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Abstract: The use of composite materials in several sectors, such as aeronautics and automotive,
has been gaining distinction in recent years. However, due to their high costs, as well as unique
characteristics, consequences of their heterogeneity, they present challenging gaps to be studied. As a
result, the finite element method has been used as a way to analyze composite materials subjected to
the most distinctive situations. Therefore, this work aims to approach the modeling of composite
materials, focusing on material properties, failure criteria, types of elements and main application
sectors. From the modeling point of view, different levels of modeling—micro, meso and macro,
are presented. Regarding properties, different mechanical characteristics, theories and constitutive
relationships involved to model these materials are presented. The text also discusses the types of
elements most commonly used to simulate composites, which are solids, peel, plate and cohesive,
as well as the various failure criteria developed and used for the simulation of these materials.
In addition, the present article lists the main industrial sectors in which composite material simulation
is used, and their gains from it, including aeronautics, aerospace, automotive, naval, energy, civil,
sports, manufacturing and even electronics.

Keywords: anisotropic material; orthotropic material; transverse isotropic material; multiscale approaches;
failure criteria; plate element; shell element

1. Introduction

Technological advancements have led to an increase in the demand of special materials with
unique properties that cannot be found in metal alloys, ceramics or polymers blends [1,2].

To supply these needs, composite materials were developed. They are made of two or
more distinctive and immiscible materials with different mechanical, physical and/or chemical
properties [1,3–5].

Composites are considered heterogeneous and multiphase engineered materials, in which the
matrix is responsible for binding the reinforcement together and transferring the loads between the
fibers, while the reinforcement adds rigidity and obstructs crack propagation in the structure [1,6–9].

They can be classified according to the matrix (metallic, polymeric and ceramic) or the type of
reinforcement used (fibers or particles) [1,7,8,10]. The ones with a polymeric matrix and continuous
fibers have great relevance and significance, due to their excellent mechanical properties, good thermal
stability and low density [11].
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Fiber reinforcements can be either unidirectional (UD) (Figure 1a) or bidirectional (Figure 1b).
Unidirectional fibers have maximum stiffness and strength along the fiber direction and minimal
properties in the transverse direction, exhibiting anisotropy. Bidirectional reinforcements have
maximum stiffness and strength in the fiber direction [12,13]. Unidirectional fibers can be aligned on
a thin plate; pre-impregnated with resin; and used to define the stacking order and layer design for
composite laminates (Figure 1c). The bidirectional reinforcements are woven fabrics, and there are
several types of weaving [12,13].
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[14–17]. 
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quasi-isotropic laying-up sequence [0◦/45◦/90◦/−45◦] 6S. Reproduced with permission [13].

Anisotropic materials show different mechanical properties in each direction; i.e., they are not
symmetrical with respect to all their planes or axes. Orthotropic materials are a subset of anisotropic
materials that show a symmetry between two planes, in general, the plane parallel to the fibers has
significantly superior properties compared to the orthotropic perpendicular plane. Wood is a good
example of an orthotropic material; its properties perpendicular to the fiber axis (radial and tangential)
are worse than its parallel ones. In this case, the properties of radial and tangential directions are not
equal, but similar, being equally inferior to the longitudinal direction.

Composites have a set of performance characteristics that their constituents cannot achieve by
themselves individually [5,7]. Due to these combinations, it is possible to obtain lightweight design
with high strength and stiffness; some other key characteristics are high-temperature, corrosion and
impact resistance. Together, said things make composites more interesting, useful and attractive
alternatives [14–17].

Because of these characteristics, composites are widely applied in automotive, aeronautical,
petrochemical, naval, electro-electronic, civil construction, energy, biomedical, sports and
manufacturing industries, among others [1,5,14,15,18–20]. Their applications can be seen in several
industrial sectors; however, they are expensive and difficult to characterize due to their heterogeneity
and laminate configurations, which affect their final properties.

Owing to this difficulty and their toughness, to optimize and improve structural projects, as well
as to understand better the behaviors of these materials, some researchers resort to computational
simulations. Through the use of the finite element method (FEM), it is possible to understand
the damages caused in the matrix, the fiber and their interface when the composite is exposed
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to severe conditions, such as static and dynamic loading, different temperatures and pressures,
among others [21,22].

Analytical models are not always able to sufficiently address all failure phenomena that contribute
to composite performance [23]. Different failure mechanisms play important roles during the
service-lives of composite materials; for example, fracturing of the reinforcement is a partial detachment
of the interface, which results in the nucleation and growth of voids, and their coalescence in the matrix.

According to Lasri et al. [24], damage mechanisms in composite materials generally include four
types of failure modes: transverse matrix fracture, fiber–matrix interface detachment, fiber rupture and
layer delamination. In general, transverse fracture of the matrix is the first damage process to occur,
since the matrix has lower failure stress compared to all laminate constituents. Fiber–matrix interface
detachment can accompany transverse fracture of the matrix and facilitate its progression [24,25].
Transverse failure can happen without breaking any longitudinal fiber. Such failures are parallel to the
fibers and lead to a decrease in stiffness. Thus, damage criteria are required to indicate the onset of
failure and damage orientation.

Note that when applying FEM to composites, it is important to consider some particularities
of these materials, such as the constitutive law; modelling and failure criteria associated with the
composites; and the type of elements used to model the objects.

2. Modelling

For the simulation of composites, three primary approaches are usually applied, those being:
(a) a micromechanics-based approach, (b) an equivalent homogeneous material (EHM) based approach
and (c) a combination of the two previous approaches. Notice that each method has advantages and
disadvantages [23,26,27].

According to Dandekar and Shin [23] the micromechanical based approach describes the material
behavior locally, and thereby, it is possible to study local defects, such as fiber–matrix detachment
and complex deformation mechanisms, especially in fiber reinforced composites. However, the time
required to solve a simulation is very high, because the mesh used is very fine compared to the
EHM model.

The EHM approach reduces simulation time, but it is not able to predict local effects; e.g., damage at
the fiber–matrix interface [23,28,29]. Dandekar and Shin [23] said that it is possible to take advantage
of the two models, and their ability to predict shear force and sub-surface damage.

Venu Gopala Rao, Mahajan and Bhatnagar [30] applied this methodology in their work.
They studied the machining of the UD-GFRP composite’s chip formation mechanism. For that,
the portion of the work material adjacent to the cutting tool was modelled—fiber and matrix
separately—whereas portions away from the cutting tool were modelled as EHM (Figure 2).
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For them, the most important thing was to study the cutting zone and that is why they modelled
this region with the specification of a composite. As for the tool and the region around the cutting
zone, single results were not so important to them, those being analyzed with the EHM model.

Jones [31] noted that these approaches define how rigidity and strength properties are chosen
for the project materials. A composite material’s behavior can be separated into the micro and the
macroscale, defined as follows:

â Microscale—study the composite material’s behavior, for which interactions from constituent
materials are examined in detail as defined by heterogeneous material behavior.

â Macroscale—study the composite material behavior considered to be homogeneous, and the effects
of all constituent materials are detected only by the composite material’s mean apparent properties.

Tenek and Argyris [22] went further in their conjectures; they cited that these questions address
two fundamental problems: how to define the sheet properties using microscale procedures, and how
to apply these properties on a macroscale for a global analysis.

At the microscale there are many difficulties due to the uncertainties that may require stochastic
or statistical models. The objective of most approaches is to define the composite modules from all
constituent materials or the strengths of the composite in terms of its phases. Therefore, some basic
approaches include using the materials’ mechanisms and elasticity theories based on the repetition of a
unit cell or some other representative volume, assuming that there is a perfect bond between fibers and
matrix, which may not be true most of the time. Frequently, micro-mechanical theories are validated
with experimental work [22,31,32].

In Figure 3 is shown a structural evolution scheme for the hierarchy of a unit cell starting from a
ply to a global composite structure.
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In the simulation study of composites, it is possible to evaluate properties from nanoscale to
macroscale, or in other words, to apply the multiscale technique, which consists of simulating the
behavior of a composite through multiple time and/or length scales [34–36]. Some applications of
these techniques are mainly focused on microstructural and mechanical property simulations of many
classes of materials, including nanocomposites [35,37–40].
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Usually, both micro and macroscale approaches are extensively applied, but with the increase in
nanomaterials as polymer composite reinforcements, nanoscale has been gaining ground. Coupled with
the need for a better understanding of damage progression, mesoscale is thus an optimal option
(Figure 4).

Polymers 2020, 12, 818 5 of 59 

 

 
Figure 4. Schematic view of a four-scale woven fiber composite with polymer matrix: In computational 
modeling of this structure, each integration point at any scale is a realization of a structure at a finer scale. 
Due to the delicacy of materials at fine-scales, RVEs at lower scales may embody more uncertainty than 
those at higher scales. To quantify the uncertainty in a macroscopic quantity of interest, the relevant 
uncertainty sources at the lower scales should be identified for uncertainty propagation. Reproduced 
with permission [41]. 

Multiscale techniques improve classical method solutions and analysis; i.e., solving local problems 
and taking this information from the smallest scale to the highest level, in a hierarchical process, through 
homogenization technique [42]. Aboudi, Arnold and Bednarcyk [34] explain that the homogenization 
technique provides the properties or responses of a "structure" (higher level) when given the properties 
or responses of the structure "constituents" (smaller scale). In summary, information from lower scale 
levels is used by higher scale levels to investigate the effects of constituents and microstructure on the 
mechanical properties, and those of the structural performances of the parts on macroscale properties 
[43,44].  

Shaik and Salvi [45] commented that in studies of large structures, which have millions of 
components; materials and nonlinear structures; and many joints, it is impossible to model all of these 
details due to computational limitations. In such a case, a multiscale modelling approach is used when 
only a particular area of interest needs to be modeled with precision and in detail, saving a lot of time 
and computing power. However, the authors emphasized that these methodologies require experience 
and careful judgment by the designer 

In this approach, a geometry, with a repeating unit cell (RUC) and all of it constituents, is developed 
to build a representative volume element (RVE), along with its components and their interactions, to be 
modeled. The structure is shaped based on RUC/RVE and analyzed on different length scales with the 
desired confidence level, adding damage and failure aspects. The results undergo qualitative and 
quantitative evaluations from the material, configurational and architectural perspectives [34,45]. 

Shaik and Salvi [45] explained that the project can be divided into several scale sizes, depending on 
the confidence of the associated scale theory and the level of interest; i.e., the scale could be divided into 
micro (RUC), meso (RVE) and macroscale. At the micro level, the study focuses on the fiber: 
composition, geometry and orientation within the RUC. At meso level, mechanical characteristics of the 
material built from many of RUCs are studied, which produce homogeneous properties independent of 
any final effect and influence from the properties of the components. Finally, macro level includes 
mesoscale properties when the laws of continuous mechanics are applied. By connecting these scales, 
the performances of macroscale structures can be related to microscale individual constituents, such as 
the fiber, the resin and their interface. 

Figure 5 presents a schematic of multiscale modeling used to analyze the blade of a wind turbine, 
showing the use of the microscale, mesoscale and macroscale, and the example of the application of RCU 
and RVE of a unidirectional laminate. 

Figure 4. Schematic view of a four-scale woven fiber composite with polymer matrix: In computational
modeling of this structure, each integration point at any scale is a realization of a structure at a
finer scale. Due to the delicacy of materials at fine-scales, RVEs at lower scales may embody more
uncertainty than those at higher scales. To quantify the uncertainty in a macroscopic quantity of interest,
the relevant uncertainty sources at the lower scales should be identified for uncertainty propagation.
Reproduced with permission [41].

Multiscale techniques improve classical method solutions and analysis; i.e., solving local problems
and taking this information from the smallest scale to the highest level, in a hierarchical process,
through homogenization technique [42]. Aboudi, Arnold and Bednarcyk [34] explain that the
homogenization technique provides the properties or responses of a "structure" (higher level) when
given the properties or responses of the structure "constituents" (smaller scale). In summary, information
from lower scale levels is used by higher scale levels to investigate the effects of constituents and
microstructure on the mechanical properties, and those of the structural performances of the parts on
macroscale properties [43,44].

Shaik and Salvi [45] commented that in studies of large structures, which have millions of
components; materials and nonlinear structures; and many joints, it is impossible to model all of these
details due to computational limitations. In such a case, a multiscale modelling approach is used when
only a particular area of interest needs to be modeled with precision and in detail, saving a lot of time
and computing power. However, the authors emphasized that these methodologies require experience
and careful judgment by the designer.

In this approach, a geometry, with a repeating unit cell (RUC) and all of it constituents, is developed
to build a representative volume element (RVE), along with its components and their interactions, to be
modeled. The structure is shaped based on RUC/RVE and analyzed on different length scales with
the desired confidence level, adding damage and failure aspects. The results undergo qualitative and
quantitative evaluations from the material, configurational and architectural perspectives [34,45].

Shaik and Salvi [45] explained that the project can be divided into several scale sizes, depending
on the confidence of the associated scale theory and the level of interest; i.e., the scale could be divided
into micro (RUC), meso (RVE) and macroscale. At the micro level, the study focuses on the fiber:
composition, geometry and orientation within the RUC. At meso level, mechanical characteristics of the
material built from many of RUCs are studied, which produce homogeneous properties independent
of any final effect and influence from the properties of the components. Finally, macro level includes
mesoscale properties when the laws of continuous mechanics are applied. By connecting these scales,
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the performances of macroscale structures can be related to microscale individual constituents, such as
the fiber, the resin and their interface.

Figure 5 presents a schematic of multiscale modeling used to analyze the blade of a wind turbine,
showing the use of the microscale, mesoscale and macroscale, and the example of the application of
RCU and RVE of a unidirectional laminate.Polymers 2020, 12, 818 6 of 59 
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Kwon, Allen and Talreja [47] created flowcharts (Figures 6 and 7) exemplifying what happens at
each of the scales, where the microscale basically approaches the individual fiber and matrix–fiber
interfaces, the mesoscale approaches the individual layers and the macroscale considers effect of the
complete laminate homogeneously [48].Polymers 2020, 12, 818 7 of 59 
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arrangement was used to represent the behavior of the UD material of the fiber yarn. 

It is assumed that the fibers are arranged in a uniform distribution with the measured volumetric 
fraction and the same average filament diameter. In addition, the mesoscale unit cell (Figure 8b) is 
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In FE analysis, periodic boundary conditions are used to eliminate boundary effects. 

Figure 6. Hierarchy of multiscale analysis for a unidirectional fiber reinforced composite.

Initially, Kwon, Allen and Talreja [47] developed the flowchart for unidirectional composites
(UD) (Figure 6). First, in the "Fiber Module," the properties of the fiber and matrix materials, and the
geometric properties, are correlated to defining the composite properties. These properties are used for
each blade with its fiber orientation relative to the global coordinate system [47].
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Figure 7. Multiscale analysis hierarchy for a two-way fiber reinforced composite.

The "Laminating Module" calculates the properties of the laminated composite, so these properties
are used for finite element analysis of the structure, completing the stiffness loop. The inverse order is
used to decompose the stress and deformations from the macro level to the micro-level; i.e., stress and
deformations in the fiber and matrix materials.

After the calculation of microscale stresses and strains, the damage and/or failure criteria are
applied. Because damage and failure are described at the constituent level, damage and failure modes
are simplified and based on physics. At the microscale, there are three possible damages and failures:
fiber rupture, matrix failure and interface detachment. Different failure or damage criteria can be
applied to these three damage modes. At the macro level, there are more complex damage modes,
such as delamination. Only the location and orientation of the damage or failure will dictate the
difference between the macroscale failure modes. As a result, the damage and failure modes can be
understood in unified and simplified concepts [47].

For the woven fibers (MD), the "Fabric Module" is added which relates the properties of the UD
fiber to the effective properties of the fabric (Figure 7). The purpose of this module is to calculate the
properties of the fabric using information from the UD fibers and woven fabric and the decomposition
of the deformations and tensions in the fibers [47].

Mao et al. [43] demonstrates in his work how to apply this methodology. The authors started
the modelling from the micromechanical computation (Figure 8a), for which a unit cell with a square
arrangement was used to represent the behavior of the UD material of the fiber yarn.

It is assumed that the fibers are arranged in a uniform distribution with the measured volumetric
fraction and the same average filament diameter. In addition, the mesoscale unit cell (Figure 8b)
is modelled to describe the woven architecture of the fiber yarns and the composite resin pocket.
Two types of fiber yarn are modelled: weft yarn (longitudinal direction) and warp yarn (transverse
direction). In FE analysis, periodic boundary conditions are used to eliminate boundary effects.

As shown in Figure 9, the strained material properties of the macroscale model are obtained from
micromechanical and mesomechanical analyses.

According Tian et al. [49], mechanical behaviors of heterogeneous materials are often described
by using RVEs in the FE. The author mentioned two theories for RVE: first, Hill’s theory, for which the
RVE must be large enough to contain a large number of fibers in the heterogeneous materials and be a
statistical representation of the heterogeneous materials. The effective properties derived from the
RVEs represent the real properties of the material on the macroscopic scale, which is commonly known
as the micro-meso-macro principle, since scale separation is necessary [50]. Alternatively, in Drugan
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and Willis’s theory, the RVE must contain the smallest volume of composites for which the mean
mechanical responses remain constitutively valid [51].Polymers 2020, 12, 818 8 of 59 
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Tian et al. [49] pointed out that FE with RVEs is not common for modeling composites reinforced by
fibers randomly distributed on a microscale, because these micro-architectures are much more difficult
to model sometimes due to the high-volume fractions and large fiber aspect ratios to consider [52,53].
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Therefore, in order to numerically model composites reinforced by spatially randomly discontinued
fibers, it is important to generate RVEs with high fiber volume fractions and large fiber proportions.

The literature mentions two approaches as the most usual ones, namely, the random sequential
adsorption (RSA) algorithm and the Monte Carlo (MC) procedure, for generating the artificial RVEs
with randomly distributed fibers [49,51–53]. However, according to Lu, Yuan and Liu [50], with these
approaches it is difficult to generate RVEs with high fiber aspect ratios (FARs) and fiber volume
fractions (FVFs). A new approach to try to circumvent this situation is the use of the automatic
searching and coupling (ASC) technique, in which it is possible to generate the 3D RVE to analyze the
composite with random fibers with a wide range of FARs [50,51,54].

Lu, Yuan and Liu [50] say: “compared with the conventional model, the present model is
easier to generate and more time-saving as it eliminates the drawback of free meshing. In addition,
the ASC technique can remove the additional stiffness introduced by the embedded element technique,
and hence can improve precision and convergence. Moreover, our technique facilitates the direct
application of the 3D periodic boundary conditions to the RVE.” See Figure 10.
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vie, (c) side view, and (d) a fiber is described by the center point C, and two Euler angles θ and ϕ.
Reproduced with permission [50].

Cohesive Zone Model

Another method that has been widely applied in composite materials is the cohesive zone model
(CZM). According to Barbero [27] the CZM is based on the assumption that the stress transfer capacity
between the two separating faces of delamination is not lost completely at damage initiation, but rather
is a progressive event governed by progressive stiffness reduction of the interface between the two
separating faces (Figure 11).

The models are typically expressed as a function of normal and tangential tractions in terms of
separation distances. The forms of the functions and parameters change from model to model [55–58].

CZM has been used previously to study crack tip plasticity and creep under static and fatigue
loading conditions, and in polymer cracks, adhesive joints, interface cracks in biomaterials and
crack bridging due to fibers and ductile particles in composites [55,58,59]. Currently, CZMs are
increasingly being used to simulate discrete fracture processes in various systems of homogeneous
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and non-homogeneous materials [55–57,60], with great emphasis on understanding the evolution of
delamination in laminates [55,59,61–65].
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According to Roy [58], in the presence of a large fracture process zone near the crack tip, the basic
assumptions of the mechanics of linear elastic fracture are no longer valid. Specifically, in some
polymers, such as hardened epoxies, the occurrence of void nucleation and growth ahead of the crack
tip results in a damage zone that is not free from traction. Additionally, for a crack in a composite
with a fiber-reinforced polymer matrix, the fiber bridge may be present within the damage zone.
Therefore, in these cases, a cohesive layer modelling approach would be more accurate at accounting
for non-linear processes that occur within the "damage zone" [58]. Furthermore, the interface modelling
using CZM has a distinct advantage compared to other global approaches (e.g., shear lag model),
in that it is based on a micromechanical method [55].

The cohesive zone model was proposed by Barenblatt in the 1960s based on Griffith’s theory of
fracturing, in order to investigate the crack propagation in brittle materials. He assumed that finite
molecular cohesion forces exist near the crack faces and described the crack propagation in perfectly
brittle materials using his model. Then, Dugdale extended this concept to the perfectly plastic materials
by postulating the existence of a process zone at the crack tip [55,57,58,66,67]. Roy [58] mentions that
in the coming years, many uses of CZMs were used to better understand the functioning of cracking
in laminated composites, with the objective of capturing the Burridge-Andrew mechanism using the
material point method.

Using the cohesive modelling, no additional properties are necessary to simulate crack growth.
Only the cohesive law is needed to analyze both the initiation and growth of a crack. Typically,
cohesive elements in FEM codes follow a predefined traction separation law that simulates
the crack initiation and propagation. Another advantage of CZMs is that these models can
simulate different types of failure mechanisms, such as fiber-matrix debonding and interlaminar
delamination [58,61,62,65,68,69].

Chaboche [57] mentions that the cohesive model considers the presence of a process zone at the tip
of the crack, with an appropriate constitutive law, relating the normal tensile stress (T) and the relative
displacement (u) between the two sides of the crack. The relation between T and u is characterized by
a softening law (decreasing function) and the area under the stress-displacement response corresponds
to the fracture energy Gc of the material.

According to Khoramishad et al. [67] the cohesive zone model (Figure 12), combines a
strength-based failure criterion to predict the damage initiation and a fracture mechanics-based
criterion to determine the damage propagation.
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3. Constitutive Laws of a Composite Material

In general, the constitutive equation of a linear elastic solid is known as the generalized Hooke’s
Law, which relates nine Cauchy stress components with nine deformation components, giving a total
of eighty-one constants [31,70–72].

Equations (1) and (2) present the combination of elasticity constants, where σi j represents the
stress component, εkl the strain components, Qi jkl the stiffness matrix and Si jkl the compliance matrix

of the material, those being inversely related as follows: [S] = [Q]−1.

σij = Qijkl εkl (1)

εkl = Sijkl σij (2)

According to Bednarcyk, Aboudi and Arnol [73], and Bauchau and Craig [74] the physical
phenomena such as heat conduction, diffusion, electric permittivity, magnetic permeability and electric
conductivity are governed by the material constitutive laws. These constitutive laws characterize the
mechanical behavior of a material and consist of a set of mathematical idealizations of the observed
behavior [74].

3.1. Anisotropic Material

Due to the growing importance of composite materials, the linearly elastic behavior of anisotropic
materials must be understood. The physical properties of anisotropic materials are directional; i.e.,
the physical response of the material depends on the direction in which it acts [74].
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According to Soriano [75] and Daniel and Ishai [72], a linear anisotropic material has a matrix
with independent elastic properties, which, in turn, make the characterization very difficult. In general,
the stiffness matrix has 36 independent coefficients (Equation (3)), owed to the symmetry between σi j
and σ ji, and between εkl and εlk; hence the reduction from 81 to 36 elastic constants [3,31,70].
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However, the symmetry requirement for anisotropic materials is reducing the elastic components
to 21, by the relation Qi j = Q ji [3,31,70,74]. Azevedo [71] pointed out that elastic properties required to
define an anisotropic material can be represented by stress–strain ratios, the main coefficients being:
longitudinal and transverse moduli of elasticity and the Poisson’s coefficient. Equation (4) shows
the generalised mathematical representation of Hooke’s law for anisotropic materials, where E is the
longitudinal elasticity modulus or Young’s modulus, G is the transverse modulus of elasticity or shear
modulus, υ is the Poisson’s coefficient and ρ is the angular/linear deformation.
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For Vanalli [76] the failure analysis of structures made out of anisotropic materials is complex.
The author emphasized that in these cases it must be assumed that the failure is caused by normal and
shear stresses, since failure can occur due to different sets of stress acting on the element.

3.2. Orthotropic Material

Comparing an orthotropic material with a generally isotropic theory, it is observed that the first
one presents three symmetry planes orthogonal to each other—x1 x2, x1 x3 e x2 x3, thereby reducing
from 21 to 9 the number of independent coefficients [3,31,70–72,77]. The reasons for that are:

â The angular deformations are independent of normal stress;
â Linear deformations are independent of tangential stresses;
â Each tangential tension causes only angular deformation in the plane in which it acts.

Equation (5) shows the generalised representation by Hooke’s law for orthotropic materials, where
E is the modulus of longitudinal elasticity or Young’s modulus, G is the cross modulus of elasticity or
shear modulus and υ is the Poisson coefficient [71].
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When considering a composite reinforced with unidirectional fibers, it would be automatically
classified as an anisotropic material because there is no symmetry between the planes. If we analyse
the thickness, we can see that it is much smaller in size than any other plane dimension. Because of
this, many researchers consider unidirectional laminates as orthotropic materials, taking into account
the plane stress state, according to the hypotheses shown in Equation (6) [70].

σ3 = τ23 = τ31 = 0 (6)

3.3. Transverse Isotropic Material

A transverse isotropic material can be defined as an orthotropic material that presents isotropy
in one of the planes of symmetry, which means it has the same properties in all directions in this
plane [31,71,72,74].

Comparing a transverse isotropic material with a generally orthotropic material, it is observed that
in transverse isotropic materials there is a symmetry between the planes x1 x3 and x1 x2, reducing nine
to five independent coefficients. According to Azevedo [71] beyond the considerations for orthotropic
materials, it can be added:

â The linear deformations in the plane x2 x3 caused by the normal stress σ11 are equal;
â The linear deformations ε22 and ε33 caused by the normal stress σ22 are equal to the deformations

ε33 and ε 22, respectively, caused by a tension σ22 = σ33;
â Each tangential tension only causes angular deformation in the plane in which it acts;
â The angular strain γ23 caused by a stress σ 23 is equal to an angular strain γ13 caused by

stress σ13 = σ23.

Equation (7) presents the generalised representation by Hooke’s law for transverse isotropic
material, where E is the modulus of longitudinal elasticity or Young’s modulus, G is the transverse
modulus of elasticity or shear modulus and υ is the Poisson coefficient [71].
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4. Failure Criteria

According to Kaw [3] the success when using a composite structure is related to its efficiency
and safety. For this, some criteria were adopted to identify possible failures associated with a
component. For Ochoa and Reddy [78] and Jones [31] and Kaw [3], a failure criterion aims to provide a
comprehension of the effects caused by combined loads (double or triple stress state) in the structure,
indicating when there is a local or global failure. For Kaw [3], in general, the theories are related to
normal and shear forces of the laminate, defining the stress states in which the failure occurs.

According to Jones [31] and Kaw [3], failure criteria were initially created for isotropic materials,
where maximum normal and shear stresses of the material were found when the maximum stress was
greater than the last force, indicative of material failure.

Among many failure criteria relevant to isotropic materials are the maximum normal stress
(Rankine), maximum shear stress (Tresca), maximum normal strain (Saint–Venant) and maximum
strain theory (Von Mises) [3,31,72,79]. Feng [80] and Kaw [3] cite that based on these theories, the failure
criteria for anisotropic and orthotropic materials were developed; based on the orientation of the fibers,
four parameters of normal resistance and one of shear resistance are considered, making a total of five
fundamental resistance parameters for the use of the failure criterion (Figure 13).
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The failure theory problem of an orthotropic sheet to a certain extent is identical to the isotropic
one, which in this case is the prediction of when a sheet is submitted to a biaxial or triaxial stress state,
using resistance data obtained from uniaxial experiments [81].
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Currently, there are several failure criteria for composites: Hill, Tsai–Hill, Tsai–Wu, Hashin-Rotem,
Hashin, maximum stress, Hoffman, maximum strain, Hou, Puck–Schürmann, Chang-Chang, Linde,
LaRC03, LaRC04, Maimí, Hart-Smith, Yeh-Stratton and others [16,82–88].

According to Mendonça [81], some of these criteria are of common use and well-established in
the literature. Normally, these criteria are characterized by ignoring any aspect from any physical
process involved in the failure, considering only macroscopic effects observed in the standard specimen.
The most widely-used failure criteria are the maximum stress, Tsai–Hill, Tsai–Wu, Hashin and
Puck–Schürmann (Table 1).

Table 1. Most common failure criteria for composite materials.

Failure Criteria Formula References

Maximum Stress −Xc < σ1 < Xt; −Yc < σ2 < Yt; |τ12| < S [32,65,72,83,89–109]

Tsai–Hill σ2
1

X2 +
σ2

2

Y2 −
σ1 σ2

X2 +
τ2

12

S2 ≤ 1 [26,28,82,85,87,105,106,110–124]

Tsai–Wu F1σ1 + F2σ2 + F6τ12 + F11σ2
1 + F22σ2

2 + F66τ2
12 + 2F12σ1σ2 + F16σ1τ12 + F26σ2τ12 ≤ 1 [82,83,85,87,106,111,122,125–147]

Hashin
(
σ1
XT

)2
+

(
τ12
S12

)2
= 1;

(
σ2
YT

)2
+

(
τ12
S12

)2
= 1; σ1 = −Xc;

(
σ2

2S23

)2
+

[(
YC

2S23

)2
− 1

]
σ2
YC

+
(
τ12
S12

)2
= 1 [24,83,85,87,93,104,105,107,122,127,148–163]

Puck–Schürmann ∅MC =
(

tL
SL−ηLtN

)2
+

(
tT

ST−ηTtN

)2
[84,106,155,164–178]

The maximum stress criterion, based on Rankine’s theory, is not an interactive criterion; i.e., it does
not consider the combined effects of the various components of the tensor. This criterion provides for
the rupture when one of the tensor components arrives at the corresponding tensile stress [179,180].

Hill, in 1950, based on the von Mises criterion, established one of the first failure criteria for
anisotropic materials, which is a generalisation of the flow behavior for isotropic materials [181].
Although it is a more general criterion, it has as a drawback: the determination of several parameters
to establish the complete equation of the model. In 1965, Tsai proposed a modified Hill criterion where
he quantified the traction and compression inequality for orthotropic materials, which was called the
Tsai–Hill criterion [181]. For several authors, the Tsai–Hill criterion is one of the best and most widely
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used failure criteria for laminates because it considers the interactions between the stress components;
however, this criterion is not invariant in relation to the coordinate system; therefore, only orthotropic
materials should be applied [3,31,81,179,182,183]. Despite being considered one of the best failure
criteria, many consider that this criterion has several deficiencies in its theoretical basis [81,179].
Mendonça (2005) cites that there are basically three deficiencies in Tsai–Hill’s theory; namely:

â It does not intrinsically consider differences in tensile and compressive strength;
â It does not present good results in the state of loading by compression in the three main axes;
â It supposes that a hydrostatic state of stresses cannot cause failure—in the case of anisotropic

materials, a hydrostatic state of stress causes shear deformation and failure.

Tsai and Wu in 1971 presented a criterion based on the Tsai–Hill criterion, aiming to increase the
number of terms in the Tsai–Hill failure criterion equation, to better approximate the experimental
data, considering a two-dimensional stress state [81,181,182]. The Tsai–Wu criterion is an interactive
criterion, which provides for component rupture due to the combination of tensions acting on the
part [179,180,183]. In addition, this criterion, in its three-dimensional form, takes into account the effect
of the hydrostatic component of the stresses differently from the previously-described criteria [184].
The interactions between the stress components are independent of the material properties. However,
since it is not a failure criterion based on physical phenomena, it can predict the occurrence of the
damage, but cannot distinguish between the different failure modes; it can only predict whether or not
the failure occurs in the structure [81,180,183,184]. The Tsai–Wu criterion became one of the most used
criteria, and to this day several works are developed based on the same. [181].

Hashin, in 1980, proposed a failure criterion divided into subcriteria, for failure in
unidirectional fiber reinforced sheets—transversely isotropic—based on the quadratic polynomial of
tensions [81,149,150,180–182,185]. Differently from the Tsai–Hill and Tsai–Wu criteria, which do not
allow an identification of failure modes; the Hashin criterion considers modes of failure of the fiber and
matrix, distinguishing between tensile and compression loads, addressing four main modes: traction
and compression of the fibers and matrix [81,183,185]. According to Laurin, Carrere and Maire [186],
the historical importance of this criterion is that it started a different way of designing failure criteria
for composite materials. Hashin [150] first identified the predominant failure modes, and subsequently
the variables associated with these modes, and then proposed the interactions between the variables
involved in each failure mode. Despite the wide use of failure criteria, they present many difficulties
regarding the accuracy of the results, because of undesired failure modes; plastic deformations and
geometric nonlinearity of the parts; the effect of the residual tensions of the composite fabrication;
and dispersions in the experimental results due to the heterogeneous nature of the materials [179].

Puck followed the failure theory framework of Hashin and proposed an elaborate scheme
for implementation of his theory in Puck and Schürmann. As in Hashin, Puck’s theory (Puck,
and Puck and Schürmann) recognizes a failure in UD composites to be in fiber failure (FF) and
inter-fibre failure (IFF) modes [167,187–189]. For fiber failure, there are two modes of compression
and traction. In the case of inter-fiber failure, there are Modes A, B and C, which include
matrix fracture or fiber-matrix displacement. The inter-fiber failure modes were based on the
Coulomb–Mohr’s fracture hypothesis which is appropriate for brittle fracture behavior of composite
materials, wherein failure on a plane occurs when certain resistances, related to its cohesion and internal
friction, are overcome [93,164,187,190]. Acoording to Wang and Zhao [165], Puck’s criterion has become
a mainstream failure criterion for predicting responses of a composite subjected to impact loads.

Failure criteria are used to determine when material failure will occur. This concept can be applied
in several areas, such as for mechanical tests, manufacturing processes, corrosive environments, etc.;
for mechanical tests (Figure 14) and machining processes (Figure 15), they are the most used ones,
where the criterion is combined with the material property degradation rule for the failure analysis.
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5. Types of Elements Applied in Composite Modelling

For the analysis of a component, it is necessary to create a mesh on it [192]. The mesh is composed
of elements and nodes. While the elements are subdivisions of the analyzed structure, the nodes are
the connections of these subdivisions [21,193]. There are several types of elements; for example: bar,
beam, columnar, triangular, quadrilateral, plate, shell, solid, etc. [21,194,195]. However, regarding an
efficient and effective analysis for composite materials, there are four types mostly chosen: solids,
beam, plate and shell.

Solid elements are the least used one for composites, because they require a model with many
layers or a costly and time-consuming full-size structure, becoming consequently, unfeasible [196].
Besides these reasons, if the laminate thickness is very thin, layers constructed with solid elements
can result in ill-conditioned equations. These factors lead to the use of other elements with lower
computational demand and well-conditioned equations.

The beam element can be defined as having one of its dimensions larger than the others. One of
the axes is defined along the longer dimension, and a cross-section taken perpendicular to this axis is
assumed to vary smoothly along the beam length [74].

According to Bauchau and Craig [74] civil engineering structures often consist of an assembly
or grid of beams with T or I-shaped cross-sections. A large number of machine parts are beam-like
structures as well: lever arms, shafts, etc. Finally, several aeronautical structures such as wings and
fuselages can also be treated as thin-walled beams.

Bauchau and Craig [74] cited that long and slender aircraft wings can be analyzed, as a first
approximation, like beam structures, but a more refined and detailed analysis should treat separately
the upper and lower skins of the wings as thin plates or shells supported by ribs and longerons,
or stiffeners. Nevertheless, aircraft wings with small aspect ratios cannot be treated as beams because
two their dimensions are larger than their thicknesses. But most of the time they can often be
represented as plates. The aircraft fuselage is also constructed of thin-walled structures stiffened with
ribs and longerons, and the thin-walled portions between the stiffeners can be drawn as thin plates.
Last but not least, thin-walled beams can be modelled as plates when considering a localized behavior
induced by attachments or supports.

Both plate and shell are considered two-dimensional or surface elements because two their
2D dimensions (length and width) are much larger than their thicknesses, which are given by the
number of layers in their laminates [21,22,27,75,77,196–201]. Because of this, even with classical
theory mathematically differentiating these two elements, the terms plate and shell are often used
interchangeably, assuming that a plate element is flat, but when curved, it would become a shell
element [21,74,197,198].

According to Barbero [77] whenever the thickness coordinates are eliminated from the general
equation, they create a 3D problem in a 2D design. The author even mentioned that modelling laminate
composites differ from any conventional materials modelling in three aspects:

â The constitutive equations of each layer are orthotropic;
â The constitutive equations of the element depend on the kinematic considerations of the plate/shell

theory employed and its implementation on the element;
â The symmetry of the material is as important as the geometry and symmetry of the loading when

trying to use conditions of symmetry in the models.

Regarding structural composites, plate and shell elements are the most used types [74,202].
However, according to Tenek and Argyris [22] the use of a 2D element may neglect the flexural stiffness
of a material. This issue does not exist in solid elements once they are a 3D type of structure; i.e.,
the thickness is included in the general equation.
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5.1. Plate Element

A plate is a 2D plane solid element whose thickness (h or t), usually measured in the z-axis
direction, is a lot smaller than its length and width, which are located in the xy plane [21,203–205].
The plate element can support actions that promote transverse flexion; in addition, it has two bending
moments and one torsional moment [21,75,196,201].

The most classic examples of plates are slabs; buildings’ floor slabs; bridge decks; sides of
rectangular water tanks and other fluid retaining structures; and tables. They transmit the loads that
act on the normal direction of their midplane (z-axis) [75,199,201]. The two main theories that describe
a plate element behavior are Kirchhoff theory and Mindlin theory, both being based on kinematic
hypotheses [21,75,196,201,206–209].

5.1.1. Elements of Kirchhoff Theory

Classic Kirchhoff theory, also called classical theory, is analogous to Euler–Bernoulli’s beam
theory; it is employed in the study of thin plates [74], whose relationship between the smallest plate
gap and the thickness (t) is less than twenty [75,196,201,208]. This theory considers the thickness
to be inextensible and neglects the shear strain deformations, assuming that a normal line segment
at the mean surface remains rectilinear and perpendicular to the surface after deforming the plate
(Figure 16) [75,206,208,210,211]. Altenbach and Eremeyev [203] added that Kirchhoff theory considers
that the plate is made of a homogeneous, isotropic, linear elastic material. It assumes the validity of
generalized Hooke’s law. According to Vaz [201], Altenbach and Eremeyev [203], Saliba et al. [212] and
Schneider et al. [213], the kinematic hypotheses of Kirchhoff’s theory for plates with total isotropy are:

â Any point P (x, y) on the average surface of the plate moves only in the z direction—that is, it has
only vertical displacement w (x, y);

â The normal stress in the z-direction (σz) is negligible;
â The longitudinal strain is zero at any point on the plate, i.e., εz = 0;
â A straight and normal line to the average surface before loading and cutting the median plane of

the plate at point P (x, y) remains straight and normal to the plane tangent to the average surface
at that point after loading, and therefore, the shear deformations γyz e γxz are zero.
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Based on the third hypothesis above, it is possible to define expressions that describe the
displacement fields of the plates, which are represented in Equation (8) [199,201]. u(x, y, z) = −z∂w(x,y)

∂x

v(x, y, z) = −z∂w(x,y)
∂y

(8)

According to Vaz [201] it is possible to obtain deformations for an infinitesimal plane element
from z-dimension parallel to the mean plane of the plate (Equation (9)), ε being the deformation vector
of a given point of the plate, and kk is the vector containing the curvatures of Kirchhoff’s theory relative
to a point in the middle plane of the plate which is on the same vertical line as the point where ε
was calculated. 

εx

εy

γxy

 = −z


wxx

wyy

2wxy

 (9)

Vaz [201] also pointed out that for plate element, there are actions from bending moments
and shearing forces, and the shear moment can lead to vertical shear stresses, and consequently,
distortions γyz and γxz, which are zero, as observed in Equation (10). That is the reason why this theory
can only be applied to thin plates. γxz =

∂w
∂x + ∂u

∂z = wy −wy = 0
γyz =

∂w
∂y + ∂v

∂z = wx −wx = 0 (10)

Soriano [75] and Vaz [201] cited that through the constitutive relations, it is possible to obtain the
general equation for the element (Equations (11) and (12)).
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where:

D =
Et2

12(1− v2)
(12)

In Equation (13), the summarized form of the equation is given, where {M} is the vector of
moments at a point on the middle surface of the plate, [E] is the plate bending stiffness matrix by
Kirchhoff theory and {ε} is the deformation vector at a given point [75,201].

{M} = [E]{ε} (13)

Considering the previous equations, it is possible to obtain the deformation energy for an element
(Equation (14)); the total potential energy (Equation (15)), where q is the transverse force per unit of
positive area in the z-direction; and the general equilibrium equation or the minimum potential energy
principle (Equation (16)) [22,75,202,204].
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∂4w
∂x4

+
2∂4w
∂x2 ∂y2 +

∂4w
∂y4

=
q
D

(16)

Through Kirchhoff theory, two elements were developed, those being the rectangular and
triangular [75,199,201,212,214]. For rectangular elements there are two types; one element is
nonconforming and has three degrees of freedom per node: a vertical displacement (w) and two
rotations (θx and θy) (Figure 17). The other has four degrees of freedom per node: a displacement
vertical (w), two rotations (θx and θy) and a curvature (w, xy) [75,212,215–219].
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Figure 17. Rectangular plate element by Kirchhoff’s theory.

Soriano [75] cite that the rectangular element does not have a constant shear state. Because of
this, Kirchhoff’s triangular element was created, and it can have six or nine nodal displacements.
Saliba [214] and Saliba et al. [212] cite that Kirchhoff’s nonconforming triangular element with nine
terms was developed by Cheung et al. in 1968 and that the element has the three degrees of freedom
per node: a vertical displacement (w) and two rotations (θx and θy) (Figure 18a). Soriano [75] argues
that Morley in 1971 developed the nonconforming but convergent Kirchhoff triangular element with
six terms, which has only vertex transverse displacements and normal rotations at the midpoints of the
sides (Figure 18b).Polymers 2020, 12, 818 21 of 59 
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Soriano [75] and Saliba [214] report the existence of other elements with discrete constraints and
conforming elements, those being three triangular and one rectangular element (Figure 19).
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5.1.2. Elements of Mindlin Theory

Mindlin or Reissner–Mindlin theory for plates is equivalent to Timoshenko theory for beams,
in which the main hypothesis is that the cross section of the beam remains flat, but not necessarily
perpendicular to the tangent of the elastic line when deformed [21,203,207,209,210,213]. Mindlin theory
is hierarchically superior to the Kirchhoff because it presents a three-dimensional solution and can
be applied for both thin plates and spines [75,206–208]. Mindlin theory is a shear-deformable plate
theory [203].

According to Soriano [75], Altenbach and Eremeyev [203], Saliba et al. [212] and Vaz [201],
the kinematic hypotheses of Mindlin’s theory are:

â Any point P (x, y) on the average surface of the plate moves only in the z direction—that is, it has
only vertical displacement w (x, y);

â The normal stress in the z direction (σz) is negligible;
â The vertical longitudinal strain is zero at any point on the plate—i.e., εz = 0;
â A straight and normal line to the average surface before loading and cutting the median plane of

the plate at point P (x, y), remains straight after loading, and straight but not necessarily normal
to this plane, after deformation.

The change in the fourth hypothesis reflects in the displacement field of the plate (Figure 20),
even though it does not link the rotation of the vertical line passing through P (x, y) to the derivatives
of the vertical displacement w (x, y) [201,212,220].

According to Vaz [201], based on the third hypothesis, it is possible to define the expressions
describes the plate displacement fields (Equation (17)).{

u(x, y, z) = zθy

v(x, y, z) = −zθx
(17)

Vaz [201] also mentioned that is possible to obtain the element deformation (Equation (18)),
in which in the summarized equation, the deformation vector ε is subdivided into two vectors: εb
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associated with the bending moments and εs associated with the shear forces; TM is the transformation
matrix subdivided into Tb and Ts; kM M is Mindlin curvature vector, divided into kb and ks.

εx

εy

λxy

λyz

λxz


=


z 0 0
0 z 0
0 0 z

0 0
0 0
0 0

0
0

0
0

0
0

1 0
0 1





θyx

−θxy

θyy − θxx

wy − θx

wx + θy


(18)

Polymers 2020, 12, 818 22 of 59 

 A straight and normal line to the average surface before loading and cutting the median plane of 
the plate at point P (x, y), remains straight after loading, and straight but not necessarily normal to 
this plane, after deformation. 

The change in the fourth hypothesis reflects in the displacement field of the plate (Figure 20), even 
though it does not link the rotation of the vertical line passing through P (x, y) to the derivatives of the 
vertical displacement w (x, y) [201,212,220]. 

 
Figure 20. Field of displacements according to Reissner–Mindlin plate theory Reproduced with 
permission [212]. 

According to Vaz [201], based on the third hypothesis, it is possible to define the expressions 
describes the plate displacement fields (Equation (17)). ( , , ) =( , , ) = −  (17) 

Vaz [201] also mentioned that is possible to obtain the element deformation (Equation (18)), in 
which in the summarized equation, the deformation vector ε is subdivided into two vectors:  
associated with the bending moments and  associated with the shear forces;  is the transformation 
matrix subdivided into Tb and Ts;  M is Mindlin curvature vector, divided into kb and ks. 

= 0 00 00 0 0 00 00 000 00 00 1 00 1
−−−+  (18) 

Vaz [201] points out that now that the curvatures associated with the deformations  and   are 
only null if presented in Equation (19). The author cites that when it is valid, by the Kirchhoff hypothesis 
the rotations θ are given by the derivatives of w. As the γ distortions are not necessarily zero in the 
Mindlin theory, shear stresses and shear stresses will also not be zero. = − = 0= − = 0 (19) 

Soriano [75] and Vaz [201] cite that through constitutive law, it is possible to obtain a general 
equation for the element (Equations (20) and (21)). 

= 1 01 00 0 (1 − )2
−−  (20) 

Figure 20. Field of displacements according to Reissner–Mindlin plate theory Reproduced with
permission [212].

Vaz [201] points out that now that the curvatures associated with the deformations γyz and γxz

are only null if presented in Equation (19). The author cites that when it is valid, by the Kirchhoff

hypothesis the rotations θ are given by the derivatives of w. As the γ distortions are not necessarily
zero in the Mindlin theory, shear stresses and shear stresses will also not be zero.{

γyz = wy − θx = 0
γxz = wx − θy = 0

(19)

Soriano [75] and Vaz [201] cite that through constitutive law, it is possible to obtain a general
equation for the element (Equations (20) and (21)).

Mx

My

Mxy

 = D


1 v 0
v 1 0

0 0 (1−v)
2



−θyx

θxy

θxx − θyy

 (20)

where

D =
Et2

12(1− v2)
(21)

Equation (22) presents the summarized form of the equation, where {M} is the momentum vector
at a point on the mean surface of the plate, [E] is the plate bending stiffness matrix by Kirchhoff theory
and {εF} is the bending deformation vector of thin plates [75].

{M} = [E]{εF} (22)

For an isotropic element given by Equation (23), where K is the shear factor and G is the transverse
modulus of elasticity, β is the shear deformation and KA represents a reduced area. In Equation (24),



Polymers 2020, 12, 818 23 of 59

a new summarized equation for Mindlin theory is shown, where εC represents the general shear stress
rotation or deformation K [75].

τ =
Q

KA
= Gβ (23){

Qx

Qy

}
= GKt

{
βy

−βx

}
= GKt {εC} (24)

Considering the previous equations, it is possible to obtain the deformation energy for the element
(Equation (25)) and the total potential energy (Equation (26)), where q is the transverse force per unit of
a positive area in z-direction and Ĩ is the identity matrix of the elastic coefficients in the general matrix
[E] [75].

U =
1
2

∫
A
−θyx θxy

(
θxx − θyy

)
Mx

My

Mxy

dA +
1
2

∫
A
βy − βx

{
Qx

Qy

}
dA (25)

Π =
1
2

∫
A
−θyx θxy

(
θxx − θyy

)
(wx + θy)(wy + θx)

[
E 0
0̃ GK̃t̃I

]

−θyx

θxy

θxx − θyy

wx + θy

wy − θx


dA−

∫
A

qw dA (26)

Soriano [75], Saliba et al. [212] and Vaz [201] mentioned that unlike Kirchhoff’s theory, the rotations
θx and θy are independent of the displacement w (x, y). This independence allows us to formulate
C0-continuity elements.

Through Reissner–Mindlin theory, several elements have been developed, which can either
be curved or not. In Figure 21 some of the isoparametric elements applied to the plate theory are
presented—independent approximations for w (x, y), θx (x, y) and θy (x, y), are easily written due
to general parametric FEM formulation [75,212,214]. For elements Q4, Q8, Q9, Q16, T3, T6 and T10,
all nodes have three degrees of freedom: one vertical displacement and two rotations. However,
the element Q9H, called heterosis, has the peripheral nodes with three degrees of freedom and the
central node with only two rotations
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Soriano [75] mentioned that for some reason, low order elements are subjected to locking or
convergence ratio reduction. In order to identify the susceptibility to locking and the quality relation
between the elements, the heuristic beam restraint ratio is generalized. For this, two constraints of shear
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stress are associated with each point of stiffness matrix integration; one related to βy and another to βx.
However, support constraints on the spatial distribution are not considered, these being dependent
on the geometric distortion of the element; i.e., this distortion influences the ability of the element to
represent constant or zero shear strain deformations.

5.1.3. Theory of Kirchhoff versus Theory of Mindlin

Kirchhoff theory is suitable for a thin plate; Reissner–Mindlin plates; and thin and thick plates
(also called semi-thick), but its application to thin plates requires special attention in order to make
the elements capable of representing real-life cases [75,196,206,207,212,221]. Schneider, Kienzler and
Böhm [213] cited that well-established standard theories for (linear geometry) homogeneous isotropic
plate bending problems are: Kirchhoff theory, for neglecting the influence of shear deformations only
suitable for very thin plates, and Reissner–Mindlin theory, which considers the influence of shear
deformations and is used for thick plates.

However, there are more factors to be considered, such as static or dynamic behavior, a plate made
from a single material and layers coming from distinct materials (sandwich or laminated). Shear strain
consideration is the most important issue in a dynamic behavior and/or in a sandwich plate [75].

5.2. Shell Element

A shell is a two-dimensional planar solid whose thickness (h or t), usually measured along the
z-axis, is much smaller than its length and width, both located in the xy plane [21,22,75,198,203].
This element is curved and can withstand bending and membrane effects, consisting of an average
surface deformation for the element located on the same surface [21,75,201,222,223]. Examples of
shell structures include acoustic shells, stadiums, large-span rooves, cooling towers, piping systems,
pressure vessels, aircraft fuselages, rockets, water tanks, arch dams and many more. Even in the field
of biomechanics, shell elements are used for the analyses of the skull, crustaceans’ shapes, red blood
cells, etc. [75,109,199,200,224,225].

The shell element has probably generated more academic work in FEM technology than any other
topic; however, it shows more computational barriers among all continuous structural elements, due to
its curved geometry and the larger number of parameters involved [75,199,200,224].

According to Barbero [77], most of the composite structures are modelled using plate and shell
elements. According to the author, this happens because, beyond reducing the numbers of nodes
and elements, when compared to the solid element, it makes the modelling of thick laminates easy
(Figure 22).
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Its shape allows certain membrane tensile systems to act parallel to its tangential plane and
become primary deformation carriers. In fact, the analysis of many fine elements is based solely on
shell membrane theory, neglecting their flexural stiffness [22].



Polymers 2020, 12, 818 25 of 59

Mathematically, the shell element model is similar to the plate element, since it is common to
consider null the transverse normal stress component [21,22,75,198]. The shell geometry can be defined
by its average surfaces or just one of its outer surfaces, called the reference surface, along with the
thickness of each point. In general, the average surface is used as the reference surface [75].

According to Soriano [75], in the case of a shell element, bending is associated with the resultant
loading forces (Mx, My, Mxy, Qx and Qy). In the case of small thicknesses, shell curvature radius
expressions are identical to those from plate elements. Tensile components from a membrane effect,
are the same as those occurring in the plane stress state, although they are considered by their results
per unit length of the reference surface (Figure 23).
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5.2.1. Shell Theories

There are basically three coherent approaches for the shell element analysis. (a) Shell structure
is faceted with flat elements, (b) via elements formulated on the basis of curved-shell theory or
(c) degenerated three-dimensional elements [221,226,227].

The Theory of Flat Plate

The general theory of thin shell or flat shell was presented by H. Aron in 1874 and by A.E. Love in
1888, but it was only applied to solve engineering problems a century later. Similarly, to plate theory,
plane shell theory basically differs from the idea of shear stress deformations, because in this case the
analysis of shells with these elements is performed by superposing the membrane stiffness due to
the plate elements [75,228]. Depending on the type of problem analyzed, the solutions obtained may
depend on the discretization degree.

In spite of the presented difficulties (discontinuity in the momentum of interface elements) these
elements are applied in linear and nonlinear shell analyses [226]. Plane shell theory can be divided into
sub-theories under the assumptions of Reissner–Mindlin (first order theories), higher order theories
and discrete layer theories [75,222,229].

In this theory, shear stress deformations are neglected, assuming that a line segment perpendicular
to the average surface of the shell remains straight and normal to this surface after its deformation.
Differently from the Reissner–Mindlin hypothesis, which assumes that the segment remains straight,
not normal to the middle surface though [75,229].
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In higher-order theory, nonlinear polynomial laws are adopted to define the segment bending
after deformation; physical models, though, are better represented in thematic models than in other
theories. Discrete layers theory is suitable for laminated shells, with a linear displacement field adopted
by segments and thickness imposing appropriate contact conditions at the ply interfaces [75].

Three-Dimensional Elements

When a shell analysis is done with three-dimensional finite elements, many numerical difficulties
may occur due to the discretization along with thickness, leading to an equation system with a greater
number of unknowns compared to the degenerate model using a reference surface [75,226].

All shell models have uncertainties when compared to three-dimensional elasticity theory;
nonetheless, they have the advantage of operating over very small magnitudes, allowing easy
calculation of stresses [75].

Degenerate Shell Element of the Three-Dimensional Element

In the three-dimensional, degenerated shell element approach, simply known as the degenerated
shell element, the element behavior, towards independent displacements and rotations, is degenerated
from three-dimensional tensions and deformations [226].

These elements have the advantage of requiring only a C0-continuous function, once equilibrium
equations are second-order differential equations. The degenerative concept of finite element
formulation was extended by several authors into a linear and nonlinear analysis of anisotropic
laminated composite structures [226].

Modelling using the degenerated shell is adopted because it reduces computational time, referring
specifically to data provision and analysis, as well for numerical reasons [75,226].

5.2.2. Shell Element Types

The classical shell formulation requires displacements of a fifth-degree polynomial; consequently,
a high number of nodal parameters are needed for both thin and shallow shells. The most practical
solution is to develop shell elements starting with associations of plane stress elements and plate
flexion, or by using the degenerated, three-dimensional curved element on a surface, adopting
kinematic and mechanical constraints (Figure 24), resulting in in-plane elements, curved elements (with
Reissner–Mindlin hypotheses) and an axisymmetric shell with an asymmetric loading [75,221,222].
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Flat Elements

According to Soriano [75], it is possible to combine plate elements with flat plane stress elements;
thus, it is worked out with the plane stress resultants, considered plane elements. The plane element
generates an approximation of the geometry in the curved shell discretization, replacing it by a set of
facet elements, aside from displacement field approximations, inherent in finite element analysis.

This type of discretization requires a large number of elements with a refined polyhedral surface
approaching the original mean surface. In this case, the triangular elements (Figure 25) better represent
a double-curved shell geometry than the quadrilateral elements, which in this case are more interesting
for single-curved shells and flat-shell discretization [75].
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Considering many contributions from various elements, it is possible to determine a global
stiffness matrix (Equation (27)), with [λ] representing a three-dimensional rotation matrix [75].

{
u′

}
i = [r]e{u}i =

[
λ 0
0̃ λ̃

]e

{u}i (27)

Curved elements (with Reissner–Mindlin Hypotheses)

According to Soriano [75], in 1968, Ahmad, Irons and Zienkiewicz developed a degenerated shell
element, starting from a three-dimensional curved element. This degeneration became widely used
with the knowledge of reduced/selective integration and evolved with complete integration of the
mixed formulation, aiming to obtain robust elements.

Cook [21] cited that for curved elements, one can start from the middle surface, with the geometric
definition and displacement field, adopting Reissner–Mindlin hypotheses, instead of three-dimensional
explicitly degenerated element on its average surface by imposing a normal condition which maintains
it straight, but not necessarily normal to this surface according to Reissner–Mindlin theory (Figure 26).
In general, any other reference surface which is not necessarily the average one may be used as an
outer surface. However, the average surface is usually adopted in the case of single-layer shells with
homogeneous thickness [75].

According to Soriano [75] the main advantages of using the degenerate shell are:

â Working with the shell hypothesis from the beginning, obtaining, in a simple way, a wide range
of elements;

â Developing curved elements that only need C0 continuity;
â Using only linear displacements and rotations as degrees of freedom, making it possible the use

shell elements to discretize beam and plate elements;
â Considering the effect of shear strain on a wide variety of thicknesses.



Polymers 2020, 12, 818 28 of 59

Polymers 2020, 12, 818 28 of 59 

Curved elements (with Reissner–Mindlin Hypotheses) 

According to Soriano [75], in 1968, Ahmad, Irons and Zienkiewicz developed a degenerated shell 
element, starting from a three-dimensional curved element. This degeneration became widely used with 
the knowledge of reduced/selective integration and evolved with complete integration of the mixed 
formulation, aiming to obtain robust elements.  

Cook [21] cited that for curved elements, one can start from the middle surface, with the geometric 
definition and displacement field, adopting Reissner–Mindlin hypotheses, instead of three-dimensional 
explicitly degenerated element on its average surface by imposing a normal condition which maintains 
it straight, but not necessarily normal to this surface according to Reissner–Mindlin theory (Figure 26). 
In general, any other reference surface which is not necessarily the average one may be used as an outer 
surface. However, the average surface is usually adopted in the case of single-layer shells with 
homogeneous thickness [75]. 

 
Figure 26. Curved element. Reproduced with permission [75]. 

According to Soriano [75] the main advantages of using the degenerate shell are: 
 Working with the shell hypothesis from the beginning, obtaining, in a simple way, a wide range 

of elements; 
 Developing curved elements that only need C0 continuity; 
 Using only linear displacements and rotations as degrees of freedom, making it possible the use 

shell elements to discretize beam and plate elements; 
 Considering the effect of shear strain on a wide variety of thicknesses. 

Equation (28) shows the parametric form for a three-dimensional geometry, starting from the mean 
surface of a curved element, where ζ is the dimensionless coordinate of the z-axis with values at the 
outer surfaces of ± 1;  is the thickness at the nodal point i; , ,  are the z-axis directional 
cosines also at point i, components of the vector . 

=   +   2   (28) 

Assigning the displacements according to the local axes x, y and z for u’, v’and w’ respectively, 
there are deformation vectors in a global reference and deformation components, respectively [75]. 
Based on these considerations and through generalized Hooke's law, (assuming = 0), one can obtain 
the general equation for a degraded shell (Equation (29)). 

Figure 26. Curved element. Reproduced with permission [75].

Equation (28) shows the parametric form for a three-dimensional geometry, starting from the
mean surface of a curved element, where ζ is the dimensionless coordinate of the z-axis with values at
the outer surfaces of ±1; ti is the thickness at the nodal point i; nzXi, nzYi, nzZi are the z-axis directional
cosines also at point i, components of the vector {nz}i.
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Assigning the displacements according to the local axes x, y and z for u’, v’and w’ respectively,
there are deformation vectors in a global reference and deformation components, respectively [75].
Based on these considerations and through generalized Hooke’s law, (assuming σz = 0), one can obtain
the general equation for a degraded shell (Equation (29)).
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From the curved shell element formulation with Mindilin theory for plates, Soriano [75] highlights
the following differences:

â For plates, initially, shear rotations were separated from the plate and worked on
the tension-deformation relationships with the resultant stress, excluding, consequently,
integration along with thickness in the rigidity matrix and nodal forces equivalence expressions;

â For shells, working with total rotation and stress components results in expressions of rigidity
matrix and equivalent nodal forces that require integration along with thickness. Note that plate
elements could also be formulated the same way.

Asymmetric Shell with Asymmetric Loading

The use of structural axisymmetric (geometry and support conditions) and asymmetric loading
leads to a simpler discrete model than the corresponding three-dimensional one. This simplicity is
linked to a specific geometry and a smaller number of variables to be determined [75,230].

In 1963, Grafton and Strome presented the axisymmetric shell discretization, with asymmetric
loading, in truncated cones corresponding to rectilinear finite elements according to a meridian shell,
which has two nodal points and three displacements per node. Jones and Stone in 1966 modified the
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work from Grafton and Strome, considering curved elements according to the meridian; both authors
considered the thin shell theory though [75].

These elements of revolution (conical and curved elements) have nodal circles and not nodal
points, as for plate elements, and in general, there are two nodal circles per element, which has two
translations (radial and axial) and one rotation [21]. Figure 27 represents the axisymmetric shell
element, where x and z axes are respectively tangent and normal to a meridian of a mean surface at
each point r, θ and Z with radial direction and Z to axial [75].
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The equation that defines the displacements’ interpolation is represented in Equation (30), where u
is the radial displacement, w is the axial displacement and βi is the rotation of the nodal point i,
according to the circumferential direction [75].{
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Through all these considerations regarding stress and strain, the local and global referential are
obtained by exclusion of γxy and γyz, and by the exchange of y with θ, resulting in the axisymmetric
shell general Equation (Equation (31)) [75].
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5.3. Cohesive Elements

Cohesive elements, also called decohesion elements or interface elements, are useful in modelling
adhesives, bonded interfaces, delamination and rock fracturing [58,65,231–235]. The constitutive
response of these elements depends on the specific application and is based on certain assumptions
about the stress and strain states that are appropriate for each application area. The nature of the
mechanical constitutive response can be broadly classified based on [232,236,237]:

â Continuum-based modeling;
â Laterally unconstrained adhesive patche;
â Traction-separation based modeling.
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In these approaches, cohesive elements are used to represent the behavior of a fracture,
while traditional volumetric elements represent deformations of the continuous medium.
Cohesive elements are inserted at the interfaces between pairs of adjacent volumetric elements
in the finite element mesh (Figure 28) [238].
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Figure 28. Interface element analysis of delamination in a double cantilever beam. Reproduced with
permission [64].

5.3.1. Continuum-Based Modeling

According to Joshi, Pal and Chakraborty [237], continuum-based modeling is used when the
cohesive zone has a finite thickness such as a joining of two surfaces with the help of adhesive material
such as glue (Figure 29). The thickness, stiffness and strength of a cohesive zone can be estimated
using experimental methods. In the case of continuum modelling, one directs stress in the direction
of thickness, and two shear stresses mutually perpendicular and along the plane of the adhesive
are present.Polymers 2020, 12, 818 31 of 59 
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This approach is appropriate for modelling joints with gaskets (Figure 31). The macroscopic 
properties of the gasket, such as strength and stiffness, are used for the analysis. Only unidirectional 
stress along the through-thickness direction is considered in the analysis. The nonlinear and hyperelastic 
behavior of the materials used for gaskets—rubber, foam, etc.—can be captured in the constitutive 
relations used for the modelling techniques for laterally unconstrained adhesive patches [237]. The 
constitutive responses of gaskets modelled with cohesive elements can be defined using only 
macroscopic properties such as stiffness and strength [232].  

Figure 29. Progressive failure process of the adhesive layer in the lap-shear joint, (a) damage initiation
at the overlap edges (SDEG-% = 0), (b) propagation towards the joint centre (SDEG-% ≈ 40), (c) joint
failure (SDEG-% = 100). Reproduced with Creative Common License [239].

The cohesive elements model the initial loading, the initiation of damage and the propagation of
damage leading to eventual failure in the material [232].

The continuum-based can be applied in 2D and 3D problems. In 2D problems the continuum-based
constitutive model assumes one direct strain (through-thickness), one transverse shear strain and
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all stress components to be active at a material point. In 3D problems it assumes one direct strain
(through-thickness), two transverse shear strains, and all stress components to be active at a material
point (Figure 30) [232,237].
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Figure 30. Spatial representation of CH3D8 (eight-node three-dimensional) cohesive element.
Reproduced with Creative Common License [240].

5.3.2. Laterally Unconstrained Adhesive Patche

This approach is appropriate for modelling joints with gaskets (Figure 31). The macroscopic
properties of the gasket, such as strength and stiffness, are used for the analysis. Only unidirectional
stress along the through-thickness direction is considered in the analysis. The nonlinear and hyperelastic
behavior of the materials used for gaskets—rubber, foam, etc.—can be captured in the constitutive
relations used for the modelling techniques for laterally unconstrained adhesive patches [237].
The constitutive responses of gaskets modelled with cohesive elements can be defined using only
macroscopic properties such as stiffness and strength [232].Polymers 2020, 12, 818 32 of 59 

 

 
Figure 31. Typical application involving gaskets, (a) Reproduced with permission [241] and (b) 
Reproduced with permission [242]. 

5.3.3. Traction-Separation-Based Modeling 

The modelling of bonded interfaces in composite materials often involves situations wherein the 
intermediate glue material is very thin and for all practical purposes may be considered to be of zero 
thickness. Therefore when the macroscopic properties of the material, such as the rigidity and strength 
of the adhesive material, are not important, traction-separation-based modelling can be used (Figure 32) 
[60,63,232,237,243,244]. 

In cases of the macroscopic material properties are not relevant directly, the analysis should be 
based on concepts derived from fracture mechanics—such as the amount of energy required to create 
new surfaces [232,245]. 

 
Figure 32. Damage of cohesive elements in the wake of delamination front. Reproduced with permission 
[246]. 

The cohesive elements model (CZM) models the initial loading, the initiation of damage and the 
propagation of damage leading to eventual failure at the bonded interface. The behavior of the interface 
prior to initiation of damage is often described as linearly elastic in terms of a penalty stiffness that 
degrades under tensile and/or shear loading but is unaffected by pure compression [232,247]. 

Figure 31. Typical application involving gaskets, (a) Reproduced with permission [241] and
(b) Reproduced with permission [242].

5.3.3. Traction-Separation-Based Modeling

The modelling of bonded interfaces in composite materials often involves situations wherein
the intermediate glue material is very thin and for all practical purposes may be considered to be of
zero thickness. Therefore when the macroscopic properties of the material, such as the rigidity and
strength of the adhesive material, are not important, traction-separation-based modelling can be used
(Figure 32) [60,63,232,237,243,244].
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In cases of the macroscopic material properties are not relevant directly, the analysis should be
based on concepts derived from fracture mechanics—such as the amount of energy required to create
new surfaces [232,245].
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The cohesive elements model (CZM) models the initial loading, the initiation of damage and
the propagation of damage leading to eventual failure at the bonded interface. The behavior of the
interface prior to initiation of damage is often described as linearly elastic in terms of a penalty stiffness
that degrades under tensile and/or shear loading but is unaffected by pure compression [232,247].

According to Abena, Soo and Essa [60], the limitation of this approach is the inability to represent
the beginning of the damage and the propagation of the failure under compression and the inability to
produce any stress related to a membrane response. In contrast, elements representing the surrounding
phases (matrix and fibre) are able to fail under compression and a membrane response, and are
consequently deleted during the analysis. Therefore, the cohesive elements could remain in the model
even if their surrounding elements fail. When this happens, the cohesive elements lose their aim,
since they are not linking matrix and fibre any more, and they also usually experience excessive
distortion since their nodes become free to move [60].

During modelling of the joints under traction-separation technique, before damage initiation,
linear elastic behavior is assumed [60]. In 2D problems, the traction-separation-based model assumes
two components of separation (one normal to the interface and the other parallel to it), and the
corresponding stress components are assumed to be active at a material point. In 3D problems there
are three components of separation (one normal to the interface and two parallel to it), and the
corresponding stress components are assumed to be active at a material point [60,232].

The linear elastic behavior before the initiation of damage can thus be governed by the constitutive
relations, as given by Equation (32) [60], where σn is the normal stress along the local direction 3
(through-thickness), and σs and σt are the shear stress components along the local directions 1 and 2,
respectively. The εn is the normal strain along the local direction 3, and εs and εt are the shear strain
components along the local directions 1 and 2, respectively.

σn

σs

σt

 =


Dnn Dns Dnt

Dsn Dss Dst

Dtn Dts Dtt



εn

εs

εt

 (32)

The failure mechanism consists of damage initiation criterion and damage evolution law.
The damage initiation can be governed by the criteria of maximum stress and maximum strain [60].
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Regarding damage evolution law, different cohesive laws have been proposed in the literature, but
normally, assumptions of zero adhesive thickness are made (Figure 33) [234,248,249].
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Once the damage criteria are met in any one of the modes, then the stiffness starts degrading,
causing a gradual failure. This is also called as softening [237,250].

According to Arafah [248], Schwalbe, Scheider and Cornec [251] and Budiman et al. [252],
the traction separation law (TSL) can be described by the following parameters: the critical separation
(δ0)—that is, the maximum displacement jump across the crack at which the cohesive element becomes
completely broken; the cohesive strength (T0), which is the maximum traction at the crack plane;
and the cohesive energy Γ0, which is the amount of energy consumed to create new crack surfaces (i.e.,
separation energy similar to Griffith’s fracture concept). The cohesive energy can be calculated from
the area under the traction separation law T (δ), as in Equation (33).

Γ0 =

∫ δ0

0
T (δ). dδ (33)

The initial response is assumed to be linear, and once a damage initiation criterion is met, damage
can occur according to a user-defined damage evolution law (Figure 34) [249].
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In the case of mixed mode loading, a tangential separation mode, usually designated Mode II
and Mode III, accompanies the normally considered crack opening (Mode I) [233,251]. In linear elastic
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fracture mechanics, a phase angle (ΨLEFM) can be define by Equation (34) Figyre, where KI and KII

denote the stress intensity factors for crack opening Modes I and II respectively [250].

ΨLEFM = arctan
[KII

KI

]
(34)

In the context of the cohesive model, a tangential displacement (δt) represents the additional
shear mode and is superimposed on the displacement normal to the crack plane (δn) (or plane of
expected damage in the absence of a pre-existing crack) (Equation (35)) [250].

Ψ = arctan
[
δt

δn

]
(35)

5.3.4. Cohesive Element Types

The cohesive elements can be defined as 2D or 3D elements. The 2D has four nodes and two
integration points with a linear displacement formulation. The 3D can be constructed using eight nodes
and four integration points with linear displacement formulation (Figure 35). The local coordinate
system of the cohesive element could be defined with respect to the initial configuration or the actual
configuration (i.e., moving coordinate system) (Figure 35) [240,248]. For the aim of calculating the
stresses and separations of the cohesive element, they are connected to the adjacent continuum elements
by sharing the respective common nodes (Figure 35) [248].Polymers 2020, 12, 818 35 of 59 
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Modelling using the 2D cohesive elements has two options: the plane strain/stress and shell
model. The difference between them is that the shell element is defined in the three-dimensional space.
Therefore, any separation may be in-plane or out of the plane, and the in-plane direction must be
defined by the user, which can be done by a fifth node, as shown in Figure 36 [250].
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6. Main Applications of Finite Elements in the Study of Composite Materials

Every industrial sector feels over the years an increasing demand for innovative products
that outperform competitors and meet market needs. For many design applications, resistant and
lightweight materials are required, which makes laminates the ideal solution. However, new product
developments and launches, and new technologies, cannot compromise product quality, reliability and
speed [253].

The use of composites is growing rapidly in many industries, with new technologies becoming
necessary for design, analysis and optimization. However, mechanical designers who work with steel
and metals in general do not have many problems predicting the behaviors of these materials in use,
because they are considered isotropic materials. Composite materials do not work the same way,
once they are made from distinctive constituent materials [254]. Furthermore, their manufacturing is
very expensive, making impractical the construction of real-size or scale-size prototypes.

In this context, numerical simulations evolved, mainly using the finite element method (FEM),
and became a valuable tool to reduce project costs, enabling real-size components and equipment,
boundary and entry conditions to be easily and quickly modelled. The usage of FEM to help engineering
projects has increased over the past decades, due to computational capacity and data-processing
performance, reduction project elaboration time and low costs.

Conventional software packages that use FEM in structure analysis, temperature, air and fluid
fluxes, were not developed for composite materials, because of the fiber weaving and the microscale
simulation approach needed. Acknowledging this deficiency, software providers started to include
and add specific tools making composite analysis possible [254], owing to huge market demand for
specialized tools to solve the constructive and operational particularities of these materials.

With this in mind, we can cite customized algorithms developed to work with well-known
software such as Abaqus and HyperSizer, and add-on modules; for example, Ansys Composite
Prep/Post, NISAII/COMPOSITE from Cranes Software Inc, FiberSIM from Siemens, Helius-Composite
from Autodesk and GENOA from Altair and Laminate Tools from Anaglyph [255–261].

As already mentioned, the field of application of composite materials is very wide (Figure 37);
consequently, the FEM software for laminate analyses has to meet all these specificities [262–266].

6.1. Aronautical

As a way to demonstrate the importance of the use of FEM analysis in composite materials, there is
the aeronautical sector, which could increase the percentage of laminates in aircraft—an advance
impossible to be made with prototypes because of their high costs and very long manufacturing time.
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Figure 37. Some fields of FEM’s application to composites: (a) wind power, (b) sports,
(c) automotive, (d) construction, (e) naval. Reproduced with Creative Common License [267],
(f) aeronautics. Reproduced with permission [268] and (g) space. Reproduced with Creative Common
License [269] industries.

After the 2000s, the aeronautical industry increased composites’ presence by structural weight by
≈40% [270] (Figure 38). This coincides with the increase in the processing capacity of computers and
the evolution of numerical simulation software dedicated to composites.
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According to Vijaykumar Rayavarapu [271], Hindustan Aeronautics Limited R&D—manager,
a major advancement of simulation for this sector is the possibility to predict the best geometries
and materials for withstanding bird impacts, which according to Zhou, Sun and Huang [272] is a
recurring and problematic phenomenon in aviation worldwide, because a bird impact causes structural,
serious damage, particularly threatening the safety of aircraft and passengers; e.g., loss of aircraft and
even the loss of lives.
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Rayavarapu said, “In the past, the only way to determine whether composite aircraft components
could withstand bird strikes was with time-consuming physical tests. Now, engineers use simulation
to get the design right the first time. Bird strike simulation saves the companies design time and
thousands of dollars per test of composite helicopter/aircraft components.”

According to Bouvet, Rivallant and Barrau [273] and Sun et al. [249], another problem for
companies that use composites in their products is the impact caused by the tools falling on the
components during their assembly or maintenance (low velocity impact). Composite laminates have
brittle behavior and can undergo significant damage in terms of matrix cracks, fiber breakages or
delamination. This damage is particularly dangerous because it drastically reduces the structural
integrity of the structure, and at the same time can leave very limited visible marks on the surface
impacted [274,275].

Through the start-up Carbon, another great advancement was achieved by the use of FEM to
reduce cargo weight to increase aircraft fuel efficiency. For them, “Lightweighting is one of the most
important trends in the aerospace industry today, as jet manufacturers and their suppliers work to
reduce the overall weight of planes and improve their fuel efficiency, include reducing the weight of
the cargo” [276].

Huang [277] and Yang [278] still commented on the introduction of nanostructured materials in
aircraft, which will help to increase the resistance and decrease their structural weight. These composites
taken with the multifunctional ones have been the subjects of several studies in the last decade, as they
present significant improvements in mechanical, chemical, electrical and thermal properties; in other
words, not only mechanical support functions, but also integrated functions [278–283].

In general, aeronautical companies use FEM in structural analyses, vibrations, dynamic buckling
and fluid flows in the fuselage, wing, turbine and other parts (Figure 39) [284–286]. These analyses
help determine the best geometry and material for each part of the aircraft, and understand how it
will behave in service; for example, how the pressure and drag force will affect the aircraft during a
flight [285,287].
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an acceptable level of safety.” He still complements simulations for helping to reduce costs related to 
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Reproduced with Creative Common License [288], (b) wing geometry. Reproduced with
permission [289] and (c) tube rotor blade improvement. Reproduced with Creative Common
License [290].
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6.2. Space

The space sector, and the aeronautical sector, have benefited greatly from the advances of numerical
simulation, because nowadays they can simulate a structure or component of a vehicle and test what
the best geometry or material for it will be. In addition, there is the possibility of simulating various
types of environments, such as the vacuum of space, solar radiation and even conditions from other
planets (Figure 40) [90,291–293]. According to John Thornton, chief engineer of Astrobotic Technology
Inc. [294], “Using design and simulation tools is possible designed and refined a lightweight spacecraft
able to withstand static acceleration and dynamic random vibration loads of launch while maintaining
an acceptable level of safety.” He still complements simulations for helping to reduce costs related to
prototypes and physical testing.
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6.3. Automotive

Another sector that has been applying composites to its products is the automotive one; they use
FEM for the bodies of the cars and engines, mainly for impact tests. According to Jung [296] they
predict damage under impact loads on automotive components, as impacts can reduce the structural
integrity of composite components. Impact damage induces a variety of failure modes: matrix cracking,
fiber breakage, and delamination. Among these failure modes, delamination is the most significant
because the interlaminar mechanical properties are much weaker than those the rest of the composite,
and it is difficult to visually detect this damage from the outside [296–298].

One of the applications of FEM in this scenario is to understand the behavior of the material
during an impact, as in the work developed by Chiacchiarelli, Cerrutti and Flores-Johnson [299],
in which they used layers with the same density but different compressive strengths in the direction
of load, in a multilayered, rigid polyurethane foam block subjected to impact, since, by its excellent
energy absorption capacity, it can be used as a high-level coating resistant to collisions, which makes it
attractive for the automotive sector.

In the area of super-sport and competition cars, such as those for Formula One racing, it is very
advantageous to use simulations to find the best geometry of a car, since a few seconds can define the
winner (Figure 41) [253,282,287,300–302].



Polymers 2020, 12, 818 39 of 59

Polymers 2020, 12, 818 40 of 59 

 
Figure 41. Some applications of FEM in composites in the automotive sector: (a) impact. Reproduced 
with Creative Common License [266], and (b) car racing. 

6.4. Naval 

In the naval sector, the use of composites has been growing with the aid of FEM, with the main 
research being for marine propellers, ships and submarines (Figure 42). This research field uses FEM 
either to determine the mechanical properties or to predict the vibrations of its vessels, besides 
optimizing its structural weight [69,258,303–307]. 

 
Figure 42. Some applications of FEM in composites in the naval sector: (a) propellers. Reproduced with 
permission [303], (b) submarines. Reproduced with Creative Common License [267] and (c) ships. 

6.5. Energy 

In the energy field, composites have been gaining space in the wind sector (Figure 43a), mainly due 
to the fabrication of the blade turbines, and with the help of FEM it is possible to predict how the wind; 
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According to Sandeep Sovani, director of Global Automotive Industry-ANSYS [253], “Simulation is
key to solving issues upfront in the design phase. Companies that fine-tune auto body and chassis can
reduce fuel consumption and build in reliability upfront in the design process with simulation.”

As examples the Sovani cite, “The Tier 1-supplier DENSO embeds CAE into all phases of its product
development process, improving quality and reducing time to market along the way. Advanced virtual
analysis enables such pacesetters to create category-changing; the KTM Technologies incorporated
radical composites into a sports car, which called for new design, analysis and optimization technologies.
Created using simulation, the product struck a fine balance between requirements, performance and
costs while exceeding customers’ requirements; the ZF-TRW study the friction-induced brake squeal,
for grow important as other vehicle noise sources are mitigated because of this the ZF-TRW engineers
accurately simulated squeal and automated the simulation process while reducing time and money
spent on validation testing. Performing simulation early in the design process helps to avoid
costs associated with multiple prototypes, rework and tooling changes; and Valeo used nonlinear
best practices to simulate thermoplastic snap- fits, leveraging HPC that shrunk simulation time by
50 percent” [253].

6.4. Naval

In the naval sector, the use of composites has been growing with the aid of FEM, with the
main research being for marine propellers, ships and submarines (Figure 42). This research field
uses FEM either to determine the mechanical properties or to predict the vibrations of its vessels,
besides optimizing its structural weight [69,258,303–307].

6.5. Energy

In the energy field, composites have been gaining space in the wind sector (Figure 43a), mainly due
to the fabrication of the blade turbines, and with the help of FEM it is possible to predict how the wind;
the heat; and the sun’s radiation, centrifugal force and gravity load will affect the blades—and the
ideal geometry to optimize the turbine [46,308–310].
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In addition, Oliveira [311] cited a major innovation of the WEG company, which “wanted to
replace the steel cover that contains the rotor coil head with an alternative material in a new line of
turbogenerators. The engineering team explored the use of a pre-impregnated composite material in
the form of a banding tape instead of a retaining ring. The result was a fully validated component with
a lower rotor mass that is also cost- effective to manufacture. New materials, like the composites in this
case, can reduce feedstock costs by as much as 77 percent and wound rotor manufacturing costs by 18
to 20 percent.”

Another branch of the energy sector that has turned its attention to laminates is the oil and gas
industry (Figure 43b), as they have been looking for deeper oil fields, and therefore, alternatives to the
traditional armor wires are needed, due to a more severe environment. The traditional armor wires
made from carbon steel are capable of operating at sea depths of 2.4 km but pose limitations, such as
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tensile fatigue, buckling and corrosion and excessive weight; thus, one option is the flexible hybrid
composite pipe [312–317]. According to Anderson et al. [314] the combination of ultra-deepwater
(>1500 m) applications and large pipe diameter requirements presents severe engineering challenges
for rigid pipe technology. To address those needs, General Electric, with the support of a research
partnership with Secure Energy for America, has a development program to generate a flexible pipe
with an internal diameter of greater than seven inches for ultra-deepwater applications, and for this
they use the FEM.

6.6. Civil Construction

In civil construction, FEM has been used over the years for the structural calculations of buildings,
bridges loads, etc., both of brickwork and wood (Figure 44). For designers, the advance of FEM
in composites has helped to elaborate hybrid constructions, wherein fiber-reinforced polymeric
composites are used as reinforcements, for example, of bridges and columns, besides helping analyze
the effects of natural events such as earthquakes, tornados and hurricanes on builds [142,318–321].
In addition, as in the aerospace sector, the new nanostructured composites have been helping to reduce
the structural weights of the constructions [277,322].
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introduced in next-generation orthopedic medicine.” 

Figure 44. Some applications of FEM for composites in construction: (a) Strengthening flexural solid
timber beams with CFRP. Reproduced with permission [323] and (b) bridges.

6.7. Sports

Composite materials have not only been gaining a place in the large industrial sectors, but today
they have been sports sector favorites as well, especially in the area of high performance or high-level
sports. This field has been using composite materials to reduce equipment weight; take as examples,
bicycles, tennis racquets, skis and even racing prosthetics (Figure 45). This field uses FEM in its projects
as a way to determine geometries that have high resistance and lower weight to improve the athletes’
performances [253,324–330].

For KTM Technologies GmbH company, “Designers must predict how well the finished product
will perform in the real world, such as on a race track or road. Predicting failure, delamination,
ultimate strength and other development variables is critical before prototype and manufacturing
stages” [253].

Scholz et al. [324] wrote: “Composites typically possess a superior strength to weight characteristic
compared to monolithic materials and offer excellent biocompatibility. They are, therefore, favorable
for both hard- and soft-tissue applications and the design of prostheses. In particular, the development
of specifically designed carbon fiber sports prostheses now allows lower-limb amputees to actively
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participate in competitive sports. Sensory feedback systems, porous composite materials for tissue
engineering and functional coatings for metallic implants are further developments anticipated to be
introduced in next-generation orthopedic medicine.”Polymers 2020, 12, 818 43 of 59 
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6.8. Manufacturing

Due to so many composite applications, the manufacturing sector has studied ways to minimize the
damage generated during manufacturing processes, especially in machining (Figure 46). This concern
is due to the damages that the process causes to laminates, such as delamination, interlaminar fissures,
fiber–matrix displacement and thermal damage [332–335].
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Another concern is the quality shown in the machined pieces; in this case, these pieces are
perforated because the drilling process is the most used one for laminates, since most of the composite
joints are bolted joints [332,336,337]. For this, static and dynamic mechanical tests are simulated in
order to verify the damages caused by drilling and propagated by the test (Figure 47).
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6.9. High-Performance Electronics

One of the most recent fields of composite application is high-performance electronics, because
modern electronic devices rely on novel composite materials to achieve superior performance [339,340].

According to Sudhir Sharma, director of high-tech industry strategy and marketing of ANSYS,
“Today, high-tech companies turn to advanced lightweight, yet strong, materials to create flexible
mobile and wearable electronics. However, a range of complex issues must be considered when
evaluating new materials—including electrical conduction properties, structural strength, dimensional
stability over time and resistance to thermal build-up. The high-tech engineers simulate the electrical
performance and thermal performance of electronic systems and devices. Design for manufacturability
is also important” [313].

Sharma cited two examples of research using FEM in this area; the first case involved 3M,
which published a groundbreaking study on how a novel embedded-capacitance composite material
affected the electrical performance of a printed circuit board. The second is a study by the University of
Pittsburgh and Carnegie Mellon University, wherein the engineers use FEM to assess the performances
of new nanocomposites that have the potential to revolutionize power transformer technology.

Another research area that is growing in electronics regards polymer composites of high thermal
conductivity, commonly used in many industries for renewable energy systems and electronic systems,
such as solar cells, light-emitting diodes, Li-ion batteries and microelectronic packaging. This research
is due to the potential applications as flexible polymers in electronic packaging and encapsulations,
and satellite devices, because the local overheating and heat accumulation that occurs due to increasing
power density may lead to the degradation and failure of functional systems [341–343].
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7. Conclusions

In this article, the main contributions in the field of composite simulation were reviewed and
presented, such as the specific characteristics, theories and constitutive relationships of the composite
materials, and the types of elements and failure criteria used in each case. In addition, the main industrial
sectors that have been using composite simulation as an important part of project development and
study with these materials were also described.

At first, the definitions and characteristics that these materials can have were briefly commented
on, as were the most usual configurations that are used in the various industrial sectors.

After that, the different types of models used in the simulations of composite materials,
called micromechanics, homogeneous equivalent and the combination between them, were detailed.
Starting with the definitions and concepts involved in micromechanical modeling, which individually
approach the properties of each constituent material (fiber and matrix) and the interface between
them, we presented a model with which it is possible to study local defects and failure mechanisms
between the components; however, it demands high computational performance. Continuing with the
definition of homogeneous equivalent modeling—it disregards the difference between constituents
and treats the material as homogeneous, decreasing the demand for computational performance and
making it impossible to study the effects locally.

After that, in the same section, the different levels of simulation that can be used in composite
materials simulations were approached. Starting with simulations at the micro level, which focus on
the interaction and interface between a fiber filament and the matrix, we then moved on to simulations
at the meso level, approaching units of material volume and the relationships between the layers
that make up the material; and finally, we described macro level simulations, which consider these
materials as homogeneous.

Then, the constitutive relationships that can govern mechanical properties of these materials
were discussed, presenting the differences between them one by one. We started with the constitutive
relationship of an anisotropic material, followed that by an orthotropic material and finished with a
transversely isotropic material.

In sequence, the article reviewed the various failure mechanisms that these materials can present,
those being the failures in the fibers and in the matrix, due to loads that can be of compression,
tension and/or shear. We also approached the various failure criteria proposed in research, such as
Hill, Tsai–Hill, Tsai–Wu, Hashin-Rotem, Hashin, maximum stress, Hoffman, maximum stress, Hou,
Puck–Schürmann, Chang-Chang, Linde, LaRC03, LaRC04, Maimi, Hart-Smith and Yeh-Stratton—each
trying their best to get closer to the experimental results. Among all of those, maximum stress,
Tsai–Hill, Tsai–Wu, Hashin and Puck–Schürmann were discussed more deeply, as they are the most
commonly used.

In the ensuing section, the types of elements and theories that govern these were discussed,
as were their differences and applications in the simulation of composites. Among all types of
available elements, the elements of plate, shell and cohesive were highlighted, since these are the most
commonly used.

The last section presents reports from companies and industrial sectors, such as aeronautics,
aerospace, automotive, naval, energy, civil, sports, manufacturing and even electronics, which use finite
element simulations with composite materials in very different cases. These cases start from simple
mechanical test simulations, and go to more complex studies, such as topology optimization; impact;
tribology; vibrations; fluid flow; environmental conditioning; effects of natural events (earthquake,
tornado and drilling); prediction of damages resulting from the machining; and even electrical
properties, such as electrical conduction and capacitance. That came together to demonstrate the great
importance that simulations with finite elements of composite materials has presented in recent years.
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