioning (Amo 
et al., 2014). In Cancer borealis crab, two mutually coupled neu-
rons isolated from the gastric mill of the stomatogastric ganglion 
have been shown to be modulated by 5-HT by increasing the 
alternating bursting regime in parameter space and burst fre-
quency (Grashow et al., 2009). In the nematode Caenorhabditis 
elegans, 5-HT could for example promote exploitation by speed-
ing up foraging decision-making under complex environments 
(Iwanir et al., 2016) and transition from crawling to swimming 
(Vidal-Gadea et al., 2011), while in leeches and lampreys, 5-HT 
can modulate swimming behavior (Brodfuehrer et al., 1995; 
Harris-Warrick and Cohen, 1985).

Overall, the picture that has emerged is one of heterogeneity 
of cell type and connectivity, which has limited strong support for 
any particular theory of 5-HT function, though there may be 
some principles of afferent connectivity (Dorocic et al., 2014; 
Ogawa et al., 2014).

Neural circuit models

There are several computational models of 5-HT modulation of 
neural microcircuits. For instance, Meeter et al. (2006) had used 

a spiking neuronal network model of the hippocampus that 
included the entorhinal cortex, dentate gyrus, and fields CA1 
and CA3, and demonstrated that 5-HT-mediated hyperpolariz-
ing effect on principal cells could affect memory performance. 
Using simpler ‘firing-rate’-type network models, which 
included connectivity across the cortex, striatum, DRN, sub-
stantia nigra compacta (SNc) and thalamus, Reed et al. (2013) 
showed that long-range feedback connections in the circuit 
allows 5-HT to stabilize the network as dopamine neurons get 
depleted as in Parkinson’s disease. Given the known connec-
tions between DRN and the lateral hypothalamus (LHA), Joshi 
et al. (2011), Jalewa et al. (2014), Joshi (2014), and Joshi et al. 
(2017) had also developed similar firing-rate type models that 
described the interactions between the DRN and LHA. In the 
model in Jalewa et al. (2014), non-5-HT GABAergic neurons in 
the DRN and LHA were included to study the effects of direct 
and indirect connectivity on the DRN-LHA circuit dynamics. 
Using a spiking neuronal network model, which consisted of 
heterogeneous 5-HT and non-5-HT DRN neurons, Wong-Lin 
et al. (2011, 2012) accounted for the single-unit neuronal data 
from non-human primates performing rewarded and unre-
warded tasks (Bromberg-Martin et al., 2010), as discussed 
above. After fitting the data, the model identified a potential 
DRN microcircuit model architecture that predicted the pres-
ence of fast inhibition from the non-5-HT to 5-HT neurons, and 
slow theta band oscillation in the network.

As the PFC is one of the most densely 5-HT modulated brain 
regions (Celada et al., 2013), it is important to model and under-
stand the potential effects 5-HT has on the PFC functions. Given 
that dopamine is also known to strongly innervate the PFC, Wang 
and Wong-Lin (2013) used (‘mean-field’) firing-rate models to 
mathematically analyze how dopamine and 5-HT co-modulation 
on PFC neurons and synapses can affect PFC circuit dynamics. 
The PFC network model consisted of multiple pyramidal neu-
ronal populations and fast spiking inhibitory interneurons, and 
NMDA-, AMPA- and GABA-mediated synapses. 5-HT1A, 
5-HT2A, dopaminergic D1 and D2 receptor-mediated effects 
were implemented in the model, constrained by past experimen-
tal findings. The network model’s oscillatory behavior was found 
to be co-modulated in complex, non-intuitive ways, due to the 
different affinities and the PFC network connectivity. For exam-
ple, the model showed that certain combination of dopamine and 
5-HT receptors could lead to the robustness of beta and gamma 
band oscillations, or the existence of multiple discrete oscillatory 
regimes. The model also made predictions in terms of pharmaco-
logical (receptor agonist/antagonist) effects. For instance, the 
model could mimic the effects of 5-HT2A antagonists (by shift-
ing of the input–output function) causing the reduction of beta 
band oscillation amplitude, which was consistent with 5-HT2 
agonist (2,5-dimethoxy-4-iodoamphetamine; DOI) effects in the 
frontal cortex of anesthetized rats (Budzinska, 2009).

In another work, Cano-Colino et al. (2013, 2014) simulated 
the effects of 5-HT1A and 5-HT2A receptors on the PFC by 
incorporating simplified induced currents, IGIRK, and modulating 
membrane currents IK,Ca, and ICan and the leak currents, as dis-
cussed previously. This was then used to investigate the effects of 
5-HT on spatial working memory (SWM). The PFC model, 
inspired by non-human primate studies (Williams et al., 2002), 
included inhibitory interneurons and pyramidal neurons, which 
were used to represent the maintenance of information about 
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different target spatial locations. The model in Cano-Colino et al. 
(2014) showed that with increasing 5-HT concentration level, 
SWM performance of the network followed an inverted U-shape 
manner due to the differential effects of 5-HT1A and 5-HT2A 
receptors. The model suggested that SWM output errors due to 
low and high 5-HT levels are caused by the network’s dynamical 
instabilities. In Cano-Colino et al. (2013), further predictions of 
the same model were made. Specifically, the model suggested 
that excessive levels of 5-HT could cause SWM deficits that 
increased with delay duration, and higher vulnerability to distrac-
tors. Interestingly, the neuronal memory fields were predicted to 
be better tuned than the behavioral report for excessive 5-HT.

Maia and Cano-Colino (2015) also used a similar model to 
provide an explanation for reduced 5-HT levels leading to obses-
sive-compulsive disorder (OCD). Specifically, the model sug-
gested that a decrease in 5-HT levels made the network more 
stable and difficult to get out of a stable steady (‘attractor’) state 
(arguably a neural substrate for obsessions and compulsions). 
Simulating the effects of a 5-HT2A blocker (mimicking the par-
tial effects of second-generation antipsychotics) or a 5-HT1A 
agonist was effective in reducing the OCD state, through decreas-
ing the overall network’s excitability.

Serotonergic influence on synapses has been modeled in a sim-
ilar way. For example, Puzerey et al. (2014) modeled a cortical 
(layer 2/3) microcircuit model using excitatory and inhibitory neu-
rons, bombarded by synaptic noise. The network model could 
mimic the effects of spontaneous epileptic seizures (‘fast runs’) by 
increasing the synaptic noise (to simulate 5-HT3R-mediated mod-
ulation) and excitatory coupling strength (to simulate 5-HT2R-
mediated modulation). The inhibition of slow afterhyperpolarization 
current alone (due to 5-HT2R-mediated modulation) could also 
induce fast-run oscillation. By increasing the excitatory neuronal 
leak conductance (to simulate the postsynaptic effect of 5-HT1R 
activation in the presence of antidepressant fluoxetine) the epilep-
tiform network dynamics can be suppressed, as observed in experi-
ments. To capture a more systemic modulation, the abovementioned 
Wang and Wong-Lin (2013) work not only modeled the PFC neu-
ronal excitability modulation by 5-HT, but also simultaneously 
simulated 5-HT modulation on the synapses by varying the excita-
tory and inhibitory synaptic coupling strengths.

The models discussed here showed how they could be used to 
systematically and quantitatively study 5-HT modulation on neu-
ronal circuits within and out of the raphe nuclei. Importantly, this 
type of neural circuit models is promising in terms of mechanisti-
cally bridging from neuronal and synaptic physiological and 
pharmacological level to cognition and behavior.

Human cognition and behavior

Human studies

Similar to the animal studies discussed above, 5-HT in humans 
is known to play a role in a range of processes. They include 
learning and memory, aggression, sexual behavior, and sleep, 
among others (Harvey, 2003; Hull et al., 2004; Moresco et al., 
2002). Dysfunctions in the 5-HT system have been linked to a 
range of brain disorders, including depression, anxiety disor-
ders, impulsivity, eating disorders, schizophrenia, and addic-
tion (Dalley et al., 2008, 2011; Maes and Meltzer, 1995; Tanaka 
et al., 2007; Young, 2013).

5-HT function in humans could be studied with various 
approaches. They include behavioral neurogenetics (the relation-
ship between genes coding for 5-HT system and behavior), tryp-
tophan depletion (which reduces 5-HT levels synthesized in the 
brain; see Figure 1), and psychopharmacological (the administra-
tion of 5-HT agonists and antagonists to healthy human subjects) 
studies. These can be combined with brain imaging (e.g. positron 
emission tomography and functional magnetic resonance imag-
ing; fMRI) (Beliveau et al., 2015; Kumar and Mann, 2014; Spies 
et al., 2015) and genes related to 5-HT function, (e.g. associated 
with SERT and receptors) (Hariri and Holmes, 2006). In humans, 
the short allele of this gene has been shown to correlate with 
harm avoidance behavior compared with individuals with two 
copies of the long allele (Katsuragi et al., 1999; Lesch et al., 
1996; Ricketts et al., 1998). Genetic variation of the 5-HT2A 
receptor gene is known to influence episodic memory in humans 
(de Quervain et al., 2003), while the SERT gene can affect risk-
based decision-making (He et al., 2010; Kuhnen et al., 2013). 
Many tryptophan depletion studies investigated its role in learn-
ing as well as affective processes. For example, modulation in 
5-HT levels by acute tryptophan depletion modulates the sensi-
tivity to punishment (for review, Cools et al., 2011). Although 
controversial, several reports indicate acute tryptophan depletion 
induces inappropriate switching after probabilistic punishments 
(i.e. too sensitive to punishments) (Chamberlain, et al., 2006; 
Cools et al., 2008; Robinson et al., 2012). Psychopharmacological 
methods can investigate both decrease and increase in 5-HT lev-
els on behavior. For example, 5-HT agonist psilocybin could 
reduce attentional performance in healthy human patients (Carter 
et al., 2005). At a more abstract level, 5-HT has also been found 
to promote prosocial behavior (Siegel and Crockett, 2013).

Cognitive models

Existing computational cognitive models focus on one or a few 
of 5-HT’s functions. Many of the models employ high-level rein-
forcement learning models such as temporal difference learning 
(Doya, 2002; Huys et al., 2016). There are models that suggest 
5-HT plays an antagonistic function with respect to that of dopa-
mine (Asher et al., 2010, 2013; Daw et al., 2002; Weng et al., 
2013; Zaldivar et al., 2010). Although there are experimental 
supports to these studies (Hebart and Glascher, 2015), more 
recent experimental studies have shown that this theory is incom-
plete, as there are complex interactions between both neuromod-
ulators (see above). In addition, some 5-HT receptors are found 
to inhibit dopamine release while others facilitate dopamine 
release (Alex and Pehek, 2007; Boureau and Dayan, 2011).

Other models have suggested that 5-HT plays more of a role 
in the scaling of future rewards (Doya, 2002; Schweighofer et al., 
2008; Tanaka et al., 2007). Specifically, in these models, 5-HT 
controls the timing of reward prediction signals, which is repre-
sented by the discount factors in reinforcement learning models 
(Doya, 2002). Functional MRI (Tanaka et al., 2007) and dietary 
tryptophan depletion (Schweighofer et al., 2008) studies support 
the role of 5-HT in controlling the timescale of reward prediction 
as suggested by Doya (2002). A more recent computational mod-
eling work has suggested that 5-HT projections to the striatum 
plays a role in risk computation, that is, computations related to 
reward variance (Balasubramani et al., 2014, 2015). These mod-
els were able to account for large behavioral datasets, including 
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the role of 5-HT in reward, punishment, and risk-based decision-
making, as reported in experimental studies (Homberg, 2012; 
Long et al., 2009; Murphy et al., 2009; Rogers, 2011).

Overall, cognitive models on 5-HT have been very successful 
in accounting for various animal and human neural data and deci-
sion-making behavior, and their changes due to drugs or psychi-
atric disorders. These models typically have fewer parameters 
than neuronal circuit models. However, a challenge would be to 
bridge it back to the more physiologically constrained neural cir-
cuit models.

Toward bridging across the scales
We have reviewed various experimental and computational 
approaches, from intracellular to human behavioral levels, and 
we have seen the complex functional roles played by 5-HT.  
A major contribution of this review is the synthesis and catego-
rization of a wide range of computational and mathematical 
models of 5-HT systems. Table 2 provides a summary of the 
discussed models. Clearly, a number of them are limited to a 
single level of organization. Hence, an integrated view of 5-HT 
functions is currently lacking (Nakamura and Wong-Lin, 2014). 
To make better sense of its multifaceted roles, new approaches 
are needed.

A potential direction would be to develop multiscale compu-
tational models that can bridge across multiple levels of descrip-
tions. The models at different scales have to be linked in a 
consistent way so that the information from a lower scale can be 
carried into the simplified model at a higher scale. The advan-
tages of such a computational approach are that they can inte-
grate experimental data at various levels and from separate 
sources, shed insights into the mechanisms across different lev-
els, and form predictions for future experiments.

As an example, suppose there was a research enquiry regard-
ing how the (e.g. oscillatory) dynamics of a neural network is 
affected in a certain brain function disorder, say major depressive 
disorder. A biophysically detailed neural network model can 
reveal how specific intracellular or genetic processes can influ-
ence it. Reduced versions of the network model can be rigorously 
mathematically analyzed and predictions can be made regarding 
how specific cognition and behavior (e.g. memory) are altered. 
Multiscale modeling is already used in many fields of natural 
sciences and engineering (E, 2011; Horstemeyer, 2009) and in 
biology and systems medicine (Qu et al., 2011; Schnell et al., 
2007). However, it has yet to be readily embraced in modeling 
neuromodulator systems.

Based on our review, we have already seen promising compu-
tational models that have bridged across multiple scales (italics 
in Table 2). For example, we have discussed 5-HT-based compu-
tational models that bridge from ion channels through neural net-
works to cognitive functions (e.g. Cano-Colino et al., 2013, 
2014; Wang and Wong-Lin, 2013; Wong-Lin et al., 2011, 2012). 
Such models can also incorporate neuronal diversity in the DRN 
(e.g. Wong-Lin et al., 2011, 2012) or targeted brain regions 
(Cano-Colino et al., 2013, 2014; Wang and Wong-Lin, 2013). 
Other similar modeling attempts had been focused more on the 
effects of other monoaminergic systems, namely, dopaminergic 
and norepinephrine/noradrenaline modulation, especially on cor-
tical computation (e.g. Brunel and Wang, 2001; Durstewitz and 
Seamans, 2002; Eckhoff et al., 2009, 2011).

One of the key ingredients, and indeed a major challenge when 
developing multiscale models, is to find essential components or 
behaviors at each scale that have to be retained and bridge to a 
higher scale. Otherwise, the overall model will become over-
whelming with details, and a conceptual understanding of mecha-
nisms will remain elusive. For instance, when there are multiple 
temporal scales co-existing, only certain biological variables (e.g. 
fast variables at the intracellular level of a 5-HT presynaptic ter-
minal) may be important to produce certain behavior (e.g. neu-
ronal activity dependent extracellular 5-HT level) at a higher 
scale, while leading to a lower dimensional model (e.g. Flower 
and Wong-Lin, 2014). However, in general it is not always clear 
cut what components need to be retained or ignored.

An advantage across many of the models discussed is their 
common mathematical ‘language’, in that they can generally be 
described by discrete (e.g. state transition algorithms in rein-
forcement learning) or more often, continuous (e.g. differential 
equations in neuronal circuit model) dynamical systems 
(Guckenheimer and Holmes, 1983; Strogatz, 2001). Thus, theo-
ries from dynamical systems can provide useful tools to model, 
analyze and unify various (e.g. emergent) phenomena and con-
cepts in neurobiological and cognitive systems (Finkel, 2000; 
Freeman, 2007; Rabinovich et al., 2007).

Given this advantage, we may be able to make use of well-
established dynamical model reductions methods, (e.g. center 
manifolds) (Guckenheimer and Holmes, 1983). For example, 
when certain compositions or dynamical variables of the system 
operate at relatively slower dynamics, the much faster dynamical 
variables can be assumed to have reached their quasi-steady 
states, or averaged out over time and spared the need to be 
updated over time (e.g. Ermentrout and Terman, 2010; 
Guckenheimer and Holmes, 1983; Izhikevich, 2007; Roxin and 
Ledberg, 2008; Wong and Wang, 2006). A simple but effective 
perturbation technique has been used to elucidate important time-
scales and strengths of relationships of substrates within the 
5-HT presynaptic terminal model, which subsequently led to a 
reduced low-dimensional model, which can be incorporated into 
the next (neuronal circuit) scale (Flower and Wong-Lin, 2014).  
A recent similar technique has also been applied to dopaminergic 
presynaptic terminals (Cullen and Wong-Lin, 2014, 2015). Thus, 
well-justified approximations can reduce the number of model 
parameters and complexity to enhance understanding of the 
essentials while allowing scalability across multiple scales and 
with more efficient computations.

Further, ‘mean-field’ techniques, originating from statistical 
physics (to bridge atomic interactions to thermodynamical prop-
erties), have been successfully used for analyzing the emergent 
dynamical behavior of neural systems (Amit, 1992; Amit et al., 
1985; Hopfield, 1982; Wilson and Cowan, 1972, 1973). Mean-
field approaches are excellent approximations for understand-
ing stationary states and linear (first-approximation) temporal 
responses of networks. Extended versions have now been used to 
investigate behaviors of sufficiently realistic noisy spiking neu-
ronal circuits, providing a means to connect from an ion channel 
to cognitive models while allowing conceptual understanding via 
dynamical systems theory (e.g. Brunel and Wang, 2001; Burkitt, 
2006a, 2006b; Eckhoff et al., 2011; Hasegawa, 2003; Renart 
et al., 2003). For example, Wang and Wong-Lin (2013) showed 
that it is possible to perform rigorous mathematical (stability) 
analysis of a system of heterogeneous populations of cortical 



1130 Journal of Psychopharmacology 31(9)

neurons co-modulated differently by 5-HT and dopamine. In 
another example, Joshi et al. (2017) proposed a promising 
mean-field modeling framework to bridge to large-scale brain 
circuit dynamics, which can link pharmacological mechanisms to 
neuroimaging studies. However, more advanced mean-field 
approaches that embrace heterogeneity in the system (e.g. 
Harrison et al., 2015; Ly, 2015; Nichola and Campbell, 2013) 
would be required to model the complex and heterogeneous 
5-HT system.

Crucial to the development of computational models and the-
oretical approaches are the availability of accurate experimental 
data. Despite decades of research linking 5-HT with its various 
functions such as emotional control, we still do not know what 
information 5-HT neurons signal nor how such signals are 
encoded. There are two reasons for such slow progress: (i) there 
is a lack of methods to record the activity of identified 5-HT neu-
rons during behavior, and previous attempts are largely based on 
neuronal electrophysiological characteristics; and (ii) recent 
work has shown that the midbrain raphe is more complex than 
anticipated, with multiple 5-HT neuron subtypes. Interactions 
within the raphe microcircuitry also remain poorly understood.

To overcome the above issues, technical advances to tag 
neurons with chemical and anatomical specificity would lead 
to further understandings of the roles of specific types of neu-
rons in the raphe (Cohen et al., 2015; Liu et al., 2014). 
Advanced data analytical (e.g. optogenetic) tools to manipu-
late serotonergic neurons would help refine current theories of 
their functions (Cohen et al., 2015; Fonseca et al., 2015; Liu 
et al., 2014; McDevitt et al., 2014; Miyazaki et al., 2014). 
Capturing the 5-HT system’s complexity will require large-
scale recordings of identified neurons in behaving animals, and 
the generation of large datasets. Advanced analytical data (e.g. 
machine learning) techniques, modeling, and interpretation of 
such datasets will be required (Gao and Ganguli, 2015; 
Helmstaedter, 2015; Huys et al., 2016). In human studies, elu-
cidating the connectivity changes due to 5-HT perturbations 
(e.g. drugs or gene alleles) could illuminate the whole-brain 
changes on behavior. Hence, effective/functional connectivity 
analysis of global brain activity such as dynamic causal mod-
eling, Granger causal analysis and machine learning may prove 
useful (e.g. Beliveau et al, 2015; Youssofzadeh et al., 2015a, 
2015b).

Table 2. Summary of the types of computational models. At each level of organization, models may span across multiple levels of organization. 
Italics: multiscale models.

Common scale of description Models Range of scales Mathematical/
computational 
descriptions

Single neuronal 
electrophysiology 
(membrane potential 
dynamics)

Tuckwell et al. (2015); Tuckwell and 
Penington (2014)

Ion channels to neuronal membrane 
potential

Differential equations

Wong-Lin et al. (2011, 2012) Neuronal membrane potential to 
behavior

Presynaptic terminal (5-HT 
synthesis, release and 
reuptake)

Best et al. (2010); Stoltenberg and Nag 
(2010)

Intracellular processes Differential equations

Flower and Wong-Lin et al. (2012) Intracellular processes and neuronal 
membrane potential

Bunin et al. (1998); Wood et al. (2014) Release-reuptake
Joshi et al. (2011) Release-reuptake to neural population 

dynamics
Signal transduction & 
modulated currents

Menziani et al. (2001); Reeves et al. 
(2003); Schmidt and Peroutka (1989)

Molecule/protein dynamics Differential equations, 
and other techniques in 
physics and chemistry

Pettigrew et al. (2005); Zhang et al. 
(2012); Zhou et al. (2014)

Intracellular processes Differential equations

Bertram (1993, 1994) Ion channel currents
Cano-Colino et al. (2014) Ion channel currents to behavior
Joshi (2014); Joshi et al. (2011; 2017) Release-reuptake to neural population

Neural circuit Jalewa et al. (2014); Joshi et al. (2011); 
Puzerey et al. (2014); Wang and Wong-
Lin (2013)

Microcircuit Differential equations

Cano-Colino et al. (2013, 2014); Maia and 
Cano-Colino (2015); Meeter et al. (2006); 
Wong-Lin et al. (2011, 2012)

Microcircuit to behavior

Joshi et al. (2017); Reed et al. (2013) Large-scale circuit
Cognition and behavior Asher et al. (2013); Balasubramani et al. 

(2014); Daw et al. (2002); Doya (2002); 
Weng et al. (2013); Zaldivar et al. (2010)

Behavior Algorithms, optimal/
Bayesian, and difference/
differential equations

Balasubramani et al. (2015) Neural circuit and behavior

5-HT: 5-hydroxytryptamine.
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In summary, we have reviewed current experimental and 
computational work on 5-HT across multiple scales. We have 
also suggested that a more holistic understanding of the 5-HT’s 
complex functions may require an integrated multiscale mode-
ling approach. With the availability of such multiscale models, 
one can rapidly test hypotheses, and provide model predictions 
that can be verified by future experiments. Such an approach 
could also illuminate future treatments related to brain disorders 
involving serotonergic dysfunctions, including anxiety, depres-
sion, schizophrenia and post-traumatic stress disorder. All of 
these will depend not only on advanced theoretical and computa-
tional techniques, but also on advanced experimental methods to 
generate better datasets and the systematic curation of the data.
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